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Weakly left localizable rings

V. V. Bavula

Abstract

A new class of rings, the class of weakly left localizable rings, is introduced. A ring R

is called weakly left localizable if each non-nilpotent element of R is invertible in some left
localization S

−1
R of the ring R. Explicit criteria are given for a ring to be a weakly left

localizable ring provided the ring has only finitely many maximal left denominator sets (eg,
this is the case if a ring has a left Artinian left quotient ring). It is proved that a ring with
finitely many maximal left denominator sets that satisfies some natural conditions is a weakly
left localizable ring iff its left quotient ring is a direct product of finitely many local rings such
that their radicals are nil ideals.

Key Words: a weakly left localizable ring, a left localization maximal ring, the largest left

quotient ring of a ring, the largest regular left Ore set of a ring, the classical left quotient ring

of a ring, denominator set.
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1 Introduction

Throughout, module means a left module. In this paper the following notation will remained
fixed.

Notation:

• R is a ring with 1, R∗ is its group of units and CR is the set of (left and right) regular
elements of the ring R (i.e. CR is the set of non-zero-divisors of R);

• rad(R) is the radical of R, NR is the nil radical of R and Nil(R) is the set of nilpotent
elements of R;

• Ql,cl(R) := C−1
R R is the classical left quotient ring of R (if it exists);

• Orel(R) := {S |S is a left Ore set in R};

• Denl(R) := {S |S is a left denominator set in R};

• Locl(R) := {[S−1R] |S ∈ Denl(R)} where [S−1R] is an R-isomorphism class of the ring
S−1R (a ring isomorphism σ : S−1R → S′−1R is called an R-isomorphism if σ( r1 ) =

r
1 for

all elements r ∈ R);

• Assl(R) := {ass(S) |S ∈ Denl(R)} where ass(S) := {r ∈ R | sr = 0 for some s = s(r) ∈ S};

• Denl(R, a) := {S ∈ Denl(R) | ass(S) = a} where a ∈ Assl(R);
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• max.Denl(R) is the set of maximal left denominator sets of R;

• lR := l.lrad(R) :=
⋂

S∈max.Denl(R) ass(S) is the left localization radical of the ring R;

• Denl(R, 0) is the set of regular left denominator sets S in R (S ⊆ CR);

• Sa = Sa(R) = Sl,a(R) is the largest element of the poset (Denl(R, a),⊆) and Qa(R) :=
Ql,a(R) := S−1

a R is the largest left quotient ring associated to a, Sa exists (Theorem 2.1, [3]);

• In particular, S0 = S0(R) = Sl,0(R) is the largest element of the poset (Denl(R, 0),⊆) and
Ql(R) := S−1

0 R is the largest left quotient ring of R;

Weakly left localization maximal rings and their characterization. The aim of the
paper is to introduce a new class of rings, the class of weakly left localizable rings, and to give
several characterizations of them (Theorem 3.9 and Theorem 3.12) in the case when they admit
only finitely many maximal left denominator sets and satisfy some natural conditions. Notice that
each ring with left Artinian, left quotient ring has only finitely many maximal left denominator
sets, [6]. Let R be a ring, an element r ∈ R is called a left localizable element, [5], if there exists
a left denominator set S = S(r) such that r ∈ S (equivalently, there exists a left denominator set
S′ = S′(r) such that r

1 is a unit in S′−1R). Let Ll(R) be the set of left localizable elements of
the ring R and NLl(R) := R\Ll(R) be the set of left non-localizable elements of R. A ring R is
called a left localizable ring if Ll(R) = R\{0}, [7]. In [7], several characterizations of the class of
left localizable rings are given.

• (Theorem 3.9, [7]) Let R be a ring. The following statements are equivalent.

1. The ring R is a left localizable ring with n := |max.Denl(R)| < ∞.

2. Ql,cl(R) = R1 × · · · ×Rn where Ri are division rings.

3. The ring R is a semiprime left Goldie ring with udim(R) = |Min(R)| = n where Min(R)
is the set of minimal prime ideals of the ring R.

4. Ql(R) = R1 × · · · ×Rn where Ri are division rings.

A ring R is called a local ring if the set R\R∗ is an ideal of the ring R (equivalently, R/rad(R)
is a division ring).

• (Theorem 3.9) Let R be a ring. The following statements are equivalent.

1. The ring R is a weakly left localizable ring such that

(a) lR = 0,

(b) |max.Denl(R)| < ∞,

(c) for every S ∈ max.Denl(R), S−1R is a weakly left localizable ring, and

(d) for all S, T ∈ max.Denl(R) such that S 6= T , ass(S) is not a nil ideal modulo
ass(T ).

2. Ql,cl(R) ≃
∏n

i=1 Ri where Ri are local rings with rad(Ri) = NRi
.

3. Ql(R) ≃
∏n

i=1 Ri where Ri are local rings with rad(Ri) = NRi
.

• (Theorem 3.12) Let R be a ring, l = lR, π
′ : R → R′ := R/l, r 7→ r := r+ l. The following

statements are equivalent.

1. The ring R is a weakly left localizable ring such that

(a) the map φ : max.Denl(R) → max.Denl(R
′), S 7→ π′(S), is a surjection.

(b) |max.Denl(R)| < ∞,

(c) for every S ∈ max.Denl(R), S−1R is a weakly left localizable ring, and

(d) for all S, T ∈ max.Denl(R) such that S 6= T , ass(S) is not a nil ideal modulo
ass(T ).
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2. Ql,cl(R
′) ≃

∏n
i=1 Ri where Ri are local rings with rad(Ri) = NRi

, l is a nil ideal and
π′(Ll(R)) = Ll(R

′).

3. Ql(R
′) ≃

∏n
i=1 Ri where Ri are local rings with rad(Ri) = NRi

, l is a nil ideal and
π′(Ll(R)) = Ll(R

′).

Rings that satisfy the assumptions of Theorem 3.9 or Theorem 3.12 have interesting properties
(see Corollary 3.10, Corollary 3.13 and Corollary 3.14).

• (Corollary 3.10) We keep the notation of Theorem 3.9. Suppose that a ring R satisfies one
of the equivalent conditions 1–3 of Theorem 3.9. Then

1. max.Denl(R) = {S1, . . . , Sn} where Si = {r ∈ R | r
1 ∈ R∗

i }.

2. CR =
⋂

S∈max.Denl(R) S.

3. Nil(R) = NR.

4. Q := Ql,cl(R) = Ql(R) is a weakly left localizable ring with Nil(Q) = NQ = rad(Q).

5. C−1
R NR = NQ = rad(Q).

6. C−1
R Ll(R) = Ll(Q).

The cores of maximal left denominator sets of weakly left localizable rings. Let R
be a ring and S be its left Ore set. The subset of S,

Sc := {s ∈ S | ker(s·) = ass(S)}

is called the core of the left Ore set S where s· : R → R, r 7→ sr, [5]. In [7], properties of the core
of a left Ore set are studied in detail.

• (Theorem 4.2, [7]) Suppose that S ∈ Denl(R, a) and Sc 6= ∅. Then

1. Sc ∈ Denl(R, a).

2. The map θ : S−1
c R → S−1R, s−1r 7→ s−1r, is a ring isomorphism. So, S−1

c R ≃ S−1R.

