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The group of automorphisms of the Lie algebra of derivations

of a polynomial algebra

V. V. Bavula

Abstract

We prove that the group of automorphisms of the Lie algebra DerK(Pn) of derivations
of a polynomial algebra Pn = K[x1, . . . , xn] over a field of characteristic zero is canonically
isomorphic to the the group of automorphisms of the polynomial algebra Pn.

Key Words: Group of automorphisms, monomorphism, Lie algebra, automorphism, locally

nilpotent derivation.

Mathematics subject classification 2010: 17B40, 17B20, 17B66, 17B65, 17B30.

1 Introduction

In this paper, module means a left module, K is a field of characteristic zero and K∗ is its group
of units, and the following notation is fixed:

• Pn := K[x1, . . . , xn] =
⊕

α∈Nn Kxα is a polynomial algebra over K where xα := xα1

1 · · ·xαn
n ,

• Gn := AutK(Pn) is the group of automorphisms of the polynomial algebra Pn,

• ∂1 := ∂
∂x1

, . . . , ∂n := ∂
∂xn

are the partial derivatives (K-linear derivations) of Pn,

• Dn := DerK(Pn) =
⊕n

i=1 Pn∂i is the Lie algebra of K-derivations of Pn where [∂, δ] :=
∂δ − δ∂,

• δ1 := ad(∂1), . . . , δn := ad(∂n) are the inner derivations of the Lie algebra Dn determined
by the elements ∂1, . . . , ∂n (where ad(a)(b) := [a, b]),

• Gn := AutLie(Dn) is the group of automorphisms of the Lie algebra Dn,

• Dn :=
⊕n

i=1 K∂i,

• Hn :=
⊕n

i=1 KHi where H1 := x1∂1, . . . , Hn := xn∂n,

• An := K〈x1, . . . , xn, ∂1, . . . , ∂n〉 =
⊕

α,β∈Nn Kxα∂β is the n’th Weyl algebra,

• for each natural number n ≥ 2, un := K∂1+P1∂2+· · ·+Pn−1∂n is the Lie algebra of triangular
polynomial derivations (it is a Lie subalgebra of the Lie algebra Dn) and AutK(un) is its
group of automorphisms.

The aim of the paper is to prove the following theorem.

Theorem 1.1 Gn = Gn.

Structure of the proof. (i) Gn ⊆ Gn via the group monomorphism (Lemma 2.3.(3))

Gn → Gn, σ 7→ σ : ∂ 7→ σ(∂) := σ∂σ−1.

(ii) Let σ ∈ Gn. Then ∂′
1 := σ(∂1), . . . , ∂

′
n := σ(∂n) are commuting, locally nilpotent deriva-

tions of the polynomial algebra Pn (Lemma 2.6.(1)).
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(iii)
⋂n

i=1 kerPn
(∂′

i) = K (Lemma 2.6.(2)).

(iv)(crux) There exists a polynomial automorphism τ ∈ Gn such that τσ ∈ FixGn
(∂1, . . . , ∂n)

(Corollary 2.9).

(v) FixGn
(∂1, . . . , ∂n) = Shn (Proposition 2.5.(3)) where

Shn := {sλ ∈ Gn | sλ(x1) = x1 + λ1, . . . , sλ(xn) = xn + λn}

is the shift group of automorphisms of the polynomial algebra Pn and λ = (λ1, . . . , λn) ∈ Kn.

(vi) By (iv) and (v), σ ∈ Gn, i.e. Gn = Gn. �

An analogue of the Jacobian Conjecture is true for Dn. The Jacobian Conjecture claims
that certain monomorphisms of the polynomial algebra Pn are isomorphisms: Every algebra endo-

morphism σ of the polynomial algebra Pn such that J (σ) := det(∂σ(xi)
∂xj

) ∈ K∗ is an automorphism.

The condition that J (σ) ∈ K∗ implies that the endomorphism σ is a monomorphism.

Conjecture. Every homomorphism of the Lie algebra Dn is an automorphism.

