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On approximations of the de Rham complex and

their cohomology

V. V. Bavula and H. Melis Tekin Akcin

Abstract

For a commutative algebra R, its de Rham cohomology is an important

invariant of R. In the paper, an infinite chain of de Rham-like complexes

is introduced where the first member of the chain is the de Rham complex.

The complexes are called approximations of the de Rham complex. Their

cohomologies are found for polynomial rings and algebras of power series

over a field of characteristic zero.

Key Words: differentials, the de Rham complex, the de Rham coho-

mology, polynomial algebra, algebra of power series, approximations.

Mathematics subject classification 2010: 13D03, 13N05, 13N10, 13N15.

1 Introduction

Let R be a commutative K-algebra with 1 over a commutative ring K. Mod-
ule means a left module. For each natural number m ≥ 1, let Ωm(R) be the
universal module of derivations of order m of R (the module of mth order dif-
ferentials), see [7, 4, 6] and Section 2. The modules Ωm(R) were studied in
[5, 7, 4, 6, 1, 8, 2, 3] to name just a few. In particular, Ω1 is the module
of differentials of R over K and the exterior algebra of the left R-module Ω1,
(∧•Ω1, d1), is the de Rham cochain complex of R. There is a chain of cochain
complexes

· · · → ∧•Ωm → · · · → ∧
•Ω2 → ∧

•Ω1 → 0

(see (21)) that are called approximations of the de Rham complex. The main re-
sult of the paper is an explicit description of the cohomology groupsH•(R,m) :=
H•(∧•Ωm) for the polynomial algebra Pn = K[x1, . . . , xn] and the algebra
Sn = K[[x1, . . . , xn]] of power series over a field K of characteristic zero (below
(

i
j

)

= i!
j!(i−j)! is the binomial coefficient):

• (Theorem 2.7)

Hi(Pn,m) ≃

{

K(rk(Ωm)−n

i ) if 0 ≤ i ≤ rk(Ωm)− n,

0 otherwise,
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where rk(Ωm)=
(

n+m
n

)

− 1.

• (Theorem 3.2)

Hi(Sn,m) ≃

{

K(rk(Ωm)−n

i ) if 0 ≤ i ≤ rk(Ωm)− n,

0 otherwise,

where rk(Ωm)=
(

n+m
n

)

− 1.

2 Approximations of the de Rham complex

In this paper, a module means a left module. Let R be a commutative K-
algebra where K is a commutative ring, R⊗R := R⊗K R, E := EndK(R⊗R)
be the endomorphism algebra of R⊗R, i.e., the algebra of allK-homomorphisms
R ⊗ R → R ⊗ R. Let M be an R-bimodule. A K-linear map ∂ : R → M such
that ∂(rs) = ∂(r)s + r∂(s) is called a K-derivation from R to M . The set of
all K-derivations from R to M is denoted by DerK(R,M). In particular, for
M = R, DerK(R) := DerK(R,R) is the set of all K-derivations of the K-algebra
R. For each a ∈ R, let

ℓa : R⊗R→ R⊗R, b⊗ c 7→ ab⊗ c, (1)

τa : R⊗R→ R⊗R, b⊗ c 7→ b⊗ ca. (2)

The maps ℓa, τa and ∆a := ℓa − τa commute. The algebra R ⊗ R contains two
subalgebras R⊗ 1 and 1⊗R. The map

d : R→ R⊗R, r 7→ d(r) := r′ := r ⊗ 1− 1⊗ r (3)

is aK-derivation, d ∈ DerK(R,R⊗R), that is (rs)
′

= r
′

s+rs
′

= r′·1⊗s+r⊗1·s′

for all r, s ∈ R. Let I be the kernel of the algebra epimorphism

ϕ : R⊗R→ R, r ⊗ s 7→ rs. (4)

Then ϕd=0, so R
′

:=dR:=im(d) ⊆ I and the map

d : R→ I, r 7→ r
′

= r ⊗ 1− 1⊗ r (5)

is a K-derivation, d ∈ DerK(R, I).

Lemma 2.1 1. I = RR
′

= R
′

R, i.e., the ideal I is generated by the set R
′

as a left or right R-module.

2. Im = R(R
′

)m = (R
′

)mR for all m ≥ 1.

Proof. 1. Statement 1 follows from the equality r
′

s = (rs)
′

− rs
′

.
2. Statement 2 follows from statement 1. �
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The involution o. An automorphism of an algebra of degree 2 is called an
involution. The map

o : R⊗R→ R⊗R, r ⊗ s 7→ s⊗ r (6)

is an involution since (r⊗s)oo = r⊗s. Clearly, (R⊗1)o = 1⊗R and (1⊗R)o =
R⊗ 1. For all r ∈ R,

(r
′

)o = −r
′

. (7)

Therefore, Io = I, by Lemma 2.1. Let x1, x2 ∈ R. In particular, x1x2 = x2x1.
Then

x
′

1x
′

2 = x
′

2x
′

1 = x1x
′

2 − x
′

2x1 = x2x
′

1 − x
′

1x2,

(x1x2)
′

= x
′

1x2 + x1x
′

2 = x2x
′

1 − x2x
′

1 + x
′

1x2 + x1x
′

2 = x2x
′

1 − x
′

1x
′

2 + x1x
′

2,

(x1x2)
′

= x
′

1x2 + x1x
′

2 = x
′

1x2 + x1x
′

2 − x
′

2x1 + x
′

2x1 = x
′

1x2 + x
′

1x
′

2 + x
′

2x1.

The equalities above do not hold if the elements x1 and x2 do not commute. Let
n be a natural number such that n ≥ 2 and [n] := {1, . . . , n}. For a subset I of
the set [n], let CI:=[n]\I be its complement and |I| be the number of elements
in I.

Lemma 2.2 Given elements x1, ..., xn ∈ R, we have

(x1 · · ·xn)
′

=
∑

φ 6=I⊆[n]

(−1)|I|+1xCI(x
′

)I =
∑

φ 6=I⊆[n]

(x
′

)IxCI (8)

where xCI :=
∏

j∈CI xj and (x
′

)I :=
∏

i∈I x
′

i. In particular,

(xn
i )

′ =

n
∑

m=1

(−1)m+1

(

n

m

)

xn−m
i x′m

i =

n
∑

m=1

(

n

m

)

x′m
i xn−m

i .

