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The quantum Euclidean algebra and its prime spectrum

V. V. Bavula and T. Lu

Abstract

For the quantum Euclidean algebra, its prime, completely prime and maximal spectra
are described (together with inclusions of prime ideals). The centre is generated by two
algebraically independent elements (one is quadratic and the other is cubic).
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1 Introduction

Notation. Throughout this paper, Z is the set of integers, N is the set of non-negative integers.

We use the abbreviation [n] := qn−q−n

q−q−1 where n ∈ Z. In particular, we have [2] = q + q−1. Set

̺ := q2 − 1.
The, so-called, ‘quantum Euclidean n-space’ appeared over two decades ago. These noncom-

mutative Noetherian algebras are natural quantizations of the coordinate algebra of Euclidean
n-space. Much is known about these and related algebras, see the book of Brown and Goodearl
[9] for details. Also there are plenty of open questions.

The universal enveloping algebras of semisimple or solvable Lie algebras are relatively well
studied comparing to the general/mixed case where a Lie algebra is a skew product of a semisimple
Lie algebra and a solvable one. Technique for study such algebras is not yet developed. The same
is true for quantizations of universal enveloping algebras and quantum groups. The quantum
Euclidean algebra is one of the most basic (but very nontrivial) example of a quantization of
the general/mixed case. For almost any noncommutative algebra, a problem of giving explicit
description of its prime ideals together with complete picture of inclusions/noninclusions of prime
ideals is a challenging one. In the present paper, an answer is given to this problem for the quantum
Euclidean algebra (the prime spectrum has complex structure) and a technique is developed that
might be useful in studying similar algebras of ‘small’ Gelfand-Kirillov dimensions.

Fix a field K of characteristic zero, unless specified otherwise; and an element q ∈ K∗ which
we assume is not a root of unity. The quantized enveloping algebra of sl2 is the K-algebra Uq(sl2)
with generators E,F,K,K−1 subject to the defining relations:

KEK−1 = q2E, KFK−1 = q−2F, EF − FE =
K −K−1

q − q−1
.

There is a Hopf algebra structure on Uq(sl2) defined by

∆(K) = K ⊗K, ε(K) = 1, S(K) = K−1,

∆(E) = E ⊗ 1 +K ⊗ E, ε(E) = 0, S(E) = −K−1E,

∆(F ) = F ⊗K−1 + 1⊗ F, ε(F ) = 0, S(F ) = −FK.
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The 3-dimensional quantum Euclidean space K3
q has been studied in several physical literature,

see e.g. [10, 13]. We use different notation here. Recall that the K-algebra K3
q is generated by

X,Z and Y subject to the following defining relations:

XZ = q2ZX, Y Z = q−2ZY, XY = Y X + (q2 − 1)Z2.

We can make the quantum Euclidean space K3
q a Uq(sl2)-module algebra by defining

K ·X = q2X, K · Z = Z, K · Y = q−2Y,

F ·X = Z, F · Z = Y, F · Y = 0, (1)

E ·X = 0, E · Z = [2]X, E · Y = [2]Z.

The actions are indicated in the following picture,

Y Z X

E

[2]

E

[2]

FF

It is straightforward to verify that the actions (1) define on K3
q a Uq(sl2)-module algebra structure.

Then one can form the smash product algebra E := K3
q⋊Uq(sl2). We call this algebra the quantum

Euclidean algebra. The defining relations for this algebra are given below. Our aim is to study
the structure of this algebra and its representation theory.
Definition. The quantum Euclidean algebra is the algebra E generated over K by the elements
K,K−1, E, F,X,Z and Y with defining relations

EK = q−2KE, FK = q2KF, EF − FE =
K −K−1

q − q−1
,

XK = q−2KX, ZK = KZ, Y K = q2KY,

FX = XF + ZK−1, FZ = ZF + Y K−1, FY = Y F,

EX = q2XE, EZ = ZE + [2]X, EY = q−2Y E + [2]Z,

XZ = q2ZX, Y Z = q−2ZY, XY = Y X + (q2 − 1)Z2.

The aim of the paper is to classify the sets of prime, completely prime and maximal ideals of
the algebra E (Theorem 3.9, Corollary 3.12 and Corollary 3.10, respectively). The centre of the
algebra E is a polynomial algebra K[C1, C2] (Proposition 2.4.(1)) where the elements C1 and C2

are found explicitly. The algebra E is a free module over its centre (Proposition 2.7).

Notation. Set [K;n] := qnK−q−nK−1

q−q−1 for all n ∈ Z. Then EF − FE = [K; 0] and the following
identities hold

E[K;n] = [K;n− 2]E, Y [K;n] = [K;n+ 2]Y,

F [K;n] = [K;n+ 2]F, X[K;n] = [K;n− 2]X.

For any algebra A, we denote by Z(A) the centre of A.

2 Ring theoretic properties of the algebra E

In this section, it is proved that the centre Z(E) of the algebra E is equal to K[C1, C2] (Proposition
2.4.(1)) and the algebra E is a free Z(E)-module (Proposition 2.7). Several important subalgebras
and localizations of E are introduced, all of them turned out to be generalized Weyl algebras.
They are instrumental in finding the centre of E and its prime spectrum (Section 3).

Generalized Weyl algebra. Definition, [1, 2, 3]. LetD be a ring, σ be an automorphism ofD
and a is an element of the centre of D. The generalized Weyl algebra A := D(σ, a) := D[X,Y ;σ, a]
is a ring generated by D, X and Y subject to the defining relations:

Xα = σ(α)X and Y α = σ−1(α)Y for all α ∈ D, Y X = a and XY = σ(a).
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The algebra A = ⊕n∈Z An is Z-graded where An = Dvn, vn = Xn for n > 0, vn = Y −n for n < 0
and v0 = 1. It follows from the above relations that vnvm = (n,m)vn+m = vn+m〈n,m〉 for some
(n,m) ∈ D. If n > 0 and m > 0 then

n ≥ m : (n,−m) = σn(a) · · ·σn−m+1(a), (−n,m) = σ−n+1(a) · · ·σ−n+m(a),

n ≤ m : (n,−m) = σn(a) · · ·σ(a), (−n,m) = σ−n+1(a) · · · a,

in other cases (n,m) = 1. Clearly, 〈n,m〉 = σ−n−m((n,m)).
Definition, [5]. Let D be an ring and σ be its automorphism. Suppose that elements b and

ρ belong to the centre of the ring D, ρ is invertible and σ(ρ) = ρ. Then E := D〈σ; b, ρ〉 :=
D〈X,Y ;σ, b, ρ〉 is a ring generated by D, X and Y subject to the defining relations:

Xα = σ(α)X and Y α = σ−1(α)Y for all α ∈ D, and XY − ρY X = b.

The origin of this construction stems from the universal enveloping algebra Usl(2) of the Lie
algebra sl(2). When we rewrite the defining relations of Usl(2) (where [a, b] = ab−ba): [H,X] = X,
[H,Y ] = −Y and [X,Y ] = 2H in the equivalent form: XH = (H − 1)X, Y H = (H + 1)Y and
XY −Y X = 2H and notice that XH = σ(H)X and Y H = σ−1(H)Y where σ is an automorphism
of the polynomial algebra K[H] given by σ(H) = H − 1 we come to Usl(2) = K[H]〈X,Y ;σ, 2H〉.
The next natural step was to replace the polynomial 2H by an arbitrary polynomial a(H) ∈ K[H].
This was done independently in [15] and [1]. That is how the, so-called, algebras similar to Usl(2)
appeared. It is the algebra K〈X,Y,H〉 that satisfies the defining relations:

XH = (H − 1)X, Y H = (H + 1)Y and XY − Y X = a(H) where a(H) ∈ K[H].

In 90s, there were many examples like this, various ‘quantum deformations’ of Usl(2), with a ring
D which is a ‘small’ commutative ring.

If D is commutative domain, ρ = 1 and b = u − σ(u) for some u ∈ D (resp., if D is a
commutative finitely generated domain over a field K and ρ ∈ K∗) the algebras E were considered
in [11] (resp., [12]).

The ring E is the iterated skew polynomial ring E = D[Y ;σ−1][X;σ, ∂] where ∂ is the σ−derivation
of D[Y ;σ−1] such that ∂D = 0 and ∂Y = b (here the automorphism σ is extended from D to
D[Y ;σ−1] by the rule σ(Y ) = ρY ).