Theorem 1.2 [4] Every monomorphism of the Lie algebra un is an automorphism.

Remark. Not every epimorphism of the Lie algebra un is an automorphism. Moreover, there
are countably many distinct ideals {Iiωn−1 | i ≥ 0} such that

I0 = {0} ⊂ Iωn−1 ⊂ I2ωn−1 ⊂ · · · ⊂ Iiωn−1 ⊂ · · ·

and the Lie algebras un/Iiωn−1 and un are isomorphic (Theorem 5.1.(1), [5]).
Theorems 1.2 and Conjecture have bearing of the Jacobian Conjecture and the Conjecture

of Dixmier [8] for the Weyl algebra An over a field of characteristic zero that claims: every
homomorphism of the Weyl algebra is an automorphism. The Weyl algebra An is a simple algebra,
so every algebra endomorphism of An is a monomorphism. This conjecture is open since 1968 for
all n ≥ 1. It is stably equivalent to the Jacobian Conjecture for the polynomial algebras as was
shown by Tsuchimoto [9], Belov-Kanel and Kontsevich [7], (see also [2] for a short proof which is
based on the author’s new inversion formula for polynomial automorphisms [1]).

An analogue of the Conjecture of Dixmier is true for the algebra I1 := K〈x, d
dx ,

∫

〉
of polynomial integro-differential operators.

Theorem 1.3 (Theorem 1.1, [3]) Each algebra endomorphism of I1 is an automorphism.

In contrast to the Weyl algebra A1 = K〈x, d
dx 〉, the algebra of polynomial differential operators,

the algebra I1 is neither a left/right Noetherian algebra nor a simple algebra. The left localizations,
A1,∂ and I1,∂ , of the algebras A1 and I1 at the powers of the element ∂ = d

dx are isomorphic. For
the simple algebra A1,∂ ≃ I1,∂ , there are algebra endomorphisms that are not automorphisms [3].

The group of automorphisms of the Lie algebra un. In [6], the group of automor-
phisms AutK(un) of the Lie algebra un of triangular polynomial derivations is found (n ≥ 2), it is
isomorphic to an iterated semi-direct product (Theorem 5.3, [6]),

T
n
⋉ (UAutK(Pn)n ⋊ (F′

n × En))

where Tn is an algebraic n-dimensional torus, UAutK(Pn)n is an explicit factor group of the
group UAutK(Pn) of unitriangular polynomial automorphisms, F′

n and En are explicit groups
that are isomorphic respectively to the groups I and Jn−2 where I := (1 + t2K[[t]], ·) ≃ KN
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and J := (tK[[t]],+) ≃ KN. Comparing the groups Gn and AutK(un) we see that the group
(UAutK(Pn)n of polynomial automorphisms is a tiny part of the group AutK(un) but in contrast
Gn = AutK(Pn). It is shown that the adjoint group of automorphisms A(un) of the Lie algebra
un is equal to the group UAutK(Pn)n (Theorem 7.1, [6]). Recall that the adjoint group A(G) of a

Lie algebra G is generated by the elements ead(g) :=
∑

i≥0
ad(g)i

i! ∈ AutK(G) where g runs through
all the locally nilpotent elements of the Lie algebra G (an element g is a locally nilpotent element
if the inner derivation ad(g) := [g, ·] of the Lie algebra G is a locally nilpotent derivation).

2 Proof of Theorem 1.1

This section can be seen as a proof of Theorem 1.1. The proof is split into several statements that
reflect ‘Structure of the proof of Theorem 1.1’ given in the Introduction.