More generally, for all 0 6= α = (α1, . . . , αn) ∈ N
n,

(xα)
′

=
∑

0 6=β≤α

(−1)|β|+1

(

α

β

)

xα−βx′β =
∑

0 6=β≤α

(

α

β

)

x′βxα−β (9)

where xα =
∏n

i=1 x
αi

i , x′β :=
∏n

i=1 x
′βi

i , |β| := β1 + · · ·+βn, β ≤ α means β1 ≤
α1, . . . , βn ≤ αn, and

(

α
β

)

:=
∏n

i=1

(

αi

βi

)

is a multi-nomial coefficient. Further-

more, for a polynomial P = P (t1, . . . , tn) ∈ K[t1, . . . , tn], let p = P (x1, . . . , xn).
Then

p′ =
∑

β 6=0

(−1)|β|+1 ∂
βp

∂xβ

x′β

β!
=

∑

β 6=0

x′β

β!

∂βp

∂xβ
(10)

where ∂βp
∂xβ = ∂βp

∂tβ
|t1=x1,...,tn=xn

.
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Proof. Let us prove by induction on n that the second equality in (8) holds,
i.e.,

(x1 · · ·xn)
′

=
∑

φ 6=I⊆[n]

x′IxCI .

The case n = 2 was proven above. So, let n > 2 and we assume that the equality
holds for all n

′

< n. Now,

(x1 · · ·xn)
′

= (x1 · · ·xn−1)
′

xn + x1 · · ·xn−1x
′
n

=
∑

φ 6=J⊆[n−1] x
′JxCJxn + x

′

nx1 · · ·xn−1 + x1 · · ·xn−1x
′
n − x

′

nx1 · · ·xn−1.

Notice that

x1 · · ·xn−1x
′
n − x′

nx1 · · ·xn−1 = (x1 · · ·xn−1)
′

x
′

n =
∑

φ 6=J⊆[n−1]

x′JxCJx
′

n

and the second equality follows. By applying the automorphism o to the second
equality we obtain the first equality:

(x1 · · ·xn)
′ = −((x1 · · ·xn)

′)o = −
∑

φ 6=I⊆[n]

xCI((x′)I)o =
∑

φ 6=I⊆[n]

(−1)|I|+1xCIx′I ,

by (7). The equalities in (9) follows from (8). The equality in (10) follows at
once from (9). �

The short exact sequence of left R-modules

0→ I → R⊗R
ϕ
→ R→ 0 (11)

admits a section ℓ : R→ R⊗R, r 7→ r ⊗ 1, that is ϕℓ = idR. Therefore,

R⊗R = R⊗ 1⊕ I (12)

is the direct sum of left R-modules. Similarly, the short exact sequence of right
R-modules (11) admits a section r : R→ R ⊗R, a 7→ 1⊗ a, that is ϕr = idR.
Therefore,

R⊗R = 1⊗R⊕ I (13)

is the direct sum of right R-modules. The I-adic filtration of the ring R⊗R,

R⊗R ⊇ I ⊇ I2 ⊇ · · · ⊇ Im ⊇ · · ·

determines the chain of ring epimorphisms

· · · → R⊗R/Im → · · · → R⊗R/I2 → R⊗R/I → 0.
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Let P(R):=lim←− R⊗R/Im. For each m ≥ 1, the ideal Ωm := I/Im+1 of the ring

R⊗R/Im+1 is called the module of differentials of order m of R. For all m ≥ 1,
by (12) and (13),

R⊗R/Im+1 = R⊗ 1⊕ Ωm = 1⊗R⊕ Ωm. (14)

Let Ω∞ := lim←− Ωm be the projective limit of R⊗R-module epimorphisms

· · · → Ωm → · · · → Ω2 → Ω1 → 0. (15)

Then
P(R) = R⊗ 1⊕ Ω∞ = 1⊗R⊕ Ω∞. (16)

Clearly, Ω∞ is an ideal of the ring P(R) such that P(R)/Ω∞ ≃ R. For each
m ≥ 1, the derivation d : R→ R⊗R (see (3)) determines the derivation

dm : R→ R⊗R/Im+1, r 7→ r
′

+ Im+1

which can be seen as m’th approximation of the derivation d. Recall that

R⊗R/Im+1 = R⊗ 1⊕ Ωm = 1⊗R⊕ Ωm.

By Lemma 2.1, im(dm) ⊆ Ωm. Therefore,

dm : R→ Ωm, r 7→ r
′

+ Im+1

is a derivation of R-bimodules, i.e., dm(rs) = dm(r)s + rdm(s) for all elements
r, s ∈ R. The commutative diagram

R

dm

��
d2

((◗
◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

d1

**❱❱
❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

. . . // Ωm
// . . . // Ω2

// Ω1
// 0

yields the derivation

d∞ : R→ Ω∞.

The polynomial algebra case. Let R = Pn := K[x1, . . . , xn] be a poly-
nomial algebra in variables x1, . . . , xn over a field K. The polynomial algebra
Pn ⊗ Pn in 2n variables over K can be presented as the following polynomial
algebras:

Pn ⊗ 1[x′
1, . . . , x

′
n] := Pn[x

′
1, . . . , x

′
n] := {

∑

α∈Nn λαx
′α|λα ∈ Pn ⊗ 1} and

1⊗ Pn[x
′
1, . . . , x

′
n] := [x′

1, . . . , x
′
n]Pn := {

∑

α∈Nn x′αλα |λα ∈ 1⊗ Pn}

where x′
i = xi ⊗ 1− 1⊗ xi and x′α := x′α1

1 · · ·x′αn
n .

Proposition 2.3 Let R = Pn := K[x1, . . . , xn] be a polynomial algebra over a
field K. Then
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1. I = PnP
′

n = ⊕|α|≥1Pnx
′α = P ′

nPn = ⊕|α|≥1x
′αPn where α ∈ N

n and
|α| = α1 + · · ·+αn. For m ≥ 1, Im = ⊕|α|≥mPnx

′α = ⊕|α|≥mx′αPn. The
ideal I of Pn ⊗ Pn is equal to (x′

1, . . . , x
′
n).

2. For m ≥ 1,

Ωm = I/Im+1 =
⊕

1≤|α|≤m

Pnx
′α =

⊕

1≤|α|≤m

x′αPn. (17)

In particular, the free left/right Pn-module Ωm has rank rk(Ωm) =
(

n+m
n

)

−
1.