An element d of a ring D is normal if dD = Dd. The next proposition shows that the rings E
are GWAs and under a certain (mild) conditions they have a ‘canonical’ normal element.

Proposition 2.1. Let E = D[X,Y ;σ, b, ρ]. Then
1. [5, Lemma 1.2] The ring E is the GWA D[H][X,Y ;σ,H] where σ(H) = ρH + b.
2. [5, Lemma 1.3] The following statements are equivalent:

(a) [5, Corollary 1.4] C = ρ(Y X + α) = XY + σ(α) is a normal element in E for some
central element α ∈ D,

(b) ρα− σ(α) = b for some central element α ∈ D.
3. [5, Corollary 1.4] If one of the equivalent conditions of statement 2 holds then the ring

E = D[C][X,Y ;σ, a = ρ−1C − α] is a GWA where σ(C) = ρC.

The next proposition is a corollary of Proposition 2.1 when ρ = 1. The rings E with ρ = 1
admit a ‘canonical’ central element (under a mild condition). This proposition is a key one for
this paper and is used on many occasions to produce central elements. In the present paper a full
generality of the construction is needed, i.e. when the base ring D is noncommutative.

Proposition 2.2. Let E = D[X,Y ;σ, b, ρ = 1]. Then
1. [5, Lemma 1.5] The following statements are equivalent:

(a) C = Y X + α = XY + σ(α) is a central element in E for some central element α ∈ D,
(b) α− σ(α) = b for some central element α ∈ D.

2. [5, Corollary 1.6] If one of the equivalent conditions of statement 2 holds then the ring
E = D[C][X,Y ;σ, a = C − α] is a GWA where σ(C) = C.
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If D is commutative the implication (b) ⇒ (a) also appeared in [12].
An involution ∗ of E . Recall that an involution ∗ on an algebra A is a K-algebra anti-

automorphism ((ab)∗ = b∗a∗) such that a∗∗ = a for all elements a ∈ A. There is an involution ∗
of E defined by the rule:

F ∗ = E, K∗ = K, E∗ = F,

Y ∗ = −[2]KX, Z∗ = Z, X∗ = −
1

[2]
Y K−1. (2)

K-basis of the algebra E. Let (x1, . . . , x5) be any permutation of the elements (E,F,X, Y, Z).
Then the set {Kixα | i ∈ Z, α ∈ N5} is a K-basis of the algebra E (this follows from the defining
relations of E) where xα = xα1

1 · · ·xα5
5 . These K-bases of E are called standard.

The ‘central advance’ method of finding the centre of E (and related algebras).
When we have a complicated algebra, like E , with many defining relations (15 for E), and we
want to find its centre, it is not obvious from where to start and in which direction to move.
The philosophy/method we use in the paper in finding the centre of E , the, so-called, central
advance, can be summarized as follows. The algebra E is ‘covered’ by a chain of certain rather
large subalgebras, they are GWA and have non-trivial central elements that are found explicitly
by applying Proposition 2.2. At each step elements are getting complicated but the relations are
getting simpler, they tend to be ‘more commutative’ (i.e., q-commutative or commutative). At
the final stage, we consider the left localization EZ of the algebra E at the powers of the element
Z and using new generators of E that have been found in previous steps we find an additional
central element C2 of EZ (using Proposition 2.2) turned out to be an element of E .

The quantum Euclidean space K3
q is a GWA. Clearly, K3

q = K[Z]〈X,Y ;σ, b = (q2 −

1)Z2, ρ = 1〉 where σ(Z) = q2Z. The polynomial α = − Z2

1+q2
is a solution to the equation

α− σ(α) = b. By Proposition 2.2, the algebra K3
q is a GWA K3

q = K[C,Z][X,Y ;σ, a = C + Z2

1+q2
]

where the automorphism σ of the polynomial algebra K[C,Z] is given by the rule σ(Z) = q2Z and

σ(C) = C. The central element C of the algebraK3
q can be written as C = Y X− Z2

1+q2
= XY− q4Z2

1+q2
.

The element

C1 := −(1 + q2)C = Z2 − (1 + q2)Y X = q4Z2 − (1 + q2)XY (3)

is a central element of the the GWA

K3
q = K[C1, Z][X,Y ;σ, a =

Z2 − C1

1 + q2
] (4)

where σ(C1) = C1 and σ(Z) = q2Z. The element C1 commutes with E,F and K. Therefore,
C1 ∈ Z(E). In fact, the centre of the algebra E is a polynomial algebra K[C1, C2] (Proposition
2.4.(1)).

The algebra E is a GWA. The algebra E is a subalgebra of E that is generated by the
elements E,Z and X. Then E = K[X]〈E,Z;σ, b = [2]X, ρ = 1〉 where σ(X) = q2X. The element
α = −̺−1[2]X ∈ K[X] is a solution to the equation α − σ(α) = b. By Proposition 2.2, the
algebra E is the GWA E = K[C,X][E,Z;σ, a = C + ̺−1[2]X] where σ(C) = C, the element
C = ZE − ̺−1[2]X = EZ − ̺−1q2[2]X ∈ Z(E). Hence,

Ω := ̺C = ̺ZE − [2]X = ̺EZ − q2[2]X ∈ Z(E) (5)

is a central element of the GWA

E = K[Ω, X][E,Z;σ, a = ̺−1(Ω + [2]X)] (6)

where σ(Ω) = Ω and σ(X) = q2X. Using the fact that the element Ω is a central element of the
algebra E and some of the defining relations of E , we have the following equalities

EΩ = ΩE, XΩ = ΩX, ZΩ = ΩZ, Y Ω = ΩY,

ΩK = q−2KΩ, FΩ = ΩF + ̺EY K−1 − q(K + q2K−1)Z. (7)
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The algebra F := E∗ is a GWA. Recall that E∗ = F, Z∗ = Z and X∗ = − 1
[2]Y K−1. Let

ϕ := Ω∗ = ̺ZF + q2Y K−1 = ̺FZ + Y K−1. (8)

By (6), the algebra F is the GWA

F = K[ϕ, Y K−1][F,Z;σ1, a1 = ̺−1(ϕ− q2Y K−1)] (9)

where σ1(ϕ) = ϕ and σ1(Y K−1) = q−2Y K−1 and a1 := ZF = (EZ)∗ = σ(a)∗ = ̺−1(Ω +
q2[2]X)∗ = ̺−1(ϕ− q2Y K−1). By applying the involution ∗ to the equalities in (7), we have

ϕF = Fϕ, ϕY = q2Y ϕ, ϕZ = Zϕ, ϕX = q−2Xϕ,

Kϕ = q−2ϕK, ϕE = Eϕ− ̺[2]FX − (q−1K−1 + qK)Z. (10)

The algebras R and RZ are GWAs. By (4), the algebra R := K3
q[K

±1; τ ] where τ(C1) =
C1, τ(Z) = Z, τ(X) = q2X and τ(Y ) = q−2Y is the GWA

R = K[C1, Z,K
±1][X,Y ;σ, a =

Z2 − C1

1 + q2
] (11)

where σ(C1) = C1, σ(Z) = q2Z and σ(K) = q−2K. Let RZ be the localization of the algebra R
at the powers of the element Z. By (11), the algebra RZ is the GWA

RZ = K[C1, Z
±1,K±1][X,Y ;σ, a =

Z2 − C1

1 + q2
]. (12)

The element Θ := KZ belongs to the centre of the algebra RZ and

RZ = K[Θ±1]⊗K[C1, Z
±1][X,Y ;σ, a =

Z2 − C1

1 + q2
] (13)

is the tensor product of algebras. The centre of the second tensor multiple is K[C1]. Therefore,
the centre of the algebra RZ is equal to

Z(RZ) = K[Θ±1, C1]. (14)

Lemma 2.3.
1. RX = K[C1]⊗K[Z,K±1][X±1;σ] and RY = K[C1]⊗K[Z,K±1][Y ±1;σ−1] where σ(Z) = q2Z

and σ(K) = q−2K.
2. RX,Z = K[C1,Θ

±1] ⊗ K[K±1][X±1;σ] and RY,Z = K[C1,Θ
±1] ⊗ K[K±1][Y ±1;σ−1] where

σ(K) = q−2K.
3. Z(R) = Z(RY ) = K[C1,Θ], Z(RZ) = Z(RY,Z) = Z(RX,Z) = K[C1,Θ

±1] (where Θ = KZ).