The Lie algebra Dn is Zn-graded. The Lie algebra

Dn =
⊕

α∈Nn

n
⊕

i=1

Kxα∂i (1)

is a Zn-graded Lie algebra

Dn =
⊕

β∈Zn

Dn,β where Dn,β =
⊕

α−ei=β

Kxα∂i,

i.e. [Dn,α, Dn,β] ⊆ Dn,α+β for all α, β ∈ Nn where e1 := (1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1) is the
canonical free basis for the free abelian group Zn. This follows from the commutation relations

[xα∂i, x
β∂j ] = βix

α+β−ei∂j − αjx
α+β−ej∂i. (2)

Clearly, for all i, j = 1, . . . , n and α ∈ Nn,

[Hj , x
α∂i] =

{

αjx
α∂i if j 6= i,

(αi − 1)xα∂i if j = i,
(3)

[∂j , x
α∂i] = αjx

α−ej∂i. (4)

The support Supp(Dn) := {β ∈ Zn |Dn,β 6= 0} is a submonoid of Zn. Let us find the support
Supp(Dn), the graded components Dn,β and their dimensions dimK Dn,β. For each i = 1, . . . , n,
let Nn,i := {α ∈ Nn |αi = 0} and P ∂i

n := kerPn
(∂i). It follows from the decompositions Pn =

P ∂i
n ⊕ Pnxi for i = 1, . . . , n that

Dn =

n
⊕

i=1

(P ∂i

n ⊕ Pnxi)∂i =

n
⊕

i=1

P ∂i

n ∂i ⊕
n

⊕

i=1

PnHi,

Dn =
n

⊕

i=1

P ∂i

n ∂i ⊕
⊕

α∈Nn

xαHn. (5)

Hence,

Supp(Dn) =

n
∐

i=1

(Nn,i − ei)
∐

N
n. (6)

Dn,β =

{

xα∂i if β = α− ei ∈ Nn,i − ei,

xβHn if β ∈ Nn.
(7)

dimK Dn,β =

{

1 if β = α− ei ∈ Nn,i − ei,

n if β ∈ Nn.
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Let G be a Lie algebra and H be its Lie subalgebra. The centralizer CG(H) := {x ∈ G | [x,H] =
0} of H in G is a Lie subalgebra of G. In particular, Z(G) := CG(G) is the centre of the Lie algebra
G. The normalizer NG(H) := {x ∈ G | [x,H] ⊆ H} of H in G is a Lie subalgebra of G, it is the
largest Lie subalgebra of G that contains H as an ideal.

Let V be a vector space over K. A K-linear map δ : V → V is called a locally nilpotent map
if V =

⋃

i≥1 ker(δ
i) or, equivalently, for every v ∈ V , δi(v) = 0 for all i ≫ 1. When δ is a locally

nilpotent map in V we also say that δ acts locally nilpotently on V . Every nilpotent linear map
δ, that is δn = 0 for some n ≥ 1, is a locally nilpotent map but not vice versa, in general. Let G
be a Lie algebra. Each element a ∈ G determines the derivation of the Lie algebra G by the rule
ad(a) : G → G, b 7→ [a, b], which is called the inner derivation associated with a. The set Inn(G) of
all the inner derivations of the Lie algebra G is a Lie subalgebra of the Lie algebra (EndK(G), [·, ·])
where [f, g] := fg − gf . There is the short exact sequence of Lie algebras

0 → Z(G) → G
ad
→ Inn(G) → 0,

that is Inn(G) ≃ G/Z(G) where Z(G) is the centre of the Lie algebra G and ad([a, b]) = [ad(a), ad(b)]
for all elements a, b ∈ G. An element a ∈ G is called a locally nilpotent element (respectively, a
nilpotent element) if so is the inner derivation ad(a) of the Lie algebra G.

The Cartan subalgebra Hn of Dn. A nilpotent Lie subalgebra C of a Lie algebra G is called
a Cartan subalgebra of G if it coincides with its normalizer. We use often the following obvious
observation: An abelian Lie subalgebra that coincides with its centralizer is a maximal abelian Lie
subalgebra.

Lemma 2.1 1. Hn is a Cartan subalgebra of Dn.

2. Hn = CDn
(Hn) is a maximal abelian subalgebra of Dn.

Proof. Statements 1 and 2 follows from (6) and (7). �

Pn is a Dn-module. The polynomial algebra Pn is a (left) Dn-module: Dn × Pn → Pn,
(∂, p) 7→ ∂ ∗ p. In more detail, if ∂ =

∑n
i=1 ai∂i where ai ∈ Pn then

∂ ∗ p =
n
∑

i=1

ai
∂p

∂xi
.