3. P(Pn) = Pn[[x
′

1, . . . , x
′

n]] = [[x
′

1, . . . , x
′

n]]Pn is the algebra of power series
with coefficients in the polynomial algebra Pn and

Ω∞ = (x
′

1, . . . , x
′

n) =
∑n

i=1 P(Pn)x
′

i =
∑n

i=1 x
′

iP(Pn)

is the ideal of the algebra P(Pn) generated by the elements x
′

1, . . . , x
′

n. The
derivation d∞ : R→ Ω∞ is given by (9).

4. For all m ≥ 1,
Ωm = Ω∞/Ωm+1

∞ . (18)

Proof. 1. By Lemma 2.1 and Lemma 2.2, I = PnP
′

n =
∑

|α|≥1 Pn(x
α)′ =

⊕|α|≥1Pnx
′α and I = P

′

nPn =
∑

|α|≥1(x
α)′Pn = ⊕|α|≥1x

′αPn since (x′)α =

xα ⊗ 1 + · · ·+ (−1)|α|1⊗ xα. Hence,

Im =
⊕

|α|≥m

Pnx
′α =

⊕

|α|≥m

x′αPn

for all m ≥ 1. Clearly, the ideal I of the algebra Pn ⊗ Pn is generated by the
elements x′

1, . . . , x
′
n.

2. Step 2 follows from statement 1.
3. Step 3 follows from statement 2.
4. Step 4 follows from statement 3. �

Approximations of the de Rham complex. Let R be a commutative
K-algebra. For each m ≥ 1, let

Λ•Ωm = R⊕ Ωm ⊕ Λ2Ωm ⊕ · · · ⊕ ΛiΩm ⊕ · · ·

be the exterior algebra of the left R-module Ωm. For each i ≥ 1, the derivation
dm = dm,0 : R→ Ωm can be extended to a map

dm,i : Λ
iΩm → Λi+1Ωm, a0a

′

1 ∧ · · · ∧ a
′

i 7→ a
′

0 ∧ a
′

1 ∧ · · · ∧ a
′

i.

R
dm=dm,0

// Ωm

dm,1
// Λ2Ωm

dm,2
// · · ·

dm,i−1
// ΛiΩm

dm,i
// · · · . (19)
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Lemma 2.4 The complex (19) is a cochain complex, i.e., dm,i+1dm,i = 0 for
all i ≥ 0.

Proof. dm,i+1dm,i(a0a
′

1∧ · · · ∧a
′

i) = dm,i+1(a
′

0∧a
′

1∧ · · · ∧a
′

i) = 1
′

∧a
′

0∧a
′

1∧

· · · ∧ a
′

i = 0, since 1′ = 0. Here, a
′

i = dm(ai) where dm : R → Ωm(R) denotes
the universal derivation, see above. �

In a similar way, for each m ≥ 1, the exterior algebra of the right R-module
Ωm is defined

Λ•
rΩm = R⊕ Ωm ⊕ Λ2

rΩm ⊕ · · · ⊕ Λi
rΩm ⊕ · · · .

We add the subscript ‘r′ to indicate that the right R-module structure is used
for Ωm. For each i ≥ 1, the derivation

dm = dm,0 = drm : R→ Ωm

can be extended to a map

drm,i : Λ
i
rΩm → Λi+1

r Ωm, a
′

1 ∧ · · · ∧ a
′

iai+1 7→ a
′

1 ∧ · · · ∧ a
′

i ∧ a
′

i+1.

We have a cochain complex

R
dm=dr

m,0
// Ωm

dr
m,1

// Λ2Ωm

dr
m,2

// · · ·
dr
m,i−1

// ΛiΩm

dr
m,i

// · · · , (20)

drm,i+1d
r
m,i = 0 for all i ≥ 0. Clearly, the cochain complexes (∧•rΩm, drm,i)

and (∧•rΩm, (−1)i+1drm,i) have the same cohomology. The involution o of the
ring R⊗R interchanges the left and right R-module structures of R⊗R (since,
(r⊗1)o = 1⊗r for all r ∈ R). Hence, the involution o : Ωm → Ωm, a′ 7→ (a′)o =
−a′ interchanges the left and right R-module structures on Ωm: for all r, a ∈ R,

(ra′)o = ((r ⊗ 1)a′)o = (r ⊗ 1)o(a′)o = (1⊗ r)(a′)o = (a′)o(1⊗ r) = (a′)or.

By the very definition, the exterior algebra ∧•Ωm (resp., ∧•rΩm) of the left
(resp., right) R-module Ωm is an R-algebra where R = R⊗1 (resp., R = 1⊗R).

Lemma 2.5 For each m ≥ 1, the map

o : ∧•Ωm → ∧
•
rΩm, ra′1 ∧ · · · ∧ a′i 7→ (ra′1 ∧ · · · ∧ a′i)

o := ro(a′1)
o ∧ · · · ∧ (a′i)

o

is an isomorphism of R-algebras, it is also an isomorphism of cochain complexes
(∧•Ωm, dm,i) and (∧•rΩm, (−1)i+1drm,i). In particular, the cohomology of the

three cochain complexes (∧•Ωm, dm,i), (∧•rΩm, (−1)i+1drm,i) and (∧•rΩm, drm,i)
coincide.

Proof. By the definition, the map o : ∧•Ωm → ∧
•
rΩm is an isomorphism of

R-modules since (by (7))

(ra′1 ∧ · · · ∧ a
′
i)

o = ro(a′1)
o ∧ · · · ∧ (a′i)

o = a′1 ∧ · · · ∧ a
′
i(−1)

ir = (a′1 ∧ · · · ∧ a
′
i)

or.

7



Furthermore,

drm,i((ra
′
1 ∧ · · · ∧ a′i)

o) = a′1 ∧ · · · ∧ a′i ∧ r′(−1)i,
(dm,i(ra

′
1 ∧ · · · ∧ a′i))

o = (r′ ∧ a′1 ∧ · · · ∧ a′i)
o

= (−1)i+1r′ ∧ a′1 ∧ · · · ∧ a′i = −a
′
1 ∧ · · · ∧ a′i ∧ r′,

that is ((−1)i+1drm,i)o = odm,i and the map o yields an isomorphism of the

cochain complexes (∧•Ωm, dm,i) and (∧•rΩm, (−1)i+1drm,i). Now, the last state-
ment of the lemma follows. �

Definition 2.6 For each natural number m ≥ 1, let H•(R,m) = {Hi(R,m)}i≥0

be the cohomology groups of the cochain complex (19).