Proof. 1. Statement 1 follows from (11).
2. Statement 2 follows from statement 1.
3. Statement 3 follows from statement 2 and the fact that the centre of the algebrasK[K±1][X±1;σ]

and K[K±1][Y ±1;σ−1] is K.
The algebra EZ is a GWA. Let us show that

Ωϕ− ϕΩ = ̺(q−1K−1C1 + qKZ2). (15)

Since Ωϕ = Ω(̺FZ + Y K−1)
(7)
= ̺

(
FΩ − ̺EY K−1 + q(K + q2K−1)Z

)
Z + ΩY K−1 = ϕΩ +

q−2̺(Ω − ̺EZ)Y K−1 + ̺q(K + q2K−1)Z2 = ϕΩ + ̺
(
q−1K−1C1 + qKZ2

)
, we get the equality

(15), as required.
Let EZ be the localization of the algebra E at the powers of the element Z. Let A be the

subalgebra of EZ generated by the algebra RZ and the elements Ω and ϕZ−1. In fact, A = EZ .
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The inclusions RZ ⊆ A ⊆ EZ are obvious. In order to show that A = EZ , if suffices to show that
F,E ∈ A. By (5), E ∈ A. By (8), F ∈ A. Therefore, A = EZ . Introducing the algebra A = EZ is
a key moment in finding the cubic central element C2 of the algebra A, see below.

The element Z commutes with Ω and ϕ. Multiplying the equality (15) by Z−1 on the right we
obtain the equality

Ω · ϕZ−1 − ϕZ−1 · Ω = ̺(q−1C1K
−1Z−1 + qKZ) =: b. (16)

The elements C1 and KZ are central in R, hence b ∈ Z(RZ). In view of (16), the algebra EZ can
be written as

EZ = RZ〈Ω, ϕZ
−1;σ, b, ρ = 1〉 (17)

where σ(K) = q−2K, σ(X) = X, σ(Y ) = Y, σ(Z) = Z and σ(C1) = C1 (see (7)). The central
element α = −q−1C1K

−1Z−1+q3KZ of the algebra RZ is a solution to the equation α−σ(α) = b.
By Proposition 2.2, the algebra EZ is a GWA EZ = RZ [C][Ω, ϕZ−1;σ, a = C−α] where σ(C) = C.
The element C = ϕZ−1Ω + α = ΩϕZ−1 + σ(α) is a central element of the algebra EZ . Hence, so
is the element

C2 := ̺−1C = ̺FEZ − q2[2]FX + EYK−1 + q2[K; 0]Z ∈ Z(EZ). (18)

In more detail,

C = ϕZ−1Ω− q−1C1K
−1Z−1 + q3KZ

= (̺F + Y K−1Z−1)(̺EZ − q2[2]X)− q−1C1K
−1Z−1 + q3KZ

= ̺2FEZ − ̺q2[2]FX + ̺EY K−1 − q−1(q[2]Y X + C1)K
−1Z−1 + (q3K − ̺[2]K−1)Z

= ̺2FEZ − ̺q2[2]FX + ̺EY K−1 + (q3K − q3K−1)Z.

Hence, we get the expression (18) for C2 = ̺−1C, as required. Since C2 ∈ E , it is automatically a
central element in E . So, the algebra EZ is the GWA

EZ = RZ [C2][Ω, ϕZ
−1;σ, a = ̺C2 − α] (19)

where σ(C2) = C2. By (18), the central element C2 can be rewritten in the following two forms

C2 = FΩ+ EYK−1 + q2[K; 0]Z, and (20)

C2 = Eϕ− q2[2]FX + [K; 0]Z. (21)

Gelfand-Kirillov Conjecture and the centre of E . By (19), the localization EZ,Ω of the
GWA EZ at the powers of the element Ω is the tensor product of algebras

EZ,Ω = K[C2]⊗RZ [Ω
±1;σ] (22)

where σ(K) = q−2K,σ(X) = X,σ(Y ) = Y, σ(Z) = Z and σ(C1) = C1. By Lemma 2.3.(2),

RZ,Y = K[C1,Θ
±1]⊗ Y where Y := K[Z±1][Y ±1; τ ], τ(Z) = q−2Z. (23)

Then by (19), the localization EZ,Y of the GWA EZ at the powers of the element Y is the tensor
product of algebras

EZ,Y = Y⊗A (24)

where A := K[C1, C2,Θ
±1][Ω, ϕZ−1;σ, a = ̺C2 + q−1C1Θ

−1 − q3Θ] is a GWA where σ(C1) =
C1, σ(C2) = C2 and σ(Θ) = q−2Θ. By the very definition, A ⊆ EZ .

Combining these two results, the localization EZ,Y,Ω of the algebra EZ,Y at the powers of the
element Ω is the tensor product of algebras

EZ,Y,Ω = K[C1, C2]⊗ Y⊗ T, where T := K[Θ±1][Ω±1;σ′], σ′(Θ) = q−2Θ. (25)

6



We have the following natural inclusion of algebras

EZ,Y,Ω

EZ,Y EZ,Ω

EZ

E (26)

Recall that a K-algebra A admitting a skew field of fractions Frac(A) is said to satisfy the quan-
tum Gelfand-Kirillov conjecture if Frac(A) is isomorphic to a quantum Weyl field over a purely
transcendental field extension of K; see [9, II.10, p. 230]. By (25), the algebra E satisfies the
Gelfand-Kirillov conjecture. We say that two elements x, y ∈ A q-commute if there exists an
integer i ∈ Z such that xy = qiyx.

Proposition 2.4.
1. Z(E) = Z(EZ,Y ) = Z(EZ,Y,Ω) = K[C1, C2] is a polynomial ring.
2. The involution ∗ fixes Z(E), i.e., C∗

1 = C1 and C∗
2 = C2.

Proof. 1. Notice that both the algebras Y and T are central, simple, quantum torus. Then
by (25), Z(EZ,Y,Ω) = Z(K[C1, C2]) ⊗ Z(Y) ⊗ Z(T) = K[C1, C2]. Since K[C1, C2] ⊆ Z(EZ,Y ) ⊆
Z(EZ,Ω,Y ) ∩ E = K[C1, C2], and so Z(EZ,Y ) = K[C1, C2]. Similarly, since K[C1, C2] ⊆ Z(E) ⊆
Z(EZ,Ω,Y ) ∩ E = K[C1, C2], we have Z(E) = K[C1, C2].

2. Clearly, C∗
1 = C1. By (19) and the fact that ϕ = Ω∗, we have C2 = ̺−1(Ω∗Z−1Ω + α)

where α = −q−1C1K
−1Z−1 + q3KZ = α∗. Therefore, C∗

2 = C2 since Z∗ = Z.
Let D be a ring and σ be its automorphism. An ideal I of the ring D is called σ-stable if

σ(I) = I. The ring D is called a σ-simple ring iff 0 and D are the only σ-stable ideals of D. An
automorphism σ of D is called an inner automorphism if σ(d) = udu−1 for all d ∈ D and some
unit u of D.

Theorem 2.5. [6, Theorem 4.2] Let A = D(σ, a) be a GWA. Then A is simple iff
1. a is a regular element in D (i.e., a is not a zero divisor),
2. D is a σ-simple ring,
3. no power of σ is an inner automorphism of D, and
4. Da+Dσi(a) = D for all i > 1.

Lemma 2.6.
1. The algebra EZ,Y = Y ⊗ A is a tensor product of algebras where Y = K[Z±1][Y ±1; τ ] is a

central simple algebra and τ(Z) = q−2Z, and A = K[C1, C2,Θ
±1][Ω, ϕZ−1;σ, a = ̺C2 +

q−1C1Θ
−1 − q3Θ] is a GWA and σ(C1) = C1, σ(C2) = C2 and σ(Θ) = q−2Θ.

2. Z(A) = Z := K[C1, C2].
3. Let Z0 := Z \ {0}. Then the algebra B := Z−1

0 A = Q[Θ±1][Ω, ϕZ−1;σ, a] is a simple GWA
where Q := K(C1, C2) is the field of rational functions in C1 and C2.

Proof. 1. By (24), EZ,Y = Y ⊗ A is the tensor product of algebras Y and A. The algebra Y is
simple and central (since q is not a root of 1).