The next theorem gives an explicit description of the cores of maximal left denominator sets
of a weakly left localizable ring R that satisfies the conditions of Theorem 3.9.

• (Theorem 4.2) Let R be a ring that satisfies one of the equivalent conditions 1–3 of Theorem
3.9. Let max.Denl(R) = {S1, . . . , Sn}.

1. If n = 1 then S1,c = S1 = R\NR.

2. If n ≥ 2 then Si,c = Si ∩
⋂

j 6=i ai 6= ∅ where aj = ass(Sj).

Criterion for a semilocal ring to be a weakly left localizable ring. A ring R is called a
semilocal ring if R/rad(R) is a semisimple (Artinian) ring. The next theorem is a criterion for a
semilocal ring R to be a weakly left localizable ring with rad(R) = NR.

• (Theorem 5.1) Let R be a semilocal ring. Then the ring R is a weakly left localizable ring
with rad(R) = NR iff R ≃

∏s
i=1 Ri where Ri are local rings with rad(Ri) = NRi

.

2 Preliminaries

In this section, necessary results are collected that are used in the proofs of the paper.
The largest regular left Ore set and the largest left quotient ring of a ring. Let R be

a ring. A multiplicatively closed subset S of R or a multiplicative subset of R (i.e. a multiplicative

3



sub-semigroup of (R, ·) such that 1 ∈ S and 0 6∈ S) is said to be a left Ore set if it satisfies the left
Ore condition: for each r ∈ R and s ∈ S,

Sr
⋂

Rs 6= ∅.

Let Orel(R) be the set of all left Ore sets of R. For S ∈ Orel(R), ass(S) := {r ∈ R | sr =
0 for some s ∈ S} is an ideal of the ring R.

A left Ore set S is called a left denominator set of the ring R if rs = 0 for some elements r ∈ R
and s ∈ S implies tr = 0 for some element t ∈ S, i.e. r ∈ ass(S). Let Denl(R) be the set of all left
denominator sets of R. For S ∈ Denl(R), let S−1R = {s−1r | s ∈ S, r ∈ R} be the left localization
of the ring R at S (the left quotient ring of R at S).

In general, the set C of regular elements of a ring R is neither left nor right Ore set of the ring
R and as a result neither left nor right classical quotient ring (Ql,cl(R) := C−1R and Qr,cl(R) :=
RC−1) exists. Remarkably, there exists the largest regular left Ore set S0 = Sl,0 = Sl,0(R). This
means that the set Sl,0(R) is an Ore set of the ring R that consists of regular elements (i.e.,
Sl,0(R) ⊆ C) and contains all the left Ore sets in R that consist of regular elements. Also, there
exists the largest regular (left and right) Ore set Sl,r,0(R) of the ring R. In general, all the sets C,
Sl,0(R), Sr,0(R) and Sl,r,0(R) are distinct, for example, when R = I1 := K〈x, d

dx ,
∫
〉 is the ring of

polynomial integro-differential operators over a field K of characteristic zero, [2].

Definition, [2], [3]. The ring
Ql(R) := Sl,0(R)−1R

(respectively, Qr(R) := RSr,0(R)−1 and Q(R) := Sl,r,0(R)−1R ≃ RSl,r,0(R)−1) is called the
largest left (respectively, right and two-sided) quotient ring of the ring R.

In general, the rings Ql(R), Qr(R) and Q(R) are not isomorphic, for example, when R = I1,
[2]. The next theorem gives various properties of the ring Ql(R). In particular, it describes its
group of units.

Theorem 2.1 [3]

1. S0(Ql(R)) = Ql(R)∗ and S0(Ql(R)) ∩R = S0(R).

2. Ql(R)∗ = 〈S0(R), S0(R)−1〉, i.e. the group of units of the ring Ql(R) is generated by the
sets S0(R) and S0(R)−1 := {s−1 | s ∈ S0(R)}.

3. Ql(R)∗ = {s−1t | s, t ∈ S0(R)}.

4. Ql(Ql(R)) = Ql(R).

The set (Denl(R),⊆) is a poset (partially ordered set). In [3], it is proved that the set
max.Denl(R) of its maximal elements is a non-empty set.

The maximal denominator sets and the maximal left localizations of a ring.
Definition, [3]. An element S of the set max.Denl(R) is called a maximal left denominator set

of the ring R and the ring S−1R is called a maximal left quotient ring of the ring R or a maximal
left localization ring of the ring R. The intersection

lR := l.lrad(R) :=
⋂

S∈max.Denl(R)

ass(S) (1)

is called the left localization radical of the ring R, [3].
For a ring R, there is the canonical exact sequence

0 → lR → R
σ
→

∏

S∈max.Denl(R)

S−1R, σ :=
∏

S∈max.Denl(R)

σS , (2)

4



where σS : R → S−1R, r 7→ r
1 . For a left Artinian ring R, |max.Denl(R)| < ∞ and l

2
R = lR, [6].

The maximal elements of Assl(R). Let max.Assl(R) be the set of maximal elements of the
poset (Assl(R),⊆) and

ass.max.Denl(R) := {ass(S) |S ∈ max.Denl(R)}. (3)

These two sets are equal (Proposition 2.3), a proof is based on Lemma 2.2. For a non-empty
subset X of R, let r.ass(X) := {r ∈ R | rx = 0 for some x ∈ X}.

Lemma 2.2 [3] Let S ∈ Denl(R, a) and T ∈ Denl(R, b) be such that a ⊆ b. Let ST be the
multiplicative semigroup generated by S and T in (R, ·). Then

1. r.ass(ST ) ⊆ b.

2. ST ∈ Denl(R, c) and b ⊆ c.

Proposition 2.3 [3] max.Assl(R) = ass.max.Denl(R) 6= ∅. In particular, the ideals of this set
are incomparable (i.e. neither a * b nor a + b).

The localization maximal rings. The set (Locl(R),→) is a partially ordered set (poset)
where A → B if there is an R-homomorphism A → B. There is no oriented loops in the poset
Locl(R) apart from the R-isomorphism A → A.

Let max.Locl(R) be the set of maximal elements of the poset (Locl(R),→). Then (see [3]),

max.Locl(R) = {S−1R |S ∈ max.Denl(R)} = {Ql(R/a) | a ∈ ass.max.Denl(R)}. (4)

Definition, [3]. A ring A is called a left localization maximal ring if A = Ql(A) and Assl(A) =
{0}. A ring A is called a right localization maximal ring if A = Qr(A) and Assr(A) = {0}. A
ring A which is a left and right localization maximal ring is called a (left and right) localization
maximal ring (i.e. Ql(A) = A = Qr(A) and Assl(A) = Assr(A) = {0}).

The next theorem is a criterion of when a left quotient ring of a ring is a maximal left quotient
ring of the ring.

Theorem 2.4 [3] Let a ring A be a left localization of a ring R, i.e. A ∈ Locl(R, a) for some
a ∈ Assl(R). Then A ∈ max.Locl(R) iff Ql(A) = A and Assl(A) = {0}, i.e. A is a left localization
maximal ring (clearly, a ∈ ass.max.Denl(R)).