When m = 1, the complex (19) is called the de Rham complex of R and its
cohomology H•

DR(R) is called the de Rham cohomology of R. The chain (15)
yields the chain

· · · → Λ•Ωm → · · · → Λ•Ω2 → Λ•Ω1 → 0 (21)

of complexes that are called approximations of the de Rham complex and its
projective limit lim←− Λ•Ωm is a complex such that

(lim←− Λ•Ωm)i = lim←− ΛiΩm. (22)

The chain (21) yields the chain

· · · → H•(R,m)→ H•(R,m− 1)→ · · · → H•(R, 1) = H•
DR(R)→ 0. (23)

In particular, for all s ≥ 0, we have the chain

· · · → Hs(R,m)→ Hs(R,m− 1)→ · · · → Hs(R, 1) = Hs
DR(R)→ 0. (24)

Let lim←−
m

H•(R,m) and lim←−
m

Hs(R,m) be the projective limits of (23) and (24),

respectively. For natural numbers n ≥ 1 and m ≥ 1, let

Hn(m) := {α ∈ N
n | 1 ≤ |α| ≤ m} where |α| := α1 + · · ·+ αn.

Clearly,

|Hn(m)| =
(

n+m
n

)

− 1.

The degree Deg and the associative filtration on ∧sΩm. For each
s = 1, . . . , |Hn(m)|, ∧sΩm = ⊕PnX

′S where S runs through all the distinct
subsets S = {α1, . . . , αs} of the set Hn(m) that contains s (distinct) elements

andX ′S := x′α1

∧· · ·∧x′αs

, the order inX ′S is fixed for each S. So, each element
θ of ∧sΩm is a unique sum θ =

∑

pSX
′S where pS ∈ Pn. For S = {α1, . . . , αs},

8



|S| :=
∑s

i=1 |α
i|. Let us define the degree Deg(θ) by the rule: Deg(0) :=∞ and

Deg(θ) = min{|S| | pS 6= 0}. For the nonzero element θ, the sum

ℓ(θ) :=
∑

{pSX
′S | |S| = Deg(θ), pS 6= 0}

is called the leading term of θ. So, θ = ℓ(θ) + · · · where the three dots denote
the higher terms. For all elements θ, η ∈ ∧sΩm and p ∈ Pn\{0},

Deg(pθ) = Deg(θ) and Deg(θ + η) ≥ min{Deg(θ),Deg(η)}.

For each j ∈ N, let F s
≥j := F s

≥j(m) := {θ ∈ ∧sΩm | Deg(θ) ≥ j}. Then

F s
≥0(m) = · · · = F s

≥s(m) ⊇ F s
≥s+1(m) ⊇ · · · ⊇ F s

≥j(m) ⊇ · · ·

is a descending chain of left R-modules where all but finitely many elements of
the filtration are equal to zero. In this case, we say that the filtration is a finite
filtration. Clearly, for all i, j, s, t ≥ 0,

F s
≥i(m)F t

≥j(m) ⊆ F s+t
≥i+j(m).

For each j ∈ N, let F s
j (m) := {θ ∈ ∧sΩm | Deg(θ) = j}. Then F s

≥j(m) =
⊕i≥jF

s
i (m). In particular, ∧sΩm = ⊕j≥sF

s
j (m). So, the associated graded left

R-module,

gr(∧sΩm) :=
⊕

F s
≥j(m)/F s

≥j+1(m) ≃
⊕

j≥s

F s
j (m) = ∧sΩm,

coincides with the left R-module ∧sΩm. For all i, j, s, t ≥ 0, F s
i (m)F t

j (m) ⊆

F s+t
i+j (m). By (10), (where p ∈ Pn),

dm,s : ∧
sΩm → ∧

s+1Ωm, θ = px′α1

∧ · · · ∧ x′αs

7→ dm,s(θ) (25)

where

dm,s(θ) =
∑

0 6=β∈Nn

(−1)|β|+1

β!
∂βp
∂xβ x′β ∧ x′α1

∧ · · · ∧ x′αs

+ Im+1

=
∑

1≤|β|≤m−t
(−1)|β|+1

β!
∂βp
∂xβ x′β ∧ x′α1

∧ · · · ∧ x′αs

+ Im+1 and t =
∑s

i=1 |α
i|.

It follows that

dm,s(F
s
≥j(m)) ⊆ F s+1

≥j+1(m). (26)

So, the differential dm,s increases the degree Deg by at least 1 and we defined
the associated graded differential of graded degree +1 by the rule

gr(dm,s) : gr(∧sΩm)→ gr(∧s+1Ωm)

where for each j ≥ s,

gr(dm,s) : F s
j (m) = F s

≥j(m)/F s
≥j+1(m) → F s+1

j+1 (m) = F s+1
≥j+1(m)/F s+1

≥j+2(m),

θ + F s
≥j+1(m) 7→ dm,s(θ) + F s+1

≥j+2(m).

9



By (25), for θ = px′α1

∧ · · · ∧ x′αs

∈ F s
j (m) where p ∈ Pn,

gr(dm,s)(θ + F s
≥j+1(m)) =

n
∑

i=1

∂p

∂xi

x′
i ∧ x′α1

∧ · · · ∧ x′αs

+ F s+1
≥j+2(m). (27)

The next theorem describes the cohomology groups Hi(Pn,m). The key idea is
to use the finite filtration {F i

≥j(m)} on ∧iΩm, the explicit form of gr(dm,i) (see

(27)) and the fact that the representatives of the cohomology group Hi
gr of the

associate graded cochain complex (gr(∧iΩm), gr(dm,i)) are, in fact, cocycles of
the cochain complex (∧iΩm, dm,i).

Theorem 2.7 For the polynomial algebra Pn, rk(Ωm)=
(

n+m
n

)

− 1, by Propo-
sition 2.3.(2). Let K be a field of characteristic zero. Then for all n,m ≥ 1,

Hi(Pn,m) ≃

{

K(rk(Ωm)−n

i ) if 0 ≤ i ≤ rk(Ωm)− n,

0 otherwise.