2. By Proposition 2.4.(1), Z(EZ,Y ) = Z. By statement 1, the algebra Y is central. So,
Z(EZ,Y ) = Z(Y)⊗ Z(A) = Z(A), i.e., Z(A) = Z.

3. To prove simplicity of the algebra B we use Theorem 2.5. Conditions 1 and 3 of Theorem
2.5 are obvious. Since q is not a root of unity and σ(Θ) = q−2Θ, the algebra Q[Θ±1] is σ-simple.
The algebra Q[Θ±1] is a localization of the polynomial algebra K[C1, C2,Θ] and the polynomial
Θa = −q3Θ2+ ̺C2Θ+ q−1C1 is irreducible in K[C1, C2,Θ]. Hence, a is an irreducible polynomial
of the Laurent polynomial ring Q[Θ±1]. In particular, the ideal (a) is a maximal ideal of Q[Θ±1].
Clearly, the maximal ideals

(
σi(a)

)
=

(
̺C2+q2i−1C1Θ

−1−q−2i+3Θ
)
, i > 0 are distinct. Therefore,

condition 4 of Theorem 2.5 holds, and so A is a simple algebra.
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By (22), the algebra EZ,Ω is an iterated Ore extension that can be presented as follows

EZ,Ω = K[C2]⊗K[K±1, Z±1][Ω±1; τ1][Y ; τ2][X; τ3, δ
′] (27)

where τ1(K) = q−2K, τ1(Z) = Z; τ2(K) = q2K, τ2(Z) = q−2Z, τ2(Ω) = Ω; τ3(K) = q−2K, τ3(Z) =
q2Z, τ3(Ω) = Ω, τ3(Y ) = Y ; δ′(K) = δ′(Z) = δ′(Ω) = 0 and δ′(Y ) = (q2 − 1)Z2.

Proposition 2.7. The algebra E is a free module over its centre and Z(E)E = Z(E)⊕M for some
left free Z(E)-module M .

Proof. Let F be the degree filtration on E where deg(K±1) = 0 and deg(E) = deg(F ) = deg(X) =
deg(Y ) = deg(Z) = 1. Then the associated graded algebra grF (E) is generated by elements
E′, F ′,K±1, X ′, Y ′ and Z ′ that satisfy the quadratic relations as in the definition of the algebra
E but all the terms of F-degree 1 (e.g., degF (Y K−1) = 1) must be deleted. So, all commutation
relations of the algebra grF (E) is of the type ab = qiba but the relation X ′Y ′ = Y ′X ′+(q2−1)Z ′2.
Clearly, the images C ′

1 and C ′
2 of the elements C1 and C2 in grF (E) are equal to C ′

1 = Z ′2 − (1 +
q2)Y ′X ′ and C ′

2 = ̺F ′E′Z ′. The elements C ′
1 and C ′

2 belong to the centre of the algebra grF (E).
On the algebra grF (E) consider the degree filtration G where deg(Z ′) = deg(K±1) = 0

and deg(E′) = deg(F ′) = deg(X ′) = deg(Y ′) = 1. Then the associated graded algebra E ′ =
grG

(
grF (E)

)
is generated by the elements Ẽ, F̃ ,K±1, X̃, Ỹ and Z̃ that satisfy the same defining

relations as the algebra grF (E) but the ration X ′Y ′ = Y ′X ′ + (q2 − 1)Z ′2 must be replaced by
X̃Ỹ = Ỹ X̃. So, all the canonical generators of the algebra E ′ are ‘q-commute’. Notice that
C̃1 = −(1 + q2)Ỹ X̃ and C̃2 = ̺F̃ ẼZ̃ are central monomials of the algebra E ′.

Let A = K[Ỹ , X̃] and B = K[F̃ , Ẽ, Z̃]. The algebra E ′ is the tensor product of vector spaces
A ⊗ B ⊗ K[K±1]. Since, up to constant, C̃1 is a central monomial in A and C̃2 is a central
monomial in B, the modules

K[C̃1]
A and

K[C̃2]
B are free. Hence, the K[C̃1, C̃2]-module E ′ is free

and K[C̃1, C̃2] is a direct summand of E ′. Then by [8, Lemma 4.2], the K[C ′
1, C

′
2]-module grF (E)

is a free module and K[C ′
1, C

′
2] is a direct summand of grF (E). Hence, the K[C1, C2]-module E is

free and K[C1, C2] is a direct summand of E .

3 The prime spectrum of the algebra E

The aim of this section is to find the posets Spec (E) (Theorem 3.9), Specc(E) (Corollary 3.12)
and Max(E) (Corollary 3.10). The key idea in finding the prime spectrum of the algebra E is to
use localizations which essentially reduce the problem of finding Spec (E) to Spec (A) where A is
a GWA in Lemma 2.6.(1). The exceptional curves in the centre of E is a key for finding spectra
Spec (A) and Spec (E).

The exceptional curves ξi (i > 1) and exceptional maximal ideals Mex of Z. The
elements of Z = K[C1, C2],

ξi = C1 + νiC
2
2 , where i > 1 and νi =

q2i−2̺2

(1 + q2i)2
, (28)

are called the exceptional curves/elements. The elements {ξi} are distinct since the elements {νi}
are distinct: if νi = νj for some i 6= j then either (qi+j − 1)(qj − qi) = 0 or (qi+j +1)(qj + qi) = 0,
i.e., q is a root of 1, a contradiction.

Remark. For i > 1, ν−i = νi, and so ξ−i = ξi.
For all i 6= j, the ideal (ξi, ξj) in Z is equal to (C1, C

2
2 ). Clearly, ξi ∈ (C1, C2) for all i > 1.

Let m be a maximal ideal of Z that contains the element ξi. Then m = (ξi, p) for a unique
p ∈ Max(K[C2]). If m = (C1, C2) then m = (ξi, C2) for all i > 1.

The set Mex := {m ∈ Max(Z) | ξi ∈ m for some i > 1}\{(C1, C2)} is called the exceptional set
of maximal ideals of Z. Notice that the maximal ideal (C1, C2) is not exceptional, by definition.
Clearly,

Mex =
{
(ξi, p) | i > 1, p ∈ Max

(
K[C2]

)
\ {(C2)}

}
(29)
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and all maximal ideals (ξi, p) are distinct: if (ξi, p) = (ξj , q) then either i = j or i 6= j. In the
first case, p = q (since otherwise p and q are distinct maximal ideals of K[C2], and so p+ q = (1),
hence (ξi, p) = (ξi, p, ξj , q) = (1), a contradiction). In the second case, i.e., when i 6= j, (ξi, p) =
(ξi, ξj , p, q) ⊇ (ξi, ξj) = (C1, C

2
2 ). Hence, (ξi, p) = (C1, C2), a contradiction.

The set Mex is the disjoint union

Mex =
⊔

i>1

Mex
i where Mex

i :=
{
(ξi, p) | p ∈ Max

(
K[C2]

)
\ {(C2)}

}
. (30)

The contraction map

Spec (A) → Spec (Z), P 7→ P ∩ Z, (31)

is a surjection since, for each prime ideal p of Z, the factor algebra A/pA ≃ Z/p[Θ±1](σ, a) is a
domain, hence pA ∈ Spec (A); and pA∩Z = p since ZA = Z ⊕A′ for some Z-submodule A′ of A
(see Lemma 2.6.(1)). Therefore,

Spec (A) =
⊔

p∈Spec (Z)

Spec (A; p) (32)

where Spec (A; p) := {P ∈ Spec (A) |P ∩ Z = p}.
A prime ideal P of an algebra A is called a completely prime ideal if the factor algebra A/P

is a domain. The set of completely prime ideals of A is denoted by Specc(A). It is a poset with
respect to ⊆. By (32),

Specc(A) =
⊔

p∈Spec(Z)

Specc(A; p), Specc(A; p) := Specc(A) ∩ Spec(A; p). (33)

The factor algebras A/mA where m ∈ Max(Z) and Spec (A;m). Let m be a maximal ideal
of Z. Then Lm := Z/m is a finite field extension of K and A(m) := A/mA = Lm[Θ

±1][x, y;σ, ā] is
a GWA where x = Ω + mA, y = ϕZ−1 + mA, σ is an Lm-automorphism of the algebra Lm[Θ

±1]
such that σ(Θ) = q−2Θ and ā = a+m where a = ̺C2 + q−1C1Θ

−1 − q3Θ.