The field K is a Dn-submodule of Pn and

n
⋂

i=1

kerPn
(∂i) = K. (8)

Lemma 2.2 The Dn-module Pn/K is simple with EndDn
(Pn/K) = Kid where id is the identity

map.

Proof. Let M be a nonzero submodule of Pn/K and 0 6= p ∈ M . Using the actions of
∂1, . . . , ∂n on p we obtain an element of M of the form λxi for some λ ∈ K∗. Hence, xi ∈ M and
xα = xα∂i ∗ xi ∈ M for all 0 6= α ∈ Nn. Therefore, M = Pn/K. Let f ∈ EndDn

(Pn/K). Then
applying f to the equalities ∂i ∗ (x1 +K) = δi1 for i = 1, . . . , n, we obtain the equalities

∂i ∗ f(x1 +K) = δi1 for i = 1, . . . , n.

Hence, f(x1 +K) ∈
⋂n

i=2 kerPn/K(∂i) ∩ kerPn/K(∂2
i ) = (K[x1]/K) ∩ kerPn/K(∂2

i ) = K(x1 +K).
So, f(x1 +K) = λ(x1 +K) and so f = λid, by the simplicity of the Dn-module Pn/K.

�
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The Gn-module Dn. The Lie algebra Dn is a Gn-module,

Gn ×Dn → Dn, (σ, ∂) 7→ σ(∂) := σ∂σ−1.

Every automorphism σ ∈ Gn is uniquely determined by the elements

x′
1 := σ(x1), . . . , x

′
n := σ(xn).

Let Mn(Pn) be the algebra of n × n matrices over Pn. The matrix J(σ) := (J(σ)ij) ∈ Mn(Pn),

where J(σ)ij =
∂x′

j

∂xi
, is called the Jacobian matrix of the automorphism (endomorphism) σ and

its determinant J (σ) := detJ(σ) is called the Jacobian of σ. So, the j’th column of J(σ) is the

gradient gradx′
j := (

∂x′

j

∂x1

, . . . ,
∂x′

j

∂xn
)T of the polynomial x′

j . Then the derivations

∂′
1 := σ∂1σ

−1, . . . , ∂′
n := σ∂nσ

−1

are the partial derivatives of Pn with respect to the variables x′
1, . . . , x

′
n,

∂′
1 =

∂

∂x′
1

, . . . , ∂′
n =

∂

∂x′
n

. (9)

Every derivation ∂ ∈ Dn is a unique sum ∂ =
∑n

i=1 ai∂i where ai = ∂ ∗ xi ∈ Pn. Let ∂ :=
(∂1, . . . , ∂n)

T and ∂′ := (∂′
1, . . . , ∂

′
n)

T where T stands for the transposition. Then

∂′ = J(σ)−1∂, i.e. ∂′
i =

n
∑

j=1

(J(σ)−1)ij∂j for i = 1, . . . , n. (10)

In more detail, if ∂′ = A∂ where A = (aij) ∈ Mn(Pn), i.e. ∂i =
∑n

j=1 aij∂j . Then for all
i, j = 1, . . . , n,

δij = ∂′
i ∗ x

′
j =

n
∑

k=1

aik
∂x′

j

∂xk

where δij is the Kronecker delta function. The equalities above can be written in the matrix form
as AJ(σ) = 1 where 1 is the identity matrix. Therefore, A = J(σ)−1.

Suppose that a group G acts on a set S. For a nonempty subset T of S, StG(T ) := {g ∈
G | gT = T } is the stabilizer of the set T in G and FixG(T ) := {g ∈ G | gt = t for all t ∈ T } is the
fixator of the set T in G. Clearly, FixG(T ) is a normal subgroup of StG(T ).

The maximal abelian Lie subalgebra Dn of Dn.