Theorem 2.4 shows that the left localization maximal rings are precisely the localizations of
all the rings at their maximal left denominators sets.

Example. Let A be a simple ring. Then Ql(A) is a left localization maximal ring and Qr(A) is
a right localization maximal ring (by Theorem 2.1.(4) and Theorem 2.4).

Example. A division ring is a (left and right) localization maximal ring. More generally, a
simple Artinian ring (i.e. the matrix algebra over a division ring) is a (left and right) localization
maximal ring.

Left (non-)localizable elements of a ring.

Lemma 2.5 [6] Let S ∈ Denl(R, a) (respectively, S ∈ Den(R, a)), σ : R → S−1R, r 7→ r
1 ,

and G := (S−1R)∗ be the group of units of the ring S−1R. Then S′ := σ−1(G) ∈ Denl(R, a)
(respectively, S′ := σ−1(G) ∈ Den(R, a)).

Definition, [5]. An element r of a ring R is called a left localizable element if there exists a left
denominator set S of R such that r ∈ S (and so the element r

1 6= 0 is invertible in the ring S−1R),
equivalently, if there exists a left denominator set T of R such that the element r

1 is invertible in
the ring T−1R (Lemma 2.5). The set of left localizable elements is denoted Ll(R).

5



Clearly,

Ll(R) =
⋃

S∈max.Denl(R)

S. (5)

The maximal left quotient rings of a finite direct product of rings.

Theorem 2.6 [5] Let R =
∏n

i=1 Ri be a direct product of rings Ri. Then for each i = 1, . . . , n,
the map

max.Denl(Ri) → max.Denl(R), Si 7→ R1 × · · · × Si × · · · ×Rn, (6)

is an injection. Moreover, max.Denl(R) =
∐n

i=1 max.Denl(Ri) in the sense of (6), i.e.

max.Denl(R) = {Si |Si ∈ max.Denl(Ri), i = 1, . . . , n},

S−1
i R ≃ S−1

i Ri, assR(Si) = R1 × · · · × assRi
(Si)× · · · ×Rn. The core of the left denominator set

Si in R coincides with the core Si,c of the left denominator set Si in Ri, i.e.

(R1 × · · · × 0× Si × 0× · · · ×Rn)c = 0× · · · × 0× Si,c × 0× · · · × 0.

Properties of the maximal left quotient rings of a ring. The next theorem describes
various properties of the maximal left quotient rings of a ring, in particular, their groups of units
and their largest left quotient rings.

Theorem 2.7 [3] Let S ∈ max.Denl(R), A = S−1R, A∗ be the group of units of the ring A;
a := ass(S), πa : R → R/a, a 7→ a+ a, and σa : R → A, r 7→ r

1 . Then

1. S = Sa(R), S = π−1
a

(S0(R/a)), πa(S) = S0(R/a) and A = S0(R/a)−1R/a = Ql(R/a).

2. S0(A) = A∗ and S0(A) ∩ (R/a) = S0(R/a).

3. S = σ−1
a (A∗).

4. A∗ = 〈πa(S), πa(S)
−1〉, i.e. the group of units of the ring A is generated by the sets πa(S)

and π−1
a

(S) := {πa(s)
−1 | s ∈ S}.

5. A∗ = {πa(s)
−1πa(t) | s, t ∈ S}.

6. Ql(A) = A and Assl(A) = {0}. In particular, if T ∈ Denl(A, 0) then T ⊆ A∗.

A bijection between max.Denl(R) and max.Denl(Ql(R)).

Proposition 2.8 [5] Let R be a ring, Sl be the largest regular left Ore set of the ring R, Ql :=
S−1
l R be the largest left quotient ring of the ring R, and C be the set of regular elements of the

ring R. Then

1. Sl ⊆ S for all S ∈ max.Denl(R). In particular, C ⊆ S for all S ∈ max.Denl(R) provided C
is a left Ore set.

2. Either max.Denl(R) = {C} or, otherwise, C 6∈ max.Denl(R).

3. The map

max.Denl(R) → max.Denl(Ql), S 7→ SQ∗
l = {c−1s | c ∈ Sl, s ∈ S},

is a bijection with the inverse T 7→ σ−1(T ) where σ : R → Ql, r 7→ r
1 , and SQ∗

l is the
sub-semigroup of (Ql, ·) generated by the set S and the group Q∗

l of units of the ring Ql, and
S−1R = (SQ∗

l )
−1Ql.

4. If C is a left Ore set then the map

max.Denl(R) → max.Denl(Q), S 7→ SQ∗ = {c−1s | c ∈ C, s ∈ S},

is a bijection with the inverse T 7→ σ−1(T ) where σ : R → Q, r 7→ r
1 , and SQ∗ is the

sub-semigroup of (Q, ·) generated by the set S and the group Q∗ of units of the ring Q, and
S−1R = (SQ∗)−1Q.
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3 Weakly left localizable rings and their characterizations

In this section, a new class of rings is introduced, the weakly left localizable rings, and their
characterizations are given (Theorem 3.9 and Theorem 3.12) under certain natural conditions.

Definition. A ring R is called a weakly left localizable ring (a WLL ring, for short) if every
non-nilpotent element is left localizable, i.e. the ring

R = Ll(R)
∐

Nil(R) (7)

is a disjoint union of the set Ll := Ll(R) of left localizable elements and the set N := Nil(R) of
nilpotent elements of the ring R.

Every left localizable ring is a weakly left localizable ring but not vice versa. An ideal of a ring
is called a nil ideal if every element of it is nilpotent. The sum and the product of two nil ideals
is a nil ideal. The sum N = NR of all nil ideals of a ring R is called the nil radical of the ring R.
The nil radical N is the largest nil ideal of the ring R. Clearly,

nR ⊆ NR ⊆ rad(R) and NR ⊆ Nil(R)

where nR is the prime radical of the ring R. The next lemma provides many examples of weakly
left localizable rings.

Lemma 3.1 1. Every left localizable ring is weakly left localizable but not vice versa.

2. Let R be a ring with R = R∗
∐

Nil(R). Then R is a weakly left localizable ring.

3. Every left Artinian ring R such that R/n is a division ring is a weakly left localizable ring
(where n is the prime radical of R).

4. Every local ring R such that rad(R) = NR is a weakly left localizable ring.

Proof. 1 and 2. Obvious.
3. Since R = R∗

∐
Nil(R), R is a weakly left localizable ring, by statement 2.

4. Clearly, rad(R) = NR = Nil(R). Then R = R∗ ∪ rad(R) = R∗ ∪ Nil(R), i.e. R is a weakly
left localizable ring. �

Theorem 3.2 Let R =
∏n

i=1 Ri be a direct product of rings Ri. The ring R is a weakly left
localizable ring iff the rings Ri are so.

Proof. The proof is an easy corollary of Theorem 2.6 that states that max.Denl(
∏n

i=1 Ri) =∐n
i=1 max.Denl(Ri).
(⇒) Suppose that the ring R is a weakly left localizable ring. We have to show that the rings

Ri are so. Each ring Ri is a subring of R. Let ri ∈ Ri be a non-nilpotent element. The ring Ri is
a weakly left localizable ring. So, ri ∈ Si for some Si ∈ max.Denl(R). Then Si ∈ max.Denl(Ri),
by Theorem 2.6.