Proposition 3.1. Let m ∈ Max(Z).
1. The algebra A(m) is simple iff m ∈ Max(Z) \Mex.
2. If m ∈ Mex, i.e., m = (ξi, p) for some i > 1 and p ∈ Max(K[C2]) \ {(C2)}, then the algebra

A(m) contains a unique proper ideal Ī(m) = Īi(p) = Ī(ξi, p) which is necessarily the maximal
ideal of A(m), Ī(m)2 = Ī(m) and A(m)/Ī(m) ≃ Mi(Lm) is the i× i matrix algebra over the
field Lm := Z/m ≃ K[C2]/p. Furthermore,

i = 1 : Ī(m) =
⊕

j>1

Dyj ⊕Dα0 ⊕
⊕

j>1

Dxj ,

i > 2 : Ī(m) =
⊕

j>i

Dyj ⊕
−1⊕

s=−i+1

Dαsy
|s| ⊕

i−1⊕

s=0

Dαsx
s ⊕

⊕

j>i

Dxj ,

where D = Lm[Θ
±1] and for s = 0, . . . , i− 1,

αs =
∏

−i+1+s6j60

σj(Θ− q2iλi), α−s =
∏

−i+16j6s

σj(Θ− q2iλi)

and λi :=
(
̺−1q3(1 + q2i)

)−1
C2 +m ∈ Lm.

3.

Spec (A;m) =

{
{mA}, if m 6∈ Mex,
{mA, I(m)}, if m ∈ Mex,

Specc(A;m) =

{
{mA}, if m 6∈ Mex or m = (ξi, p), i > 2, p ∈ Max(K[C2]) \ {(C2)},
{mA, I(m)}, if m = (ξ1, p), p ∈ Max(K[C2]) \ {(C2)}.
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where, for m = (ξ, p) ∈ Mex, I(m) = I(ξi, p) = Ii(p) = f−1(Ī(m)) where f : A →
A(m), u 7→ u+m. Furthermore,

i = 1 : I1(p) =
∑

j>1

D(ϕZ−1)j ⊕Dα0 ⊕
⊕

j>1

DΩj +mA,

i > 2 : Ii(p) =
∑

j>i

D(ϕZ−1)j +

−1∑

s=−i+1

Dαs(ϕZ
−1)|s| +

i−1∑

s=0

DαsΩ
s +

∑

j>i

DΩj +mA,

where α±s are as in statement 2 and λi =
(
̺−1q3(1 + q2i)

)−1
C2.

Proof. 1. The algebra A(m) is the GWA Lm[Θ
±1][x, y;σ, a]. To prove statement 1 we use Theorem

2.5. Conditions 1-3 of Theorem 2.5 hold. So, the GWA A(m) is simple iff Dā+Dσi(ā) = D for all
i > 1 where D = Lm[Θ

±1]. Let a1 = −q−3Θ−1ā = Θ2 − ̺q−3C2Θ− q−4C1. Since the polynomial
a1 ∈ Lm[Θ] in Θ is quadratic, the equality Da1 +Dσi(a1) = D does not hold iff the polynomials
a1 and σi(a1) have common linear multiple not of the form K∗Θ iff a1 = (Θ− λ)(Θ− µ) for some
distinct nonzero λ, µ ∈ Lm and the ideal (Θ− µ) of D is equal to σi

(
(Θ− λ)

)
=

(
(q−2iΘ− λ)

)
=(

Θ− q2iλ
)
iff µ = q2iλ and λ 6= 0 iff

{
−λ− µ = −(1 + q2i)λ = −̺q−3C2,
λµ = q2iλ2 = −q−4C1,

iff C1 = −q2i+4λ2 and C2 = ̺−1q3(1 + q2i)λ for some λ 6= 0 iff ξi = C1 + νiC
2
2 = 0 in Lm and

m 6= (C1, C2) (since λ 6= 0) iff m ∈ Mex.
2. Suppose that m = (ξi, p) ∈ Mex. Then ξi = C1 + νiC

2
2 ∈ m. Then Dā = D(Θ− λi)σ

i(Θ−
λi) = D(Θ − λi)(Θ − q2iλi), see the proof of statement 1. Now, statement 2 follows from [4,
Lemma 1].

3. Statement 3 follows from statements 1 and 2.
The factor algebras A(q) where ht(q) = 1 and Spec (A; q). Let q be a prime ideal of

Z = K[C1, C2] of height ht(q) = 1. Then q = Zq for some irreducible polynomial q ∈ Z which is
unique up to multiplication by a non-zero constant. The set Pex := {(ξi) := Zξi | i > 1} is called
the set of exceptional height 1 prime ideals of Z.

The algebra Z(q) := Z/q is a domain. The algebra A(q) := A/qA = Z(q)[Θ±1][x, y;σ, ā] is a
GWA where x = Ω + qA, y = ϕZ−1 + qA, σ is an Z(q)-automorphism of the algebra Z(q)[Θ±1]
where σ(Θ) = q−2Θ and ā = a + q where a = ̺C2 + q−1C1Θ

−1 − q3Θ. The algebra A(q) is a
domain since Z(q)[Θ±1] is so and ā 6= 0. So, qA ∈ Specc(A). Let Lq be the field of fractions of
the domain Z(q). The algebra A(q) is a subalgebra of the GWA B(q) := Lq[Θ

±1][x, y;σ, ā] which
is the localization of A(q) at the central Ore set Z(q) \ {0}. If q = (ξi), for some i > 1, then
Z(ξi) ≃ K[C2] and L(ξi) = K(C2).

Proposition 3.2. Let q ∈ Spec (Z) with ht(q) = 1.
1. The algebra B(q) is simple iff q 6∈ Pex.
2. If q ∈ Pex, i.e., q = (ξi) for some i > 1, then the algebra B(q) contains a unique proper

ideal Ji which is necessarily the maximal ideal of B(q), J2
i = Ji and B(q)/Ji ≃ Mi(Lq) ≃

Mi

(
K(C2)

)
is the i× i matrix algebra over the field Lq. Furthermore,

i = 1 : J1 =
⊕

j>1

Dyj ⊕Dα0 ⊕
⊕

j>1

Dxj ,

i > 2 : Ji =
⊕

j>i

Dyj ⊕
−1⊕

s=−i+1

Dαsy
|s| ⊕

i−1⊕

s=0

Dαsx
s ⊕

⊕

j>i

Dxj ,

where D = Lq[Θ
±1] and for s = 0, . . . , i− 1,

αs =
∏

−i+1+s6j60

σj(Θ− q2iλi), α−s =
∏

−i+16j6s

σj(Θ− q2iλi)

and λi =
(
̺−1q3(1 + q2i)

)−1
C2 + q ∈ Lq.
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3.

Spec (A; q) =

{
{qA}, if q 6∈ Pex,
{qA, Ii}, if q = (ξi), i = 1, 2, . . . ,

Specc(A; q) =

{
{qA}, if q 6∈ Pex or q = (ξi), i > 2,
{qA, I1}, if q = (ξ1),

where Ii := f−1(Ji) and f : A → A/qA → B(q), u 7→ u+ q 7→ u+qA
1 . Furthermore,

i = 1 : I1 =
∑

j>1

D(ϕZ−1)j +Dα0 +
∑

j>1

DΩj + ξ1A,

i > 2 : Ii =
∑

j>i

D(ϕZ−1)j +

−1∑

s=−i+1

Dαs(ϕZ
−1)|s| +

i−1∑

s=0

DαsΩ
s +

∑

j>i

DΩj + ξiA,

where D = K[C1, C2,Θ
±1], α±s are as above and λi =

(
̺−1q3(1 + q2i)

)−1
C2.

Proof. 1. The algebra B(q) = Lq[Θ
±1][x, y;σ, ā] is a GWA. To show that statement 1 holds we

use Theorem 2.5. Conditions 1-3 of Theorem 2.5 hold. So, the algebra B(q) is not simple iff
Dā +Dσi(ā) = D for some i > 1 iff Da1 +Dσi(a1) = D for some i > 1 where a1 := −q−3Θā =
Θ2 − ̺q−3C2Θ − q−4C1. Then repeating the proof of statement 1 of Proposition 3.1.(1) (simply
by replacing the field Lm by Lq) we see that Da1 +Dσi(a1) = D iff ξi = C1 + νiC

2
2 = 0 in Lq iff

ξi ∈ q iff q = (ξi) (since ht
(
(ξi)

)
= 1 = ht(q)).