Proof. By (17), Ωm = ⊕α∈Hn(m)Pnx
′α and rk(Ωm) = |Hn(m)| =

(

n+m
n

)

− 1
is the number of free generators of the (left or right) Pn-module Ωm. Let e1 :=
(1, 0, ..., 0),. . . ,en := (0, 0, ..., 1) and Bn := {e1, . . . , en}. Clearly, Bn ⊆ Hn(m)
and

Hn(m) = Bn ⊔ CBn

where CBn := Hn(m)\Bn is the complement of the set Bn in Hn(m). It is
obvious that

∧•Ωm =
⊕rk(Ωm)

s=0 ∧sΩm

where ∧0Ωm := R. Therefore, Hs := Hs(Pn,m) = 0 for all s > rk(Ωm). By
(25),

K ⊆ ker(dm,0) ⊆ {P ∈ Pn |
∂P
∂x1

= · · · = ∂P
∂xn

= 0} = K,

and so H0 = ker(dm,0) = K. It remains to consider the groups Hs where
s = 1, . . . , rk(Ωm). Clearly,

∧sΩm =
⊕

S∈Bn(s)

PnX
′S ⊕

⊕

S∈Wn(s)

PnX
′S , (28)

Bn(s) := Bn,m(s) := {S ⊆ Hn(m) | |S| = s and S ∩Bn 6= ∅},

Wn(s) := Wn,m(s) := {S ⊆ Hn(m) | |S| = s and S ∩Bn = ∅},

where for S = {α1, . . . , αs}, X ′S := x′α1

∧ x′α2

∧ · · · ∧ x′αs

and the order of the
elements in the wedge product can be arbitrary but fixed for each set S. Let
Bn(s) :=

⊕

S∈Bn(s)
PnX

′S and Wn(s) :=
⊕

S∈Wn(s)
PnX

′S . By (28),

∧sΩm = Bn(s)⊕Wn(s). (29)
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The vector space Zs := ker(dm,s) (resp., Bs := im(dm,s−1)) admits the in-
duced descending filtration {Zs

≥j := Zs ∩ F s
≥j(m)}j≥s (resp., {Bs

≥j := Bs ∩
F s
≥j(m)}j≥s). Then

gr(Hs) =
⊕

j≥s

Hs
j (30)

whereHs
j := Zs

≥j/Z
s
≥j∩(B

s+Zs
≥j+1) ≃ Zs

≥j/(Z
s
≥j+1+(Zs

≥j∩B
s)) = Zs

≥j/(Z
s
≥j+1+

Bs
≥j). We denote by H•

gr = {H
s
gr}s≥0 the cohomology groups of the associated

graded complex (gr(∧•Ωm), gr(dm)):

· · ·
∂s−2
−→ gr(∧s−1Ωm)

∂s−1
−→ gr(∧sΩm)

∂s−→ gr(∧s+1Ωm)
∂s+1
−→ · · ·

where ∂s := gr(dm,s). Let Zs
gr := ker(∂s), B

s
gr := im(∂s−1) and Hs

gr = Zs
gr/B

s
gr.

Then Hs
gr = ⊕j≥sH

s
gr,j where

Hs
gr,j =

ker(F s
≥j

∂s−→ F s+1
≥j+1)

im(F s−1
≥j−1

∂s−1
−→ F s

≥j)
.

Clearly, each Hs
j is a subfactor of Hs

gr,j (given vector spaces V1 ⊆ V2 ⊆ V ,
the factor space V2/V1 is called a subfactor of V ). In fact, we will see that
Hs

j = Hs
gr,j (see Step 6).

Step 1. Zs
gr = Zs

b ⊕ Zs
w where Zs

b := Zs
gr ∩ Bn(s) and Zs

w := Zs
w(n,m) :=

Zs
gr ∩ Wn(s): Let a ∈ Zs

gr. By (29), a = ab + aw where ab ∈ Bn(s) and
aw ∈ Wn(s). Then 0 = ∂s(a) = ∂s(ab) + ∂s(aw) implies ∂s(ab) = 0 and
∂s(aw) = 0 since, by (27),

∂s(ab) ∈
∑

{PnX
′S | |S| = s+ 1, |S ∩Bn| ≥ 2}

and

∂s(aw) ∈
∑

{PnX
′S | |S| = s+ 1, |S ∩Bn| = 1}.

Therefore, Zs
gr = Zs

b ⊕ Zs
w as required.

Step 2. Bs
gr = im(∂s−1) ⊆ Bn(s): The inclusion is obvious.

By Steps 1 and 2,

Hs
gr = (Zs

b ⊕ Zs
w)/B

s
gr ≃ Zs

b/B
s
gr ⊕ Zs

w.

Step 3. Zs
w =

∑

S∈Wn(s)
KX ′S ≃ K |Wn(s)| and |Wn(s)| =

(

|Hn(m)|−n
s

)

: Let

a ∈ Zs
w, i.e., a =

∑

S∈Wn(s)
pSX

′S . By (27),

0 = ∂s(a) =
∑

S∈Wn(s)

∑n
i=1

∂pS

∂xi
x′
i ∧X ′S .

11



Hence, ∂pS

∂xi
= 0 for all i = 1, . . . , n, and we must have pS ∈

⋂n
i=1 kerPn

( ∂
∂xi

) =

K. That is, a ∈
∑

S∈Wn(s)
KX ′S , as required.

Step 4. Zs
b/B

s
gr = 0 and Hs

gr = Zs
w for s ≥ 1: The main reason why this

equality holds is that

Hs
DR(Pn) = 0 for s ≥ 1.

Let S ∈ Bn(s). Then

S = Sb ⊔ Sw where Sb := S ∩Bn 6= ∅ and Sw := S ∩ CBn.

Let a ∈ Zs
b , i.e., a =

∑

S∈Bn(s)
pSX

′S , pS ∈ Pn and, by (27),

0 = ∂s(a) =
∑

S∈Bn(s)
∂s(pSX

′Sb ∧X ′Sw) =
∑

S∈Bn(s)

∑n
i=1

∂pS

∂xi
x′
i ∧X ′Sb ∧X ′Sw =

∑

Sw
(
∑

Sb

∑n
i=1

∂pS

∂xi
x′
i ∧X ′Sb) ∧X ′Sw .

Therefore each expression in the brackets must be equal to zero and can be
written as

∂s−|Sw|(
∑

Sb
pSX

′Sb) = 0,

or, equivalently,

∂s−|Sw|(
∑

T⊆Bn,|T |=|S|−|Sw| pS=Sw⊔TX
′T ) = 0.

Since Hs
DR(Pn) = 0 for s ≥ 1 and |T | ≥ 1 as S ∈ Bn(s), then Step 4 follows.

Therefore, Hs
gr = Zs

w, as required.

Step 5. dm,s(Z
s
w) = 0 (by Step 3 and (25)).

Step 6. Hs
j = Hs

gr,j : By Step 4, we have the equality Hs
gr = Zs

w. Hence, Hs
j

is a factor vector space of Hs
gr,j . Now, by Step 5 and finiteness of the filtration

on ∧sΩm, Hs
j = Hs

gr,j . �

When m = 1, Theorem 2.7 gives the classical result - the cohomology groups
of the de Rham complex for the polynomial algebra.