(⇐) Suppose that the rings Ri are weakly left localizable rings. Let r = (r1, . . . , rn) ∈ R be
a non-nilpotent element. Then 0 6= ri ∈ Ri is a non-nilpotent element for some i. The ring Ri

is a weakly left localizable ring, and so ri ∈ Si for some Si ∈ max.Denl(Ri). By Theorem 2.6,
Si ∈ max.Denl(R). Therefore, R is a weakly left localizable ring. �

Definition, [5]. For an arbitrary ring R, the intersection

Cl(R) :=
⋂

S∈max.Denl(R)

S

is called the set of completely left localizable elements of R and an element of the set Cl(R) is called
a completely left localizable element.
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Lemma 3.3 Let R be a ring, l := lR, π
′ : R → R′ := R/l, r 7→ r := r+ l; Cl(R) and Cl(R′) be the

sets of completely left localizable elements of the rings R and R′ respectively. Then

1. the map φ : max.Denl(R) → max.Denl(R
′), S 7→ π′(S), is an injection.

2. π′−1(Cl(R′)) ⊆ Cl(R).

3. If the map φ is a surjection then π′−1(Cl(R′)) = Cl(R) and π′(Cl(R)) = Cl(R′).

Proof. 1. The inclusion l ⊆ ass(S) implies that π′(S) ∈ Denl(R
′, ass(S)/l) and S−1R ≃

π′(S)−1R′ is a left localization maximal ring. Hence, π′(S) ∈ max.Denl(R
′) since S + ass(S) ⊆ S

and l ⊆ ass(S). Since S + ass(S) ⊆ S, we have the inclusion S + l ⊆ S for all S ∈ max.Denl(R),
i.e. the map S 7→ π′(S) is an injection.

2. Statement 2 follows from statement 1 and the fact that S + l ⊆ S for all S ∈ max.Denl(R).
In more detail,

π′−1(Cl(R
′)) =

⋂

S′∈max.Denl(R′)

π′−1(S′) ⊆
⋂

S∈max.Denl(R)

π′−1(π′(S)) =
⋂

S∈max.Denl(R)

S = Cl(R).

3. The equality π′−1(Cl(R′)) = Cl(R) is obvious (use the proof of statement 2 where the
inclusion is replaced by the equality).

π′(Cl(R)) = π′(
⋂

S∈max.Denl(R)

S) =
⋂

S∈max.Denl(R)

π′(S) (since S + l ⊆ S)

=
⋂

S′∈max.Denl(R′)

S′ = Cl(R
′),

since φ is a surjection. �
The next theorem shows that the set of maximal denominator sets behaves nicely under local-

izations at regular left denominator sets, it is used in the proof of Proposition 3.5.

Theorem 3.4 [7] Let R be a ring, T ∈ Denl(R, 0) and σ : R → T−1R, r 7→ r
1 . Then

1. T ⊆ S for all S ∈ max.Denl(R).

2. The map
max.Denl(R) → max.Denl(T

−1R), S 7→ S̃,

is a bijection with the inverse T 7→ σ−1(T ) where S̃ is the multiplicative monoid generated

in the ring T−1R by σ(S) and σ(T )−1 := {t−1 | t ∈ T }, and S−1R ≃ S̃−1(T−1R).

Proposition 3.5 Let R be a ring. Then

1. lR/lR = 0.

2. Ll(R) + lR ⊆ Ll(R).

3. Ll(R/lR) ⊇ Ll(R) + lR.

4. Let S ∈ Denl(R, 0). Then lS−1R = S−1
lR. In particular, lQl(R) = Sl(R)−1

lR and lQl,cl(R) =

C−1
R lR.

Proof. 1. We keep the notation of Lemma 3.3. Statement 1 follows from Lemma 3.3.(1),

lR/lR ⊆
⋂

S∈max.Denl(R)

ass(π′(S)) =
⋂

S∈max.Denl(R)

ass(S)/lR

= (
⋂

S∈max.Denl(R)

ass(S))/lR = lR/lR = 0.
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2 and 3. Statements 2 and 3 follow from (2).

4. By Theorem 3.4.(2), S−1R ≃ S̃−1(T−1R) for all S ∈ max.Denl(R). So, there is a natural

ring isomorphism τ : Q :=
∏

S∈max.Denl(R) S
−1R → Q′ :=

∏
S∈max.Denl(R) S̃

−1(T−1R). As a result
we have the commutative diagram

R
σ
−→ Q

yτ ′
yτ

S−1R
σ′

−→ Q′

where τ ′ is a monomorphism given by the rule τ ′(r) = r
1 and σ, σ′ are defined in (2). Let

s−1r ∈ S−1R where s ∈ S and r ∈ R. Then s−1r ∈ lS−1R, i.e. 0 = σ′(s−1r), iff 0 = σ′τ ′(r) = τσ(r)
iff σ(r) = 0 iff r ∈ lR. Therefore, lS−1R = S−1

lR. �
Weakly left localizability criterion. The next proposition is a weakly left localizability

criterion.

Proposition 3.6 A ring R is a weakly left localizable ring iff the factor ring R/lR is a weakly left
localizable ring, the left localization radical lR of R is a nil ideal and π′(Ll(R)) = Ll(R/lR) where
π′ : R → R/lR, r 7→ r := r + lR.

Proof. (⇒) The ring R is a weakly left localizable ring, hence lR ⊆ Nil(R), by (7), i.e. lR is a
nil ideal. Then, by Proposition 3.5.(2,3) and (7),

π′(R) = π′(Ll(R))
∐

π′(Nil(R)). (8)

An element r ∈ R is nilpotent iff the element r + lR ∈ R/lR is nilpotent (since lR is a nil ideal).
Therefore, π′(Nil(R)) = Nil(R/lR)). Since π′(Ll(R)) ⊆ Ll(R/lR), we must have π′(Ll(R)) =
Ll(R/lR)), by (8). Now, R/lR = Ll(R/lR)

∐
Nil(R/lR), by (8). So, R/lR is a weakly left localizable

ring.
(⇐) Let r ∈ R and l := lR. Then r is a nilpotent element in R iff r+ l is is a nilpotent element

in the factor ring R/l since l is a nil ideal. Suppose that r is not a nilpotent element of the ring
R. Then necessarily r ∈ Ll(R/lR) and r = r1 for some r1 ∈ Ll(R) (since π′(Ll(R)) = Ll(R/lR)).
By Proposition 3.5.(2), r ∈ r1 + lR ∈ Ll(R). Therefore, R is a weakly left localizable ring. �

Lemma 3.7 Let R be a ring. If yx = 1 for some elements x, y ∈ R then neither x nor y is a
nilpotent element.

Proof. If xn = 0 (respectively, yn = 0) for some n ≥ 1 then 1 = ynxn = 0 (respectively,
1 = ynxn = 0), a contradiction. �

Lemma 3.8 Let R be a ring. Then R is a left localization maximal and weakly left localizable
ring (i.e. R = R∗

∐
Nil(R)) iff Nil(R) = NR and R = R∗

∐
NR, i.e. R is a local ring with

rad(R) = NR.