2. Suppose that q = (ξi) for some i > 1. Then Dā = D(Θ− λi)σ
i(Θ− λi) = D(Θ− λi)(Θ−

q2iλi), see the proof of statement 2 of Proposition 3.1. Now, statement 2 follows from [4, Lemma
1].

3. Let P ∈ Spec (A; q). Then P̄ := P/qA ∈ Spec (A(q); 0), i.e., P̄ ∩ Z(q) = 0. So, the map

Spec
(
A(q); 0

)
→ Spec

(
B(q)

)
, P̄ 7→ B(q)P̄ ,

is a bijection with inverse Q → A(q) ∩Q. If q 6∈ Pex then B(q) is a simple algebra, by statement
1, hence Spec

(
A(q); 0

)
= {0} and then Spec (A; q) = {qA}. If q ∈ Pex, i.e., q = (ξi) for some

i > 1, then Spec
(
B(q)

)
= {0, Ji}, by statement 2. Hence, Spec (A; q) = {qA, Ii}. Now, the result

about Specc(A; q) follows from statement 2.
The set Spec (A; 0). Let Q(Z) = K(C1, C2) be the field of fractions of Z = K[C1, C2]. The

GWA A is a subalgebra of the GWA B = Q(Z)[Θ±1][Ω, ϕZ±1;σ, a] which is the localization of A
at K[C1, C2] \ {0} (where σ and a are as in Lemma 2.6.(1)). By Lemma 2.6.(3), the algebra B is
simple. The next proposition shows that every nonzero prime ideal of A meets the centre of A.

Proposition 3.3.
1. Spec (A; 0) = Specc(A; 0) = {0}.
2. p ∩ Z 6= 0 for all non-zero prime ideals p of A.

Proof. 1. Let P ∈ Spec (A; 0). Then P ′ := S−1P (where S = Z \ {0}) is an ideal of the simple
algebra B. Then necessarily P = 0 since otherwise P ′ = B and so P ∩ A 6= 0, a contradiction.
Therefore, Spec (A; 0) = {0}. Hence, Specc(A; 0) = {0}.

2. Statement 2 follows from Proposition 3.1, Proposition 3.2 and statement 1.
The next theorem describes the prime spectrum of the algebra A and the inclusions between

prime ideals.
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Theorem 3.4. The prime spectrum Spec (A) of the algebra A is given below

(C1, C2)

P

0

(ξi)

(ξi, p)

Q

M Ii

Ii(p)

. . . . . .

(

i > 1, p ∈ Max(K[C2]) \ {(C2)}
)

(34)

where M := Max(K[C1, C2]) \
(
Mex ∪ {(C1, C2)}

)
, C := Spec (K[C1, C2]), P := {p ∈ C | p ⊆

(C1, C2), ht(p) = 1} \ Pex, Q := {q ∈ C | q 6⊆ (C1, C2), ht(q) = 1}. In more detail, let S =
P,Pex,Q,M,Mex. The set S, as a subset of Spec (A), is equal to {(q) = Aq | q ∈ S}.

Remark. The inclusion ‘Q — M’ means a bunch of inclusions ‘q — m’ where q ∈ Q, m ∈ M and
q ⊆ m.
Proof. The theorem follows from (32), Proposition 3.1, Proposition 3.2 and Proposition 3.3.

By (34), we have the following descriptions of maximal ideals of the algebra A and of the
completely prime spectrum Specc(A) of A.

Corollary 3.5.

1. Max(A) = {qA | q ∈ M} ⊔ {A(C1, C2)} ⊔ {Ii(p) | i > 1, p ∈ Max(K[C2]) \ {(C2)}.

2. Specc(A):

(C1, C2)

P

0

(ξi)

(ξi, p)

(ξ1)

I1

I1(p
′)

Q

M

. . . . . .

(

i > 2, p ∈ Max(K[C2]) \ {(C2)}
)

where p′ ∈ Max(K[C2]) \ {(C2)}.

Proof. 1. Statement 1 follows from (34).
2. Statement 2 follows from (34), Proposition 3.1, Proposition 3.2 and Proposition 3.3.
Prime ideals of the algebra E . For an algebra A, Spec (A) is the set of its prime ideals.

The set (Spec (A),⊆) is a partially ordered set (poset) with respect to inclusion. Let f : A → B
be an algebra epimorphism. Then Spec (B) can be seen as a subset of Spec (A) via the injection
Spec (B) → Spec (A), p 7→ f−1(p). So, Spec (B) = {q ∈ Spec (A) | ker(f) ⊆ q}. Given a left
denominator set S of the algebra A. Then σ : A → S−1A, a 7→ s−1a, is an algebra homomorphism.
If the algebra A is a Noetherian algebra then Spec (S−1A) can be seen as a subset of Spec (A) via
the injection Spec (S−1A) → Spec (A), q 7→ σ−1(q).

Let R be a ring. Then each element r ∈ R determines two maps from R to R, r· : x 7→ rx and
·r : x 7→ xr where x ∈ R. An element s ∈ R is a normal element if sR = Rs.

The next two lemmas are used in the proof of Theorem 3.9. Let V be the ideal of E generated
by the elements X,Y and Z. Since E/V ≃ Uq(sl2) is a domain, the ideal V is a completely prime
ideal.

Lemma 3.6. For each n > 1, let Vn = {XiY jZk | i, j, k ∈ N, i+ j + k = n}. Then
1. Vn = (Zn) = (Z)n.
2. Vn =

∑
v∈Vn

Ev =
∑

v∈Vn
vE .
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3.
⋂

n>1 V
n = 0.

Proof. 2. Let us fix n > 1. Let Ln =
∑

v∈Vn
Ev and Rn =

∑
v∈Vn

vE . Then using the commutation
relations of the elements in V1 with the elements {E,F,K}, we see that Ln ⊆ Rn and Rn ⊆ Ln,
hence Ln = Rn. Similarly, Vn ⊆ Ln. But the inclusion Ln ⊆ Vn is obvious. Hence, Vn = Ln.

1. To prove statement 1 we use induction on n. Let n = 1, using the commutation relations
of the element Z with F and E we have the inclusions X,Y ∈ (Z). Hence, (Z) = V. So, the case
n = 1 is true.

Suppose that n > 1 and the result is true for all n′ < n. In particular, Vn−1 = (Zn−1) =
(Z)n−1. Let us show, say, that Vn = (Zn):

Vn = Vn−1V = (Zn−1)V = EZn−1EV = EZn−1V

= EZn−1(ZE +XE + Y E) = EZnE + EZn−1XE + EZn−1Y E .

By Lemma 4.1.(4), Zn−1X ∈ (Zn). By Lemma 4.1.(2) and the relation Y Z = q−2ZY , Zn−1Y ∈
(Zn). Therefore, Vn = (Zn). Hence, (Z)n = (Zn).

3. Statement 3 follows from statement 2.

Lemma 3.7. For all n > 1, (Y n) = (Y )n = EZ where (Y n) = EZY
nEZ and (Y ) = EZY EZ .

Proof. The algebra RZ is a GWA, see (12), where the defining element a is equal to Z2−C1

1+q2
. For

all n > 1, (Y n) ∋ (1 + q2)(XY n − Y nX) = (1 + q2)Y n−1(σn(a)− a) = Y n−1(q2n − 1)Z2. Hence,
(Y n) = (Y n−1) = · · · = (Y ) = (1), as required.

The following proposition is used in the proof of Theorem 3.9. For an algebra, it identifies the
spectra of certain localizations and factor algebras of the algebra with parts of the prime spectrum
of the algebra.

Proposition 3.8. [7] Let R be a Noetherian ring and s be an element of R such that Ss :=
{si | i ∈ N} is a left denominator set of the ring R and (si) = (s)i for all i > 1 (e.g., s is a
normal element such that ker(·sR) ⊆ ker(sR·)). Then Spec (R) = Spec(R, s) ⊔ Specs(R) where
Spec(R, s) := {p ∈ Spec (R) | s ∈ p}, Specs(R) := {q ∈ Spec (R) | s /∈ q} and
(a) the map Spec(R, s) 7→ Spec (R/(s)), p 7→ p/(s), is a bijection with inverse q 7→ π−1(q) where

π : R → R/(s), r 7→ r + (s),
(b) the map Specs(R) → Spec (Rs), p 7→ S−1

s p, is a bijection with inverse q 7→ σ−1(q), where
σ : R → Rs := S−1

s R, r 7→ r
1 .