Corollary 2.8

Hi(Pn, 1) ≃

{

K i = 0,

0 otherwise.

Proof. For m = 1, rk(Ω1) =
(

n+1
n

)

− 1 = n and
(

rk(Ω1)−n
i

)

=
(

0
i

)

. Now, by
Theorem 2.7, the corollary follows. �

Given a cochain complex, (C•, d) such that Hi(C•) = 0 for all but finitely
many i and dimK(Hi(C•)) <∞. The number

χ(C) :=
∑

i

(−1)idimKHi(C•)

is called the Euler characteristic of C•. The next corollary shows that the Euler
characteristic of all complexes ∧•Ωm is 0 for m ≥ 1.
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Corollary 2.9 For all m ≥ 1,

∑

i≥0

(−1)idimKHi(Pn,m) =

{

1 m = 1,

0 m > 1.

Proof. The case m = 1 is obvious, see Corollary 2.8. For m ≥ 2 and n ≥ 1,

r := rk(Ω1)− 1 =
(

n+m
n

)

− 1 = (n+m)(n−1+m)···(n−(n−1)+m)
n! − 1

= (1 + m
n
)(1 + m

n−1 ) · · · (1 +m)− 1 > m+ 1− 1 = m ≥ 2.

Then

∑

i≥0

(−1)idimKHi(Pn,m) =
∑

i≥0

(−1)i
(

r

i

)

= (1− 1)r = 0, since r ≥ 2. �

The next corollary gives an explicit K-basis for the vector space Hs(Pn,m).

Corollary 2.10 For all s ≥ 1,

Hs(Pn,m) = Zs
w = {

∑

S∈Wn(s)
λSX

′S | λS ∈ K}.

Proof. The equalities Hs(Pn,m) = Zs
w (s ≥ 1) were established in the proof

of Theorem 2.7.� For each natural number n ≥ 1 and s ≥ 1, let

Hn(∞) := ∪m≥1Hn(m) = N
n\{0},

Bn,∞(s) := ∪m≥1Bn,m(s) = {S ⊆ N
n | |S| = s, S ∩Bn 6= ∅},

Wn,∞(s) := ∪m≥1Wn,m(s) = {S ⊆ N
n | |S| = s, S ∩Bn = ∅},

Zs
w(n,∞) := {

∑

S∈Wn,∞(s) λSX
′S | λS ∈ K} ≃ KWn,∞(s),

where the sum is an infinite sum, it can be seen as a function on the set Wn,∞(s)
taking values in K. As a vector space, Zs

w(n,∞) is precisely the vector space of
all functions from Wn,∞(s) to K.

Theorem 2.11 1.

lim←−
m

Hs(Pn,m) ≃

{

K if s = 0,

KN if s > 0.

2. For all s ≥ 1, lim←−
m

Hs(Pn,m) ≃ Zs
w(n,∞).

Proof. 1. The case s = 0 is obvious as H0(Pn,m) = K and the sequence
(24) for s = 0 is

· · ·
id

// K
id

// · · ·
id

// K
id

// 0 .
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For s ≥ 1, statement 1 follows from statement 2.
2. By Corollary 2.10, for all s ≥ 1, Hs(Pn,m) = Zs

w(n,m). So, the chain
(24) takes the form

. . . // Zs
w(n,m)

δm
// Zs

w(n,m− 1) // . . . // Zs
w(n, 1) = Hs

DR(Pn) = 0

where

δm(X ′S) =

{

X ′S if S ∈Wn,m−1(s),

0 otherwise.

It follows that lim←−
m

Hs(Pn,m) = Zs
w(n,∞). �

3 The cohomology groups H i(Sn,m) where Sn is

an algebra of power series

The aim of this section is to find the cohomology groups Hi(Sn,m) where Sn =
K[[x1, . . . , xn]] is the algebra of power series in n variables over a field K of
characteristic zero (Theorem 3.2). The algebra of power series (Sn,m) is a
local Noetherian algebra where m = (x1, . . . , xn) is a unique maximal ideal of
Sn. The algebra Sn is a complete topological algebra with respect to the m-
adic topology, i.e., {mi}i≥0 is the set of open neighbourhoods of 0. The tensor
product of algebras Sn ⊗ Sn is a topological algebra where the topology τ is
determined by the set {mi ⊗ Sn + Sn ⊗ m

i}i≥0 of open neighbourhoods of 0.
The map d : Sn → Sn ⊗ Sn, s 7→ s′ = s ⊗ 1 − 1 ⊗ s is a continuous map. In
particular, by (10), for all power series p ∈ Sn,

p′ =
∑

β 6=0

(−1)|β|+1 ∂
βp

∂xβ

x′β

β!
=

∑

β 6=0

x′β

β!

∂βp

∂xβ
, (31)

where both sums are infinite sums.

Proposition 3.1 Let Sn := K[[x1, ..., xn]] be a power series algebra over a field
K of characteristic zero. Then

1. I = SnS
′

n = ⊕|α|≥1Snx
′α = S′

nSn = ⊕|α|≥1x
′αSn where α ∈ N

n and
|α| = α1 + · · ·+αn. For m ≥ 1, Im = ⊕|α|≥mSnx

′α = ⊕|α|≥mx′αSn. The
ideal I of Sn ⊗ Sn is equal to (x′

1, . . . , x
′
n).

2. For m ≥ 1,

Ωm = I/Im+1 = ⊕1≤|α|≤mSnx
′α = ⊕1≤|α|≤mx′αSn. (32)

In particular, the free left/right Sn-module Ωm has rank rk(Ωm) =
(

n+m
n

)

−
1.
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3. P(Sn) = Sn[[x
′

1, . . . , x
′

n]] = [[x
′

1, . . . , x
′

n]]Sn is the algebra of power series
with coefficients in the algebra Sn and

Ω∞ = (x
′

1, . . . , x
′

n) =
∑n

i=1 P(Sn)x
′

i =
∑n

i=1 x
′

iP(Sn)

is the ideal of the algebra P(Sn) generated by the elements x
′

1, . . . , x
′

n. The
derivation
d∞ : R→ Ω∞ is given by (31).