Proof. (⇒) Let N = Nil(R) and N = NR. It suffices to show that N = N since R = R∗
∐

N =
R∗

∐
N . To prove that N = N it suffices to show that N is an ideal of R (since N ⊇ N and N

is the largest nil ideal of R).
(i) R∗NR∗ ⊆ N : If this inclusion does not hold, i.e. w := unv ∈ R∗ for some elements

u, v ∈ R∗ and n ∈ N , then nvw−1u = 1, a contradiction, by Lemma 3.7.
(ii) NN ⊆ N : If this inclusion does not hold, i.e. u := n1n2 ∈ R∗ for some n1, n2 ∈ N then

u−1n1 · n2 = 1, a contradiction, by Lemma 3.7.
(iii) RNR ⊆ N : By (i), (ii) and R = R∗

∐
N .

(iv) N + N ⊆ N : If this inclusion does not hold, i.e. u := n1 + n2 ∈ R∗ for some elements
n1, n2 ∈ N . Then, by (i), N ∋ u−1n1 = 1− u−1n2 ∈ 1−N ⊆ R∗, a contradiction.

(v) N is an ideal, by (iii) and (iv).
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(⇐) This implication is obvious. �
The left quotient rings of a class of weakly left localizable rings. The next theorem

(Theorem 3.9) is a criterion (via weakly left localizable rings) for a ring to have the classical left
quotient ring to be a direct product

∏n
i=1 Ri of local rings with rad(Ri) = NRi

for i = 1, . . . , n.
It is also a description of a certain class of weakly left localizable rings.

Theorem 3.9 Let R be a ring. The following statements are equivalent.

1. The ring R is a weakly left localizable ring such that

(a) lR = 0,

(b) |max.Denl(R)| < ∞,

(c) for every S ∈ max.Denl(R), S−1R is a weakly left localizable ring, and

(d) for all S, T ∈ max.Denl(R) such that S 6= T , ass(S) is not a nil ideal modulo ass(T ).

2. Ql,cl(R) ≃
∏n

i=1 Ri where Ri are local rings with rad(Ri) = NRi
.

3. Ql(R) ≃
∏n

i=1 Ri where Ri are local rings with rad(Ri) = NRi
.

Proof. (1 ⇒ 2) By the condition (b), max.Denl(R) = {S1, . . . , Sn}. Let ai := ass(Si). For each
i = 1, . . . , n, the ring Ri := S−1

i R is a left localization maximal ring (Theorem 2.4) and a weakly
left localization maximal ring, by the condition (c). By Lemma 3.8, we have the statement (i)
below.

(i) Ri = R∗
i

∐
Ni where Ni := NRi

= Nil(Ri):
If n = 1 then we are done, i.e. the implication (1 ⇒ 2) is true. In more detail, if n = 1 then

ass(S1) = l = 0, and so S1 ⊆ CR. The left R-module R is an essential submodule of R1 := S−1
1 R.

Hence, for every element c ∈ CR, the map ·c : R1 → R1, a 7→ ac, is an injection. By (i), c ∈ R∗
1,

i.e. CR ⊆ R∗
i . This implies that CR ∈ Denl(R, 0) with Ql,cl(R) = R1.

Therefore, we can assume that n ≥ 2. By the statement (a), the map

σ : R →
n∏

i=1

Ri, r 7→ (r1, . . . , rn), ri :=
r

1
∈ Ri,

is a monomorphism and we can identify the ring R with its image σ(R).
(ii) For i = 1, . . . , n, C′

i := Si ∩ ∩j 6=iaj 6= ∅: We may assume that i = 1. Fix r ∈ S1. Then
r = (r1, . . . , rn) ∈

∏n
i=1 Ri with r1 ∈ R∗

1. Replacing r by rt for some t ≥ 1 we may assume
that rj ∈ R∗

j ∪ {0} (by (i)) for all j = 2, . . . , n. Fix an element r ∈ S1 with the least number of
non-zero coordinates. Up to order, we may assume that r = (r1, . . . , rs, 0, . . . , 0) where ri ∈ R∗

i

for i = 1, . . . , s. We claim that s = 1. Suppose that s > 1, we seek a contradiction. Notice that

asr = (asr1, . . . , asrs−1, 0, . . . , 0).

We claim that asr1 ∩ R∗
1 6= ∅. Suppose that asr1 ∩ R∗

1 = ∅, then asr1 ⊆ N1 (by (i)). Hence,
as

1 ⊆ N1r
−1 = N1, and so the ideal as is a nil ideal modulo a1, this contradicts to the condition

(d). Therefore, as

1 r1 ∈ R∗
1 for some element as ∈ as, and so asr1 ∈ σ−1

1 (R∗
1) = S1 where

σ1 : R → R1, x 7→ x
1 (by Theorem 2.7.(3)). This contradicts to the minimality of s. So, s = 1 and

therefore the element r = (r1, 0, . . . , 0) ∈ C′
1 since r ∈ R = (∪n

i=1Si)
∐

Nil(R) (as R is a weakly
left localizable ring) and r 6∈ (∪n

i=2Si)
∐

Nil(R), by the choice of the element r = (r1, 0, . . . , 0).
(iii) C′

iC
′
j = 0 for all i 6= j: C′

iC
′
j = ∩n

k=1ak = lR = 0, by the condition (a).
(iv) SiC

′
iSi ⊆ C′

i for i = 1, . . . , n: Obvious, by (i).
(v) ass(C′

i) := {r ∈ R | c′ir = 0 for some c′i ∈ C′
i} = ai: The inclusion C′

i ⊆ Si implies the
inclusion ass(C′

i) ⊆ ai. The reverse inclusion follows from the inclusion C′
iSi ⊆ C′

i (see (iv)).
(vi) C′

i ∈ Denl(R, ai) and C′−1
i R ≃ S−1

i R: Clearly, the set C′
i is a multiplicative set not

necessarily containing 1. Fix an element ci ∈ C′
i. Then each element s−1r ∈ Ri, where s ∈ Si and

r ∈ R, can be written as a left fraction

s−1r = s−1c−1
i cir = (cis)

−1cir where cis ∈ C′
i and cir ∈ ∩j 6=iaj , (9)
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by (iv). The the statement (vi) follows bearing in mind (v).
(vii) C′ := C′

1 + · · · + C′
n ∈ Denl(R, 0) and C′−1R ≃

∏n
i=1 Ri: Since σ is a monomorphism,

C′ ⊆ CR. By (9), any element α of the ring
∏n

i=1 Ri can be written as α = (c−1
1 r1. . . . , c

−1
n rn)

where ci ∈ C′
i and ri ∈ ∩j 6=iaj. Hence, cicj = 0 for all i 6= j, by (iii). Then c := c1 + · · ·+ cn ∈ C′,

r := r1 + · · ·+ rn ∈ R and

cα = (cc−1
1 r1, . . . , cc

−1
n rn) = (cc1c

−2
1 r1, . . . , ccnc

−2
n rn)

= (c21c
−2
1 r1, . . . , c

2
nc

−2
n rn) = (r1, . . . , rn) = r1 + · · ·+ rn = r

since ri ∈ ∩j 6=iaj. So, α = c−1r, and the statement (vii) follows.
(viii) Ql,cl(R) ≃ C′−1R: Let Q′ := C′−1R. Recall that Q′ =

∏n
i=1 Ri, Ri = R∗

i

∐
S−1
i N and

C′ ⊆ CR. The ring R is an essential left R-submodule of Q′. Therefore, for each c ∈ CR, the
R-module homomorphism ·c : Q′ → Q′, q′ 7→ q′c, is a monomorphism. Then c ∈

∏n
i=1 R

∗
i = Q′∗.