Lemma 2.3 1. CDn
(Dn) = Dn and so Dn is a maximal abelian Lie subalgebra of Dn.

2. FixGn
(Dn) = FixGn

(∂1, . . . , ∂n) = Shn.

3. Dn is a faithful Gn-module, i.e. the group homomorphism Gn → Gn, σ 7→ σ : ∂ 7→ σ∂σ−1,
is a monomorphism.

4. FixGn
(∂1, . . . , ∂n, H1, . . . , Hn) = {e}.

Proof. 1. Statement 1 follows from (2).
2. Let σ ∈ FixGn

(Dn) and J(σ) = (Jij). By (10), ∂ = J(σ)∂, and so, for all i, j = 1, . . . , n,
δij = ∂i ∗ xj = Jij , i.e. J(σ) = 1, or equivalently, by (8),

x′
1 = x1 + λ1, . . . , x

′
n = xn + λn

for some scalars λi ∈ K, and so σ ∈ Shn.
3 and 4. Let σ ∈ FixGn

= (∂1, . . . , ∂n, H1, . . . , Hn). Then σ ∈ FixGn
(∂1, . . . , ∂n) = Shn, by

statement 2. So, σ(x1) = x1 + λ1, . . . , σ(xn) = xn + λn where λi ∈ K. Then xi∂i = σ(xi∂i) =
(xi + λi)∂i for i = 1, . . . , n, and so λ1 = · · · = λn = 0. This means that σ = e. So, FixGn

=
(∂1, . . . , ∂n, H1, . . . , Hn) = {e} and Dn is a faithful Gn-module. �

By Lemma 2.3.(3), we identify the group Gn with its image in Gn.
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Lemma 2.4 1. Dn is a simple Lie algebra.

2. Z(Dn) = {0}.

3. [Dn, Dn] = Dn.

Proof. 1. Let 0 6= a ∈ Dn and a = (a) be the ideal of the Lie algebra Dn generated by the
element a. We have to show that a = Dn. Using the inner derivations δ1, . . . , δn we see that ∂i ∈ a

for some i. Then a = Dn since

xα∂j = (αi + 1)−1[∂i, x
α+ei∂j ] ∈ a

for all α and j.
2 and 3. Statements 2 and 3 follow from statement 1. �

Proposition 2.5 1. FixGn
(∂1, . . . , ∂n, H1, . . . , Hn) = {e}.

2. Let σ, τ ∈ Gn. Then σ = τ iff σ(∂i) = τ(∂i) and σ(Hi) = τ(Hi) for i = 1, . . . , n.

3. FixGn
(∂1, . . . , ∂n) = Shn.

Proof. 1. Let σ ∈ F := FixGn
(∂1, . . . , ∂n, H1, . . . , Hn). We have to show that σ = e. Since

σ ∈ FixGn
(H1, . . . , Hn), the automorphism σ respects the weight decomposition of Dn. By (7),

σ(xα∂i) = λα,ix
α∂i for all α ∈ Nn,i and i = 1, . . . , n where λα,i ∈ K. Clearly, λ0,i = 1 for

i = 1, . . . , n. Since σ ∈ FixGn
(∂1, . . . , ∂n), by applying σ to the relations αjx

α−ej∂i = [∂j , x
α∂i],

we get the relations

αjλα−ej ,ix
α−ej∂i = [∂j , λα,ix

α∂i] = αjλα,ix
α−ej∂i.

Hence λα,i = λα−ej ,i provided αj 6= 0. We conclude that all the coefficients λα,i are equal to
one of the coefficients λei,j where i, j = 1, . . . , n and i 6= j. The relations ∂j = [∂i, xi∂j ] implies
the relations ∂j = [∂i, λei,jxi∂j ] = λei,j∂j , hence all the coefficients λei,j are equal to 1. So,
⊕n

i=1P
∂i
n ∂i ⊆ F := FixDn

(σ) := {∂ ∈ Dn |σ(∂) = ∂}. To finish the proof of statement 1 it suffices
to show that xαHi ∈ F for all α ∈ Nn and i = 1, . . . , n, see (5) and (6). We use induction on
|α| := α1 + · · · + αn. If |α| = 0 the statement is obvious as σ ∈ F . Suppose that |α| > 0. Using
the commutation relations

[∂j , x
αHi] =

{

αjx
α−ejHi if j 6= i,

(αi + 1)xα∂i if j = i,
(11)

the induction and the previous case, we see that

[∂j , σ(x
αHi)− xαHi] = 0 for i = 1, . . . , n.