4. For all m ≥ 1,
Ωm = Ω∞/Ωm+1

∞ . (33)

Proof. 1. By Lemma 2.1 and Lemma 2.2, I = SnS
′

n =
∑

|α|≥1 Sn(x
α)′ =

⊕|α|≥1Snx
′α and I = S

′

nSn =
∑

|α|≥1(x
α)′Sn = ⊕|α|≥1x

′αSn since (x′)α =
xα ⊗ 1 + · · ·+ 1⊗ xα. Hence,

Im =
⊕

|α|≥m

Snx
′α =

⊕

|α|≥m

x′αSn (34)

for all m ≥ 1. Clearly, the ideal I of the algebra Sn ⊗ Sn is generated by the
elements x′

1, . . . , x
′
n.

2. Step 2 follows from statement 1.
3. Step 3 follows from statement 2.
4. Step 4 follows from statement 3. �

The degree Deg and the associative filtration on ∧sΩm. For each
s = 1, . . . , |Hn(m)|, ∧sΩm = ⊕SnX

′S where S runs through all the distinct
subsets S = {α1, . . . , αs} of the set Hn(m) that contains s (distinct) elements

and X ′S := x′α1

∧ · · · ∧ x′αs

. So, each element θ of ∧sΩm is a unique sum θ =
∑

pSX
′S where pS ∈ Sn. For S = {α1, . . . , αs}, |S| :=

∑s
i=1 |α

i|. Let us define
the degree Deg(θ) by the rule: Deg(0) := ∞ and Deg(θ) = min{|S| | pS 6= 0}.
For the nonzero element θ,

ℓ(θ) :=
∑

{pSX
′S | |S| = Deg(θ), pS 6= 0}

is called the leading term of θ. So, θ = ℓ(θ) + · · · where the three dots denote
the higher terms. For all elements θ, η ∈ ∧sΩm and p ∈ Sn\{0},

Deg(pθ) = Deg(θ) and Deg(θ + η) ≥ min{Deg(θ),Deg(η)}.

For each j ∈ N, let F s
≥j(m) := {θ ∈ ∧sΩm | Deg(θ) ≥ j}. Then

F s
≥0(m) = · · · = F s

≥s(m) ⊇ F s
≥s+1(m) ⊇ · · · ⊇ F s

≥j(m) ⊇ · · ·

is a descending chain of left R-modules where all but finitely many elements
of the filtration are equal to zero. So, it is a finite filtration. Clearly, for all
i, j, s, t ≥ 0,
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F s
≥i(m)F t

≥j(m) ⊆ F s+t
≥i+j(m).

For each j ∈ N, let F s
j (m) := {θ ∈ ∧sΩm | Deg(θ) = j}. Then F s

≥j(m) =
⊕i≥jF

s
j (m). In particular, ∧sΩm = ⊕j≥sF

s
j (m). So, the associated graded left

R-module,

gr(∧sΩm) :=
⊕

F s
≥j(m)/F s

≥j+1(m) ≃
⊕

j≥s

F s
j (m) = ∧sΩm,

coincides with the left R-module ∧sΩm. For all i, j, s, t ≥ 0, F s
i (m)F t

j (m) ⊆

F s+t
i+j (m). By (31), (where p ∈ Sn),

dm,s : ∧
sΩm → ∧

s+1Ωm, θ = px′α1

∧ · · · ∧ x′αs

7→ dm,s(θ) (35)

where

dm,s(θ) =
∑

0 6=β∈Nn

(−1)|β|+1

β!
∂βp
∂xβ x′β ∧ x′α1

∧ · · · ∧ x′αs

+ Im+1

=
∑

1≤|β|≤m−t
(−1)|β|+1

β!
∂βp
∂xβ x′β ∧ x′α1

∧ · · · ∧ x′αs

+ Im+1 and t =
∑s

i=1 |α
i|.

It follows that

dm,s(F
s
≥j(m)) ⊆ F s+1

≥j+1(m). (36)

So, the differential dm,s increases the degree Deg by at least 1 and we defined
the associated graded differential of graded degree +1 by the rule

gr(dm,s) : gr(∧sΩm)→ gr(∧s+1Ωm)

where for each j ≥ s,

gr(dm,s) : F s
j (m) = F s

≥j(m)/F s
≥j+1(m) → F s+1

j+1 (m) = F s+1
≥j+1(m)/F s+1

≥j+2(m),

θ + F s
≥j+1(m) 7→ dm,s(θ) + F s+1

≥j+2(m).

By (35), for θ = px′α1

∧ · · · ∧ x′αs

∈ F s
j (m) where p ∈ Sn,

gr(dm,s)(θ + F s
≥j+1(m)) =

n
∑

i=1

∂p

∂xi

x′
i ∧ x′α1

∧ · · · ∧ x′αs

+ F s+1
≥j+2(m). (37)

Theorem 3.2 describes the cohomology groups of Hi(Sn,m).

Theorem 3.2 For all n,m ≥ 1,

Hi(Sn,m) ≃

{

K(rk(Ωm)−n

i ) if 0 ≤ i ≤ rk(Ωm)− n,

0 otherwise,

where rk(Ωm) :=
(

n+m
n

)

− 1.
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Proof. We keep the notation of the proof of Theorem 2.7. By Lemma
3.1.(2), Ωm = ⊕α∈Hn(m)Snx

′α and rk(Ωm) = |Hn(m)| =
(

n+m
n

)

− 1 is the
number of free generators of the (left or right) Sn-module Ωm. Notice that

∧•Ωm = ⊕
rk(Ωm)
s=0 ∧s Ωm. Therefore, Hs := Hs(Sn,m) = 0 for all s > rk(Ωm).

By (35),

K ⊆ ker(dm,0) ⊆ {P ∈ Sn |
∂P
∂x1

= · · · = ∂P
∂xn

= 0} = K,

and so H0 = ker(dm,0) = K. It remains to consider the groups Hs where
s = 1, . . . , rk(Ωm). Clearly,

∧sΩm =
⊕

S∈Bn(s)

SnX
′S ⊕

⊕

S∈Wn(s)

SnX
′S , (38)

Bn(s) := Bn,m(s) := {S ⊆ Hn(m) | |S| = s and S ∩Bn 6= ∅},

Wn(s) := Wn,m(s) := {S ⊆ Hn(m) | |S| = s and S ∩Bn = ∅},

where for S = {α1, . . . , αs}, X ′S := x′α1

∧ x′α2

∧ · · · ∧ x′αs

and the order of the
elements in the wedge product can be arbitrary but fixed for each set S. Let
Bn(s) :=