So, C′ ⊆ CR ⊆ Q′∗. Since Q′ = C′−1R we must have CR ∈ Denl(R) and Q′ = C−1
R R = Ql,cl(R).

(2 ⇒ 3) Trivial.
(3 ⇒ 1) Notice thatRi = R∗

i

∐
NRi

, and soRi is a weakly left localizable ring and max.Denl(Ri) =
{R∗

i }. By Theorem 2.6,

max.Denl(Ql(R)) = max.Denl(
n∏

i=1

Ri) = {S′
i | i = 1, . . . , n}

where S′
i := R1×· · ·×Ri−1×R∗

i×Ri+1×· · ·×Rn and ass(S′
i) = R1×· · ·×Ri−1×{0}×Ri+1×· · ·×Rn.

By Proposition 2.8, max.Denl(R) = {Si | i = 1, . . . , n} is a finite set where Si = σ′−1(S′
i) and

σ′ : R → Ql(R), r 7→ r
1 ; and S−1

i R ≃ S′−1
i Ql(R) = Ri is a weakly left localizable ring. It follows

from the commutative diagram

R
σ
−→

∏n
i=1 S

−1
i R

ց σ′
yid

Ql(R) =
∏n

i=1 Ri

that lR = 0 since σ′ is a monomorphism where id is the identity map. If r 6∈ Nil(R) then necessarily
r ∈ S′

i for some i, hence r ∈ σ′−1(S′
i) = Si, i.e. the ring R is a weakly left localizable ring.

To prove that the statement (d) holds we may assume that n > 1. It suffices to show that the
ideal a2 is not a nil ideal modulo a1. The element e1 := (1, 0, . . . , 0) ∈ R∗

1 ∩ ass(S′
2) can be written

as c−1r for some elements c ∈ CR and r ∈ R. Then the element r = ce1 ∈ R∩R∗
1∩ass(S

′
2) = S1∩a2

is obviously not a nilpotent element modulo a1. �

The next corollary shows that the rings that satisfy the conditions of Theorem 3.9 have interest-
ing properties. In particular, for each such a ring R, the set of completely left localizable elements
coincide with the set of regular elements, CR = Cl(R), and Nil(R) = NR. Notice that for an
arbitrary ring R the inclusions hold, CR ⊆ Cl(R) (by Proposition 2.8.(1), provided CR ∈ Orel(R))
and Nil(R) ⊇ NR, that are, in general, are not equalities.

Corollary 3.10 We keep the notation of Theorem 3.9. Suppose that a ring R satisfies one of the
equivalent conditions 1–3 of Theorem 3.9. Then

1. max.Denl(R) = {S1, . . . , Sn} where Si = {r ∈ R | r
1 ∈ R∗

i }.

2. CR = Cl(R), i.e. CR =
⋂

S∈max.Denl(R) S.

3. Nil(R) = NR.

4. Q := Ql,cl(R) = Ql(R) is a weakly left localizable ring with Nil(Q) = NQ = rad(Q).

5. C−1
R NR = NQ = rad(Q) and NR = R ∩ NQ.
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6. C−1
R Ll(R) = Ll(Q) and Ll(R) = R ∩ Ll(Q).

Proof. 1. Statement 1 has already been established in the proof of Theorem 3.9.
2. By Proposition 2.8.(1), CR ⊆ Cl(R) =

⋂
S∈max.Denl(R) S. The inverse inclusion follows from

the fact that Cl(R) ⊆
∏n

i=1 R
∗
i = Ql,cl(R)∗.

3. Let r ∈ R. It follows from the inclusion R ⊆ Ql,cl(R) =
∏n

i=1 Ri that r ∈ N iff r ∈∏n
i=1 NRi

= NQl,cl(R). It follows that N is an ideal, hence N = NR.
4. The equality Ql,cl(R) = Ql(R) has already been established. By Theorem 3.9.(2), Nil(Q) =

NQ = rad(Q).
5 and 6. By statement 4, Q = Ll(Q)

∐
NQ. Since NR ⊆ NQ, we have C−1

R NR ⊆ NQ.
Since CR ⊆ S for all maximal left denominator sets S ∈ max.Denl(R), we have the equality
C−1
R Ll(R) := {c−1s | c ∈ CR, s ∈ Ll(R)} ⊆ Ll(Q). Then the first equalities of the statements 5 and

6 follow. Then, NR ⊆ R ∩ C−1
R NR = R ∩ NQ ⊆ NR, i.e. NR = R ∩ NQ. Finally, the equality

Ll(R) = R ∩ Ll(Q) is obvious. �

The next proposition describes the set Cl(R) (statement 2) and gives sufficient conditions for
Cl(R) to be a left denominator set in R.

Proposition 3.11 We keep the notation of Lemma 3.3. Let R be a weakly left localizable ring
such that the ring R′ := R/lR satisfy the conditions of Theorem 3.9. Then

1. the map φ : max.Denl(R) → max.Denl(R
′), S 7→ π′(S), is a bijection. In particular,

|max.Denl(R)| = |max.Denl(R
′)| < ∞.

2. π′−1(CR′) = Cl(R) and π′(Cl(R)) = CR′ .

3. If lR ⊆ ass(Cl(R)) := {r ∈ R | cr = 0 for some c ∈ Cl(R)} then Cl(R) ∈ Denl(R, lR) and
Cl(R)−1R ≃ Ql,cl(R).

Proof. 1. By Theorem 3.9, Q′ := Ql,cl(R
′) =

∏
S′∈max.Denl(R′) S

′−1R′ and RR
′ is an essential

R-submodule of Q′. Since R′ ⊆ Q :=
∏

S∈max.Denl(R) S
−1R ⊆ Q′ (Lemma 3.3.(1)), Q is an

essential R′-submodule of Q′. Then it follows from

Q′ = Q×
∏

S′∈max.Denl(R′)\∈ imφ

S′−1R′

that φ is a surjection, i.e. a bijection.
2. By Corollary 3.10.(2), CR′ = Cl(R′). Now, statement 2 follows from statement 1 and Lemma

3.3.(3).
3. Since Cl(R) =

⋂
S∈max.Denl(R) S, ass(Cl(R)) ⊆

⋂
S∈max.Denl(R) ass(S) = lR. Hence, ass(Cl(R)) =

lR (as ass(Cl(R)) ⊇ lR, by the assumption). By statement 2, π′(Cl(R)) = CR′ and CR′ ∈
Denl(R

′, 0). These two equalities together with ass(Cl(R)) = lR imply that Cl(R) ∈ Denl(R, lR).
Then, clearly, Cl(R)−1R ≃ π′(Cl(R))−1R′ ≃ C−1

R′ R′ = Ql,cl(R). �
Characterization of a class of weakly left localizable rings. The next theorem is a

characterization, via their left quotient rings, of a class of weakly left localizable rings that satisfy
some natural conditions.