(c) For all p ∈ Spec (R, s) and q ∈ Specs(R), p 6⊆ q.

The following diagram reveals the logic behind the proof of Theorem 3.9.

E EZ

E/(Z) ≃ Uq(sl2)

EZ,Y

(35)

Theorem 3.9. The prime spectrum Spec (E) of the algebra E is the disjoint union

Spec (E) = Spec (E/V) ⊔ Spec (EZ,Y ) = Spec (E/V) ⊔ Spec (A). (36)

The map Spec (A) → Spec (EZ,Y ), I 7→ Y⊗ I, is a bijection with the inverse J 7→ J ∩A. The map

t : Spec (A) → Spec (E), I 7→ Ĩ := E ∩Y⊗ IZ,Y is an injection. The prime spectrum of E is given
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below:

Spec (Uq(sl2)) \ {0}

V

˜(C1, C2)

P

0

(̃ξi)

(̃ξi, p)

Q

M Ĩi

Ĩi(p)

. . . . . .

(

i > 1, p ∈ Max(K[C2]) \ {(C2)}
)

(37)

where M := Max(K[C1, C2]) \
(
Mex ∪ {(C1, C2)}

)
, C := Spec (K[C1, C2]), P := {p ∈ C | p ⊆

(C1, C2), ht(p) = 1} \ Pex, Q := {q ∈ C | q 6⊆ (C1, C2), ht(q) = 1}. In more detail,
(a) the set Spec (E/V), as a subset of Spec (E), is equal to

{
(V, p) | p ∈ Spec (Uq(sl2)) \ {0}

}

(recall that E/V ≃ Uq(sl2)).

(b) Let S = P,Pex,Q,M,Mex, (C1, C2). The set S, as a subset of Spec (E), is equal to {(̃q) =
E ∩ Y⊗ qA | q ∈ S}.

Remark. The inclusion ‘Q — M’ means a bunch of inclusions ‘q — m’ where q ∈ Q, m ∈ M and
q ⊆ m.
Proof. Recall that V = (Z), by Lemma 3.6.(1). The algebra E is a Noetherian domain, hence so
is the algebra EZ . By Lemma 3.6.(1) and Proposition 3.8 (where s = Z),

Spec (E) = Spec (E/V) ⊔ Spec (EZ). (38)

By Lemma 3.7, every ideal of the algebra EZ that contains an element Y i (i > 1) is equal to EZ .
Therefore,

Spec (EZ) = Spec (EZ,Y ). (39)

By Lemma 2.6.(1), the algebra EZ,Y = Y ⊗ A is a tensor product of algebras where Y =
K[Z±1][Y ±1; τ ] is a central simple algebra. Therefore, the map

Spec (A) → Spec (EZ,Y ), I 7→ Y⊗ I, (40)

is a bijection with the inverse J 7→ J ∩A, and so (36) follows. Furthermore, the map

Specc(A) → Spec (EZ,Y ), I 7→ Y⊗ I, (41)

is a bijection with the inverse J 7→ J ∩ A. Now, it is obvious that the map t is an injection.
By Proposition 3.8.(c), none of the prime ideals in Spec (E/V) is contained in a prime ideal of

Spec (A). By the very definition of the ideals (̃ξi) and (̃Ii) we have inclusions as in (37). Since
(C1, C2, p) = (1) for all p ∈ Max(K[C2]) \ {(C2)}, these are the only inclusions in (37).

By (37), we have the following description of the set Max(E) of maximal ideals of E .

Corollary 3.10.

1. Max(E) = Max(U)
⊔

M
⊔ {

Ĩi(p) | i > 1, p ∈ Max(K[C2]) \ {(C2)}
}
.

2. For all nonzero p ∈ Spec (E), p ∩ Z(E) 6= 0.

The next corollary is a description of the GK -dimensions of simple factor algebras of E .

Corollary 3.11. If M ∈ Max(E) then GK(E/M) ∈ {0, 1, 2, 4}. In more detail,
1. GK(E/M) = 0 iff M is the annihilator of a simple finite dimensional Uq(sl2)-module.
2. GK(E/M) = 1 iff M ∈ Max

(
Uq(sl2)

)
\ F where F is the set of annihilators of simple finite

dimensional Uq(sl2)-modules.
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3. GK(M) = 2 iff M = Ĩi(p) where i > 1 and p ∈ Max(K[C2]) \ {(C2)}.

4. GK(M) = 4 iff M = (̃q) where q ∈ M.

Proof. The corollary follows from an explicit description of Max(E) (Corollary 3.10.(1)). If M ∈ F
(resp. M ∈ Max(Uq(sl2)) \ F) then GK (E/M) = 0 (resp. GK (E/M) = 1).

If M = Ĩi(p) where i > 1 and p ∈ Max
(
K[C2]

)
\ {(C2)} then GK

(
E/Ĩi(p)

)
= GK

(
EZ,Y /

(
Y⊗

Ii(p)
))

= GK
(
Y ⊗

(
A/Ii(p)

))
= GK(Y) = 2 since the algebra A/Ii(p) is finite dimensional. If

M = Em where m is a maximal ideal of K[C1, C2] then GK (E/M) = GK(EZ,Y /MZ,Y ) = GK
(
Y⊗

(A/Am)
)
= 4 by using the standard filtrations on the algebras Y and A/Am ≃ Lm[Θ

±1][x, y;σ, a =
̺C2 + q−1C1Θ

−1 − q3Θ] (see (24)) where Lm = K[C1, C2]/m is a finite field extension of K.
The next corollary is a description of the set Specc(E) of completely prime ideals of E .

Corollary 3.12. Specc(E) :

˜(C1, C2)

P

0

(̃ξi)

(̃ξi, p)

(̃ξ1)

Ĩ1

Ĩ1(p′)

Q

M

. . . . . .

V

Spec (Uq(sl2)) \ (F ∪ {0})

(

i > 2, p ∈ Max(K[C2]) \ {(C2)}
)

where p′ ∈ Max(K[C2]) \ {(C2)} and F is the set of annihilators of simple finite dimensional
Uq(sl2)-modules of dimension > 2.

Proof. Let Λ be an algebra. Notice that Λ is a domain iff Y⊗ Λ is a domain. Now, the corollary
follows from Corollary 3.5 and Theorem 3.9.

The factor algebra EZ/(Ω). Recall that the algebra EZ can be presented as a GWA, see
(19). Let (Ω) be the two sided ideal of EZ generated by the element Ω. The proposition below
shows that the factor algebra EZ/(Ω) is a GWA over a Laurent polynomial ring in two variables.

Proposition 3.13.

1. The algebra EZ/(Ω) ≃ K[Θ±1, Z±1][X,Y ;σ, a = Z2+q2Θ2

1+q2
] is a GWA where σ(Θ) = Θ,

σ(Z) = q2Z (recall that Θ = KZ) and Z
(
EZ/(Ω)

)
= K[Θ,Θ−1].

2. Z
(

E
(Ω)∩E

)
= K[Θ].

3. The ideal (Ω) of EZ can also be written as (Ω) = (Ω,Ω∗) = (Ω, ϕ) = (ϕ) = (Ω∗).

4. Ĩ1 = (Ω) ∩ E .

Proof. 1. Let I = (Ω) and the automorphism σ be as in (19). We show first that ϕ ∈ I. By (15),
the element e = C1 + q2K2Z2 ∈ I. Then the element [F, e] = q2(q2 + 1)(̺K2Z2F +KZY ) ∈ I.
Since the elements K and Z are invertible in EZ , we deduce that ϕ = ̺ZF + q2Y K−1 ∈ I.

Now, let us prove that EZ/I ≃ D/(a, σ(a)) where D := RZ [C2], a = ̺C2 + q−1C1K
−1Z−1 −

q3KZ and (a, σ(a)) is the ideal of D generated by the elements a and σ(a): Since the element Ω
is a homogeneous element of the GWA EZ =

⊕
i∈Z

EZ,i, i.e., I =
⊕

i∈Z
Ii where Ii = I ∩ EZ,i. We

have shown that Ω, ϕ ∈ I, then it is clear that
⊕

i∈Z\{0} EZ,i ∈ I. So, EZ/I ≃ D/D ∩ I. But

D ∩ I = D ∩ (ΩEZ + EZΩ) = ΩEZ,−1 + EZ,−1Ω = ΩϕZ−1D+DϕZ−1Ω = σ(a)D+Da = (a, σ(a)).