⊕

S∈Bn(s)
SnX

′S and Wn(s) :=
⊕

S∈Wn(s)
SnX

′S . By (38),

∧sΩm = Bn(s)⊕Wn(s). (39)

The vector space Zs := ker(dm,s) (resp., Bs := im(dm,s−1)) admits the in-
duced descending filtration {Zs

≥j := Zs ∩ F s
≥j(m)}j≥s (resp., {Bs

≥j := Bs ∩
F s
≥j(m)}j≥s). Then

gr(Hs) =
⊕

j≥s

Hs
j (40)

whereHs
j := Zs

≥j/Z
s
≥j∩(B

s+Zs
≥j+1) ≃ Zs

≥j/(Z
s
≥j+1+Zs

≥j∩B
s) = Zs

≥j/(Z
s
≥j+1+

Bs
≥j). We denote by H•

gr = {H
s
gr}s≥0 the cohomology groups of the associated

graded complex (gr(∧•Ωm), gr(dm)):

· · ·
∂s−2
−→ gr(∧s−1Ωm)

∂s−1
−→ gr(∧sΩm)

∂s−→ gr(∧s+1Ωm)
∂s+1
−→ · · ·

where ∂s := gr(dm,s). Let Z
s
gr := ker(∂s), B

s
gr := im(∂s−1), and Hs

gr = Zs
gr/B

s
gr.

Then Hs
gr = ⊕j≥sH

s
gr,j where

Hs
gr,j =

ker(F s
≥j

∂s−→ F s+1
≥j+1)

im(F s−1
≥j−1

∂s−1
−→ F s

≥j)
.

Clearly, each Hs
j is a subfactor of Hs

gr,j . In fact, we will see that Hs
j = Hs

gr,j

(see Step 6).

Step 1. Zs
gr = Zs

b ⊕ Zs
w where Zs

b := Zs
gr ∩ Bn(s) and Zs

w := Zs
w(n,m) :=

Zs
gr ∩ Wn(s): Let a ∈ Zs

gr. By (39), a = ab + aw where ab ∈ Bn(s) and
aw ∈ Wn(s). Then 0 = ∂s(a) = ∂s(ab) + ∂s(aw) implies ∂s(ab) = 0 and
∂s(aw) = 0 since, by (37),

17



∂s(ab) ∈
∑

{SnX
′S | |S| = s+ 1, |S ∩Bn| ≥ 2}

and

∂s(aw) ∈
∑

{SnX
′S | |S| = s+ 1, |S ∩Bn| = 1}.

Therefore, Zs
gr = Zs

b ⊕ Zs
w as required.

Step 2. Bs
gr = im(∂s−1) ⊆ Bn(s): The inclusion is obvious.

By Steps 1 and 2,

Hs
gr = (Zs

b ⊕ Zs
w)/B

s
gr ≃ Zs

b/B
s
gr ⊕ Zs

w.

Step 3. Zs
w =

∑

S∈Wn(s)
KX ′S ≃ K |Wn(s)| and |Wn(s)| =

(

|Hn(m)|−n
s

)

: Let

a ∈ Zs
w, i.e., a =

∑

S∈Wn(s)
pSX

′S . By (37),

0 = ∂s(a) =
∑

S∈Wn(s)

∑n
i=1

∂pS

∂xi
x′
i ∧X ′S .

Hence ∂pS

∂xi
= 0 for all i = 1, . . . , n, and we must have pS ∈

⋂n
i=1 kerSn

( ∂
∂xi

) = K.

That is, a ∈
∑

S∈Wn(s)
KX ′S , as required.

Step 4. Zs
b/B

s
gr = 0 and Hs

gr = Zs
w for s ≥ 1: The main reason why this

equality holds is that

Hs
DR(Sn) = 0 for s ≥ 1.

Let S ∈ Bn(s). Then

S = Sb ⊔ Sw where Sb := S ∩Bn 6= ∅ and Sw := S ∩ CBn.

Let a ∈ Zs
b , i.e., a =

∑

S∈Bn(s)
pSX

′S , pS ∈ Sn and, by (37),

0 = ∂s(a) =
∑

S∈Bn(s)
∂s(pSX

′Sb ∧X ′Sw) =
∑

S∈Bn(s)

∑n
i=1

∂pS

∂xi
x′
i ∧X ′Sb ∧X ′Sw =

∑

Sw
(
∑

Sb

∑n
i=1

∂pS

∂xi
x′
i ∧X ′Sb) ∧X ′Sw .

Therefore, each expressions in the brackets must be equal to zero and can be
written as

∂s−|Sw|(
∑

Sb
pSX

′Sb) = 0,

or, equivalently,

∂s−|Sw|(
∑

T⊆Bn,|T |=|S|−|Sw| pS=Sw⊔TX
′T ) = 0.

Since Hs
DR(Sn) = 0 for s ≥ 1 and |T | ≥ 1 as S ∈ Bn(s), then Step 4 follows.

Therefore, Hs
gr = Zs

w, as required.

Step 5. dm,s(Z
s
w) = 0 (by Step 3 and (35)).

Step 6. Hs
j = Hs

gr,j : By Step 4 we have the equality Hs
gr = Zs

w. Hence, Hs
j

is a factor vector space of Hs
gr,j . Now, by Step 5 and finiteness of the filtration

on ∧sΩm, Hs
j = Hs

gr,j . �
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Corollary 3.3 For all m ≥ 1,

∑

i≥0

(−1)idimKHi(Sn,m) =

{

1 m = 1,

0 m > 1.

Proof. The case m = 1 is obvious, since

Hi(Sn, 1) ≃

{

K i = 0,

0 otherwise.

For m ≥ 2 and n ≥ 1,

r := rk(Ω1)− 1 =
(

n+m
n

)

− 1 = (n+m)(n−1+m)···(n−(n−1)+m)
n! − 1

= (1 + m
n
)(1 + m

n−1 ) · · · (1 +m)− 1 > m+ 1− 1 = m ≥ 2.

Then

∑

i≥0

(−1)idimKHi(Sn,m) =
∑

i≥0

(−1)i
(

r

i

)

= (1− 1)r = 0, since r ≥ 2. �

The next corollary gives an explicit K-basis for the vector space Hs(Sn,m).

Corollary 3.4 For all s ≥ 1,

Hs(Sn,m) = Zs
w = {

∑

S∈Wn(s)
λSX

′S | λS ∈ K}.

Proof. The equalities Hs(Sn,m) = Zs
w (s ≥ 1) were established in the proof

of Theorem 3.2.�
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