Theorem 3.12 Let R be a ring, l = lR, π′ : R → R′ := R/l, r 7→ r := r + l. The following
statements are equivalent.

1. The ring R is a weakly left localizable ring such that

(a) the map φ : max.Denl(R) → max.Denl(R
′), S 7→ π′(S), is a surjection.

(b) |max.Denl(R)| < ∞,

(c) for every S ∈ max.Denl(R), S−1R is a weakly left localizable ring, and

(d) for all S, T ∈ max.Denl(R) such that S 6= T , ass(S) is not a nil ideal modulo ass(T ).
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2. Ql,cl(R
′) ≃

∏n
i=1 Ri where Ri are local rings with rad(Ri) = NRi

, l is a nil ideal and
π′(Ll(R)) = Ll(R

′).

3. Ql(R
′) ≃

∏n
i=1 Ri where Ri are local rings with rad(Ri) = NRi

, l is a nil ideal and
π′(Ll(R)) = Ll(R

′).

Proof. (1 ⇔ 2) By Proposition 3.6, the ring R is a weakly left localizable ring iff the ring R′

is a weakly left localizable ring, l is a nil ideal and π′(Ll(R)) = Ll(R
′). Now, the equivalence

(1 ⇔ 2) follows from Proposition 3.11.(1), Theorem 3.9 and Lemma 3.8. Let give more details.
(1 ⇒ 2) We have to show that the conditions (a)-(d) of Theorem 3.9.(1) hold for the ring R′.

The condition (a) is obvious as lR/l = 0 for any ring R (Proposition 3.5.(1)). The condition (b) of
Theorem 3.9 follows from the assumptions (a) and (b) of statement 1. By the assumption (a) of
statement 1 and Lemma 3.3.(1), the map φ is a bijection. The condition (c) of Theorem 3.9 holds
since, for all S′ ∈ max.Denl(R

′), S′−1R′ ≃ S−1R (where S = φ−1(S′)) is a weakly left localizable
ring, by the assumption (c) of statement 1. The condition (d) of Theorem 3.9 holds since φ is a
bijection and, for all S′ ∈ max.Denl(R

′), ass(S′) = ass(S)/l where S = φ−1(S′), ass(S) is not a
nil ideal (by the assumption (d) of statement 1 and the fact that l is a nil ideal.

(2 ⇒ 1) Since Ql,cl(R
′) =

∏n
i=1 Ri where Ri are local rings with rad(Ri) = NRi

, by Theorem
3.9, the conditions (a)-(d) of Theorem 3.9 hold and R′ is a weakly left localizable ring. Since
R′ is a weakly left localizable ring, l is a nil ideal and π′(Ll(R)) = Ll(R

′), the ring R is a
weakly left localizable ring, by Proposition 3.6. By Proposition 3.11.(1), the map φ is a bijection,
i.e. the condition (a) holds. Then the conditions (b) and (c) follow from the conditions (b)
and (c) of Theorem 3.9.(1), respectively. Finally, the condition (d) holds since the map φ is a
bijection and for all S ∈ max.Denl(R), ass(φ(S)) = ass(S)/l, ass(φ(S)) is not a nil ideal modulo
ass(φ(T )) = ass(T )/l for all T ∈ max.Denl(R) such that T 6= S (by the condition (d) of Theorem
3.9.(1) for the ring R′ and since l is a nil ideal).

(2 ⇒ 3) The implication is obvious as Ql,cl(R) = Ql(R).
(3 ⇒ 2) The (left) R-module R is an essential submodule of the (left) R-module Ql(R) =∏n

i=1 Ri. Therefore, for every c = (c1, . . . , cn) ∈ CR, where ci ∈ Ri, the R-module homomorphism

·c : Ql(R) → Ql(R), q = (q1, . . . , qn) 7→ qc = (q1c1, . . . , qncn),

is an injection. Therefore, ci ∈ R∗
i for i = 1, . . . , n, i.e. c ∈ Ql(R)∗. Therefore, CR ∈ Denl(R, 0)

and Ql(R) = Ql,cl(R). The proof of the theorem is complete. �

Corollaries 3.13 and 3.14 show that the rings that satisfy the conditions of Theorem 3.12 have
interesting properties and there is tight connection between rings R and R/lR.

Corollary 3.13 We keep the notation of Theorem 3.12. Suppose that a ring R satisfies one of
the equivalent conditions 1–3 of Theorem 3.12. Then

1. max.Denl(R) = {S1, . . . , Sn} where Si = {r ∈ R | r
1 ∈ R∗

i }, S
−1
i R = Ri and the map φ is a

bijection.

2. Cl(R) = π′−1(CR′) and π′(Cl(R)) = CR′ .

3. π′(Ll(R)) = Ll(R
′) and π′−1(Ll(R

′)) = Ll(R).

4. π′(Nil(R)) = NR′ and π′−1(NR′) = Nil(R).

5. Nil(R) = NR.

Proof. 1. In the proof of the implication (1 ⇒ 2) of Theorem 3.12, it was proven that the
conditions (a)–(d) of Theorem 3.9.(1) hold for the ring R′ = R/l. By Proposition 3.11.(1), the
map φ is a bijection. Now, statement 1 follows from Theorem 2.7 and Corollary 3.10.(1).
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2. Suppose that one of the equivalent conditions 1–3 of Theorem 3.12 holds. Then, by Theorem
3.9,

π′−1(CR′) = π′−1(
⋂

S′∈max.Denl(R′)

S′) =
⋂

S′∈max.Denl(R′)

π′−1(S)

=
⋂

S∈max.Denl(R))

S = Cl(R),

since φ is a bijection. The map π′ is a surjection. So, the first equality in statement 2 implies the
second one.

3–5. The ringR is a weakly left localizable ring. So, R = Ll(R)
∐

Nil(R). By Theorem 3.12.(2),
Theorem 3.9 and Corollary 3.10.(3), R′ = Ll(R

′)
∐

NR′ . By Theorem 3.12.(2), π′(Ll(R)) =
Ll(R

′). Since Ll(R) + l ⊆ Ll(R) (Proposition 3.5.(2)), π′−1(Ll(R
′)) = Ll(R). Then π′(Nil(R)) =

NR′ and π′−1(NR′) = Nil(R) since l is a nil ideal of R. Since l is a nil ideal of R, the ideal
π′−1(NR′) is a nil ideal of R, i.e. Nil(R) = NR. �

The set of completely left localizable elements is a left denominator set. The next
corollary gives sufficient conditions for the set Cl(R) of completely left localizable elements of a
ring R that satisfies the conditions of Theorem 3.12 to be a left denominator set.