Therefore, σ(xαHi) − xαHi ∈ CDn
(Dn) = Dn. Since the automorphism σ respects the weight

decomposition of Dn, we must have σ(xαHi) − xαHi ∈ xαHn ∩ Dn = {0}. Hence, xαHi ∈ F , as
required.

2. Statement 2 follows from statement 1.
3. Clearly, Shn ⊆ F = FixGn

(∂1, . . . , ∂n). Let σ ∈ F and H ′
i := σ(Hi), . . . , H

′
n := σ(Hn).

Applying the automorphism σ to the commutation relations [∂i, Hj ] = δij∂i gives the relations
[∂i, H

′
j ] = δij∂i. By taking the difference, we see that [∂i, H

′
j −Hj ] = 0 for all i and j. Therefore,

H ′
i = Hi+ di for some elements di ∈ CDn

(Dn) = Dn (Lemma 2.3.(1)), and so di =
∑n

j=1 λij∂j for
some elements λij ∈ K. The elements H ′

1, . . . , H
′
n commute, hence

[Hj , ∂i] = [Hi, ∂j ] for all i, j,

6



or equivalently,
λij∂j = λji∂i for all i, j.

This means that λij = 0 for all i 6= j, i.e.

H ′
i = Hi + λii∂i = (xi + λii)∂i = sλ(Hi)

where sλ ∈ Shn, sλ(xi) = xi + λii for all i. Then s−1
λ σ ∈ FixGn

(∂1, . . . , ∂n, H1, . . . , Hn) = {e}
(statement 2), and so σ = sλ ∈ Shn. �

Lemma 2.6 Let σ ∈ Gn and ∂′
1 := σ(∂1), . . . , ∂

′
n := σ(∂n). Then

1. ∂′
1, . . . , ∂

′
n are commuting, locally nilpotent derivations of Pn.

2.
⋂n

i=1 kerDn
(∂′

i) = K.

Proof. 1. The derivations ∂′
1, . . . , ∂

′
n commute since ∂1, . . . , ∂n are commute. The inner deriva-

tions δ1, . . . , δn of the Lie algebraDn are commuting and locally nilpotent. Hence, inner derivations

δ′1 := ad(∂′
1), . . . , δ

′
n := ad(∂′

n)

of the Lie algebra Dn are commuting and locally nilpotent. The vector space Pn∂
′
i is closed under

the derivations δ′j since

δ′j(Pn∂
′
i) = [∂′

j , Pn∂
′
i] = (∂′

j ∗ Pn) · ∂
′
i ⊆ Pn∂

′
i.

Therefore, ∂′
1, . . . , ∂

′
n are locally nilpotent derivations of the polynomial algebra Pn.

2. Let λ ∈
⋂n

i=1 kerPn
(∂′

i). Then

λ∂′
1 ∈ CDn

(∂′
1, . . . , ∂

′
n) = σ(CDn

(∂1, . . . , ∂n)) = σ(CDn
(Dn)) = σ(Dn) = σ(

n
⊕

i=1

K∂i) =
n

⊕

i=1

K∂′
i,

since CDn
(Dn) = Dn, Lemma 2.3.(1). Then λ ∈ K since otherwise the infinite dimensional space

⊕

i≥0 Kλi∂′
1 would be a subspace of a finite dimensional space σ(Dn). �

The following lemma is well-known and it is easy to prove.