Now, a = ̺C2 −α and σ(a) = ̺C2 − σ(a) where α = −q−1C1Θ
−1 + q3KΘ, see (19). The element

σ(a) − a = α − σ(α) = b = ̺(q−1C1Θ
−1 + qΘ), see (16), belongs to the ideal (a, σ(a)) of D and

(a, σ(a)) = (a, b).
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By (13), Θ ∈ Z(D). Since D = RZ ⊗K[C2], we deduce using (14) that Z(D) = K[C1, C2,Θ
±1].

Notice that a, b ∈ Z(D) and Z(D)/(a, b) ≃ K[Θ±1], by using the explicit expressions for a and

b. Now, using the fact that D = RZ ⊗ K[C2] = K[C1, C2,Θ
±1, Z±1][X,Y ;σ, Z2−C1

1+q2
] and a, b ∈

K[C1, C2,Θ
±1], we have

D/(a, b) ≃ K[Θ±1, Z±1][X,Y ;σ,
Z2 + q2Θ2

1 + q2
]

where σ(Θ) = Θ and σ(Z) = q2Z (we use the fact that the image of b in D/(a, b) is zero, and
so C1 = −q2Θ2 in D/(a, b)). The localization AX of the algebra A := EZ/(Ω) at the powers of
the element X is the skew Laurent polynomial algebra K[Θ±1, Z±1][X±1;σ] which is a subalgebra
of the simple algebra B := K(Θ)[Z±1][X±1;σ] with Z(B) = K(Θ). Hence, Z(A) = A ∩ Z(B) =
K[Θ,Θ−1].

2. Statement 2 follows from statement 1.
3. Recall that ϕ = Ω∗ and ϕ ∈ (Ω), see the proof of statement 1. So, (Ω) = (Ω,Ω∗). Now,

(Ω,Ω∗) = (Ω,Ω∗)∗ = (Ω)∗ = (Ω∗) = (ϕ).
4. By statement 1, the ideal (Ω) is a completely prime ideal of the algebra EZ . Hence, the

ideal (Ω) ∩ E is a completely prime prime but not maximal ideal of the algebra E (see statement
2) that obviously contains Ω and is contained in the Spec (A) part of Spec (E), see Theorem 3.9.

By Corollary 3.12, Ĩ1 is the only completely prime ideal of E that is not maximal, contained in
the Spec (A) part of Spec (E) and contains Ω. Therefore, (Ω) ∩ E = Ĩ1.

Theorem 3.14.
1. The ideal Ĩ1 of E is generated by the elements Ω, ϕ, ξ1, EF + q̺−2(K+ q2K−1) and Θ− q2λ1

where λ1 =
(
̺−1q3(1 + q2)

)−1
C2.

2. The ideal Ĩ1(p), where p ∈ Max(K[C2]) \ {(C2)}, is generated by the elements in statement
1 and p.

3. E/Ĩ1 = K[C2] ⊗ A1 is the tensor product of the polynomial algebra K[C2] and the central
simple GWA A1 := K[K±1][E,F ;σ, a1 = −q̺−2(q2K +K−1)] where σ(K) = q−2K.

4. For each p ∈ Max(K[C2]) \ {(C2)}, the algebra E/Ĩ1(p) ≃ K[C2]/p ⊗ A1 is a simple algebra

with centre Lp := K[C2]/p. The algebra E/Ĩ1(p) is the simple GWA Lp[K
±1][E,F ;σ, a1].

Proof. 1 and 3. By Proposition 3.2.(2), the elements Ω, ϕ, ξ1 and Θ− q2λ1 belong to the ideal Ĩ1.
Let a be the ideal of E generated by these elements and b be the ideal of E generated by a and the
element b := EF + q̺−2(K + q2K−1). Clearly, a ⊆ b and a ⊆ Ĩ1. It remains to show that b = Ĩ1.

The key idea of the proof is the fact that the ideal Ĩ1 is completely prime. The proof consists of
two steps:
(i) b ∈ Ĩ1 (hence b ⊆ Ĩ1), and
(ii) E/b ≃ K[C2]⊗A1.

From (ii), it can be easily deduced that b = Ĩ1 by using properties of GWAs.

(i) b ∈ Ĩ1: The equalities Ω = ̺EZ − q2[2]X and ϕ = ̺FZ + Y K−1 yields the equivalence
relations modulo the ideal a:

X ≡ q−2[2]−1̺EZ mod a and Y ≡ −̺FZK mod a. (42)

Similarly, by taking the equalities C2 = FΩ+EYK−1 + q2[K; 0]Z (see (20)) and a ∋ Θ− q2λ1 =

Θ− q2
(
̺−1q3(1 + q2)

)−1
C2 modulo a and using (42), we have the equivalence relations

(
− ̺EF + q2[K; 0]

)
Z ≡ C2 ≡ q̺−1(1 + q2)KZ mod a. (43)

Recall that a ⊆ Ĩ1. By taking there equivalence relations modulo Ĩ1 and then deleting Z on both
sides (recall that E/Ĩ1 is a domain, Corollary 3.12) and then dividing by −̺ and moving all the

elements to the left we have the inclusion EF +̺−1
(
− q2[K; 0]+ q̺−1(1+ q2)K

)
∈ Ĩ1. By making
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simplifications using the expression [K; 0] = K−K−1

q−q−1 , the inclusion above can be written as b ∈ Ĩ1.

Hence, b ⊆ Ĩ1.
(ii) E/b ≃ K[C2] ⊗ A1: Let Ē = E/b. Recall that a ⊆ b ⊆ Ĩ1. By (42) and (43), the

algebra Ē is generated by the (images of the elements) K±1, C2, E and F . The element C2 is
a central element of Ē . The subalgebra A′

1 = K〈K±1, E, F 〉 of Ē satisfies the relation (where
σ(K) = q−2K) EK = σ(K)E,FK = σ−1(K)F,EF = −q̺−2(K + q2K−1) = σ(a1) (since b = 0)

and FE = [F,E] + EF = −K−K−1

q−q−1 + σ(a1) = −q̺−2(q2K + K−1) = a1. So, the algebra A′
1 is

an epimorphic image of the simple algebra A1 (use Theorem 2.5 and the fact that q is not a root

of unity), hence A′
1 = A1. Since b ⊆ Ĩ1, the domain E/Ĩ1 is an epimorphic image of the tensor

product of algebras K[C2] ⊗ A1 which is a domain. The algebra A1 is a central simple algebra.

So, any ideal of K[C2] ⊗ A1 is of the form p ⊗ A1. The GWA K[C2]⊗A1

p⊗A1
≃ Lp[K

±1][E,F ;σ, a1] is

a domain iff p ∈ Spec (K[C2]) where Lp = K[C2]/p. By Theorem 2.5, for any non-zero prime (i.e.,

maximal) ideal p of K[C2] the GWA Lp⊗A1 is simple. Since the algebra E/Ĩ1, which is a domain,

is not simple we must have E/Ĩ1 ≃ K[C2]⊗A1.
2 and 4. Statements 2 and 4 follow from statements 1 and 3.

4 Appendix

We collect some useful commutation relations in the following lemma.

Lemma 4.1. The following identities hold in the algebra E.

1. FXi = XiF + 1−q−4i

1−q−4 X
i−1ZK−1.

2. FZi = ZiF + 1−q2i

1−q2
Y Zi−1K−1.

3. EY i = q−2iY iE + 1−q−4i

1−q−4 [2]ZY i−1.

4. EZi = ZiE + 1−q2i

1−q2
[2]Zi−1X.

5. ZF i = F iZ − 1−q2i

1−q2
F i−1Y K−1.

6. ZEi = EiZ + (q−2i−1)(q2+1)2

q2−1 Ei−1X.

7. XF i = F iX − q2i−1
q2−1 F

i−1ZK−1 + (q2i−q2)(q2i−1)
(q4−1)(q2−1) F i−2Y K−2.

8. XY i = Y iX + q4i−1
q2+1 Y

i−1Z2.

9. EF i = F iE + [i]F i−1[K; 1− i].

Proof. The equalities are proved by induction on i and using the defining relations of the algebra
E .
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