Lemma 2.7 Let ∂ be a locally nilpotent derivation of a commutative K-algebra A such that ∂(x) =
1 for some element x ∈ A. Then A = A∂ [x] is a polynomial algebra over the ring A∂ := ker(∂) of
constants of the derivation ∂ in the variable x.

The next theorem is the most important point in the proof of Theorem 1.1 and, roughly
speaking, the main reason why Theorem 1.1 holds.

Theorem 2.8 Let ∂′
1, . . . , ∂

′
n be commuting, locally nilpotent derivations of the polynomial algebra

Pn such that
⋂n

i=1 kerPn
(∂′

i) = K. Then there exist polynomials x′
1, . . . , x

′
n ∈ Pn such that

∂′
i ∗ x

′
j = δij . (12)

Moreover, the algebra homomorphism

σ : Pn → Pn, x1 7→ x′
1, . . . , xn 7→ x′

n

is an automorphism such that ∂′
i = σ∂iσ

−1 = ∂
∂x′

i

for i = 1, . . . , n.

7



Proof. Case n = 1: By Lemma 2.6, the derivation ∂′
1 of the polynomial algebra P1 is a locally

nilpotent derivation with K ′
1 := kerP1

(∂′
1) = K. Hence, ∂′

1 ∗ x
′
1 = 1 for some polynomial x′

1 ∈ P1.
By Lemma 2.7, K[x1] = K ′

1[x
′
1] = K[x′

1], and so σ : K[x1] → K[x1], x 7→ x′
1, is an automorphism

such that ∂′
1 = d

dx′

1

= σ d
dx1

σ−1.

Case n ≥ 2. Let K ′
i := kerPn

(∂′
i) for i = 1, . . . , n. Clearly, K ⊆ K ′

i.
(i) K ′

i 6= K for i = 1, . . . , n: If K ′
i = K for some i then by the same argument as in the case

n = 1 there exists a polynomial x′
i ∈ Pn such that ∂′

i ∗ x′
i = 1, and so Pn = K ′

i[x
′
i] = K[xi], a

contradiction.
(ii) Let m be the maximum of card(I) such ∅ 6= I ⊆ {1, . . . , n− 1} and

⋂

i∈I K
′
i 6= K. By (i),

2 ≤ m ≤ n − 1. Changing (if necessary) the order of the derivations ∂′
1, . . . , ∂

′
n we may assume

that A :=
⋂m

i=1 K
′
i 6= K. Then the algebra A is infinite dimensional (since K 6= A ⊆ Pn) and

invariant under the action of the derivations ∂′
j for j = m+ 1, . . . , n. By the choice of m,

A∂′

j = K ′
j ∩

m
⋂

i=1

K ′
i = K for j = m+ 1, . . . , n

and the derivations ∂′
j acts locally nilpotently on the algebra A∂′

j . Therefore, for each index
j = m+ 1, . . . , n, there exists an element x′

j ∈ A such that ∂′
j ∗ x

′
j = 1, and so (Lemma 2.7)

A = A∂′

j [x′
j ] = K[x′

j ] for j = m+ 1, . . . , n. (13)

(ii)(a) Suppose that m = n−1, i.e. ∂′
i ∗x

′
n = δin for all i = 1, . . . , n. By Lemma 2.7, Pn = K ′

n[x
′
n].

The algebra K ′
n admits the set of commuting, locally nilpotent derivations

∂′′
1 := ∂′

1|K′

n
, . . . , ∂′′

n−1 := ∂′
n−1|K′

n

with
⋂n−1

i=1 kerK′

n
(∂′′

i ) = K ′
n ∩

⋂n−1
i=1 K ′

i = K.
(ii)(b) Suppose that m < n− 1. By (13),

K∗x′
m+1 +K = K∗x′

m+2 +K = · · · = K∗x′
n +K,

and so λj := ∂′
j ∗ x′

n ∈ K for j = m + 1, . . . , n − 1. Hence, (∂′
j − λj∂

′
n) ∗ x′

n = 0 for j =
m + 1, . . . , n − 1. A linear combination of commuting, locally nilpotent derivations is a locally
nilpotent derivation (the proof boils down to the case ∂ + δ of two commuting, locally nilpotent
derivations, then the result follows from (∂ + δ)m =

∑m
i=0

(

m
i

)

∂iδm−i and ∂iδm−i = δm−i∂i).
Using the set of commuting, locally nilpotent derivations ∂′

1, . . . , ∂
′
n that satisfy (12) we obtain

the set of commuting, locally nilpotent derivations

δ′1 := ∂′
1, . . . , δ

′
m := ∂′

m, δ′m+1 := ∂′
m+1 − λm+1∂

′
n, . . . , δ

′
n−1 := ∂′

n−1 − λn−1∂
′
n, δ

′
n := ∂n

that satisfy (12) with
δ′i ∗ x

′
n = δin for i = 1, . . . , n.

Then repeating the arguments of (ii)(a), we see that Pn = K ′
n[x

′
n]. The algebra K ′

n admits the
set of commuting, locally nilpotent derivations

∂′′
1 := δ′1|K′

n
, . . . , ∂′′

n−1 := δ′n−1|K′

n

with
n−1
⋂

i=1

kerK′

n
(∂′′

i ) = K ′
n ∩

n−1
⋂

i=1

kerPn
(δ′i) = K ′

n ∩
n−1
⋂

i=1

kerPn
(∂′

i) =

n
⋂

i=1

K ′
i = K.

(iii) Using the cases (ii)(a) and (ii)(b) n − 1 more times we find polynomials x′
1, . . . , x

′
n and

commuting set of locally nilpotent derivations of Pn, say, ∆1, . . . ,∆n that satisfy (12) and such
that

(α) ∆i ∗ x′
j = δij for all i, j = 1, . . . , n;

8



(β) the n-tuple of derivations ∆ = (∆1, . . . ,∆n)
T is obtained from the n-tuple of derivations

∂′ = (∂′
1, . . . , ∂

′
n)

T by unitriangular (hence invertible) scalar matrix Λ = (λij) ∈ Mn(K) such that
∆ = Λ∂′; and

(γ) (where K ′′
1 := kerPn

(∆1), . . . ,K
′′
n := kerPn

(∆n))

Pn = K ′′
n[x

′
n] = (K ′′

n−1 ∩K ′′
n)[x

′
n−1, x

′
n] = · · · = (

n
⋂

i=s

K ′′
i )[x

′
s, . . . , x

′
n] = · · ·

= (

n
⋂

i=1

K ′′
i )[x

′
1, . . . , x

′
n] = K[x′

1, . . . , x
′
n].

(iv) Replacing the row x′ = (x′
1, . . . , x

′
n) by the row x′Λ gives the required elements of the theorem.

Indeed, by (α), Λ · (∂′
i ∗ x

′
j) = 1, the identity n× n matrix. Hence, (∂′

i ∗ x
′
j) · Λ = 1, as required.

(v) Let x′
1, . . . , x

′
n be the set of polynomials as in the theorem. Then σ is an algebra automor-

phism (see (γ) and (iv)) such that ∂′
i = σ∂iσ

−1 = ∂
∂x′

i

for i = 1, . . . , n. �

Corollary 2.9 Let σ ∈ Gn. Then τσ ∈ FixGn
(∂1, . . . , ∂n) for some τ ∈ Gn.

Proof. By Lemma 2.6, the elements ∂′
1 := σ(∂1), . . . , ∂

′
n := σ(∂n) satisfy the assumptions of

Theorem 2.8. By Theorem 2.8, ∂′
1 := τ−1(∂1), . . . , ∂

′
n := τ−1(∂n) for some τ ∈ Gn. Therefore,

τσ ∈ FixGn
(∂1, . . . , ∂n). �

Proof of Theorem 1.1. Let σ ∈ Gn. By Corollary 2.9, τσ ∈ FixGn
(∂1, . . . , ∂n) = Shn

(Proposition 2.5.(3)). Therefore, σ ∈ Gn, i.e. Gn = Gn. �
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