Corollary 3.14 We keep of the notation of Theorem 3.12. Suppose that a ring R satisfies one
of the equivalent conditions 1–3 of Theorem 3.12 and l ⊆ ass(Cl(R)) := {r ∈ R | cr = 0 for some
c ∈ Cl(R)}. Then

1. Cl(R) ∈ Denl(R, l) and Cl(R)−1R ≃ Ql,cl(R
′).

2. Cl(R)−1NR ≃ C−1
R′ NR′ = NQl,cl(R′) = rad(Ql,cl(R

′)) and NR = τ−1(NQl,cl(R′)) where τ :
R → Cl(R)−1R ≃ Ql,cl(R

′), r 7→ r
1 (see statement 1).

3. Cl(R)−1Ll(R) = Ll(Cl(R)−1R) and τ−1(Ll(Ql,cl(R
′))) = Ll(R).

4. Cl(R) = Sl,l(R) and Ql,l(R) ≃ Ql,cl(R
′).

5. Sl(R)−1
l is an ideal of Ql(R) and Ql,cl(Ql(R)/Sl(R)−1

l) ≃ Ql,cl(R
′).

Proof. 1. Since Cl(R) =
⋂

S∈max.Denl(R) S, we have the inclusion

ass(Cl(R)) ⊆
⋂

S∈max.Denl(R)

ass(S) = lR,

hence ass(Cl(R)) = l (since l ⊆ ass(Cl(R)), by the assumption). By Corollary 3.13.(2), π′(Cl(R)) =
CR′ ∈ Denl(R

′, 0) (Theorem 3.12.(2)). This inclusion together with the equality ass(Cl(R)) = l

implies Cl(R) ∈ Denl(R, l), Then, clearly,

Cl(R)−1R ≃ (π′(Cl(R))−1π′(R) ≃ C−1
R′ R

′ = Ql,cl(R
′).

2. By statement 1, Cl(R)−1NR = π′(Cl(R))−1π′(NR) = C−1
R′ NR′ , by Corollary 3.13.(4,5). By

Corollary 3.10.(5), C−1
R′ NR′ = NQl,cl(R′) = rad(Ql,cl(R

′)). Notice that τ = σ′π′ : R
π′

→ R′ σ′

→
Cl(R)−1R ≃ Ql,cl(R

′) (statement 1) where σ′(r) := r
1 . Since l is a nil ideal of R (Theorem

3.12), NR′ = π′(NR) and NR = π′−1(NR′). Since Cl(R) ∈ Denl(R, l) (statement 1) and l ⊆ NR

(Theorem 3.12), we have NR′ = σ′−1(Cl(R)−1NR) = σ′−1(NQl,cl(R′)). Now, NR = π′−1(NR′) =
(σ′π′)−1(NQl,cl(R′)) = τ−1(NQl,cl(R′)).

3. By statement 1,

Cl(R)−1Ll(R) = π′(Cl(R))−1π′(Ll(R)) = C−1
R′ Ll(R

′)

= Ll(C
−1
R′ R

′) (by Corollary 3.10.(6))

= Ll(Cl(R)−1R) (by statement 1).

τ−1(Ql,cl(R
′)) = π′−1σ′−1(Cl(R)−1Ll(R)) = π′−1(Ll(R

′))

= Ll(R) (Corollary 3.13.(3)).
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4. By statement 1, Cl(R) ⊆ Sl,l(R). Since ass(Sl,l(R)) = l ⊆ ass(S) for all S ∈ max.Denl(R),
the semigroup generated by Sl,l(R) and S is a left denominator set of R necessarily equal to
S. Hence, Sl,l(R) ⊆ S, and so Sl,l(R) ⊆ Cl(R). Therefore, Sl,l(R) = Cl(R). Hence, Ql,l(R) ≃
Ql,cl(R

′), by statement 1.
5. By Proposition 2.8.(1), Sl(R) ⊆ Cl(R). The kernel of the ring homomorphism Ql(R) =

Sl(R)−1R → Cl(R)−1R ≃ Ql,cl(R
′), s−1r 7→ s−1r, is equal to Sl(R)−1

l. So, Sl(R)−1
l is an ideal of

Ql,cl(R) such thatR′ ⊆ Ql(R)/Sl(R)−1
l ≃ π′(Sl(R))−1R′ ⊆ Ql,cl(R

′). Hence, Ql,cl(Ql(R)/Sl(R)−1
l)

≃ Ql,cl(R
′). �

4 The cores of maximal left denominator sets of a weakly

left localizable ring

The aim of this section is to find the cores of maximal left denominator sets of a weakly left
localizable ring. In [6], several properties of the core Sc of a left Ore set S of a ring R were
established.

Definition, [5]. Let R be a ring and S be its left Ore set. The subset of S,

Sc := {s ∈ S | ker(s·) = ass(S)},

is called the core of the left Ore set S where s· : R → R, r 7→ sr.

Recall that a ring R is called a local ring if R\R∗ is an ideal of R (equivalently, R/rad(R) is a
division ring). The next lemma is a criterion for the ring S−1R (where S ∈ max.Denl(R)) to be
a local ring.

Lemma 4.1 Let R be a ring and S ∈ max.Denl(R). Then the ring S−1R is a local ring iff R\S
is an ideal of the ring R.

Proof. Let σ : R → S−1R, r 7→ r
1 , and (S−1R)∗ be the group of units of the ring S−1R. By

Theorem 2.7.(3), S = σ−1((S−1R)∗).
(⇒) If S−1R is a local ring then S−1R = (S−1R)∗

∐
r where r := rad(S−1R). Then

R = σ−1(S−1R) = σ−1((S−1R)∗)
∐

σ−1(r) = S
∐

σ−1(r), (10)

and so R\S = σ−1(r) is an ideal of R.
(⇐) Suppose that b := R\S is an ideal of the ring R. Then S−1R = S−1S ∪ S−1

b where
S−1S := {s−1s′ | s, s′ ∈ S} = (S−1R)∗ (Theorem 2.7.(5)) and S−1

b is a left ideal of the ring
S−1R.

(i) S−1S ∩ S−1
b = ∅: Suppose that the intersection is a non-empty set, i.e. s−1s′ = t−1b ∈

S−1S ∩ S−1
b for some elements s, s′, t ∈ S and b ∈ b, we seek a contradiction. Then

R\S ∋ b ∈ σ−1(ts−1s′) ∈ σ−1((S−1R)∗) = S,

a contradiction.
(ii) For all s ∈ S, bs−1 ⊆ S−1

b, i.e. S−1
b = S−1R\(S−1R)∗ is an ideal of S−1R, i.e. S−1R

is a local ring: Suppose that bs−1 6⊆ S−1
b for some s ∈ S, i.e. bs−1 6∈ S−1

b for some element
b ∈ b. By the statement (i), bs−1 ∈ S−1S = (S−1R)∗, and so R\S ∋ b ∈ σ−1((S−1R)∗) = S, a
contradiction. �

The next theorem gives an explicit description of the cores of maximal left denominator sets
of a weakly left localizable ring that satisfies the conditions of Theorem 3.9.

Theorem 4.2 Let R be a ring that satisfies the conditions of Theorem 3.9. Let max.Denl(R) =
{S1, . . . , Sn}.
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1. If n = 1 then S1,c = S1 = R\NR.

2. If n ≥ 2 then Si,c = Si ∩
⋂

j 6=i ai 6= ∅ where aj = ass(Sj).

Proof. We keep the notation of Theorem 3.9 and its proof.
1. If n = 1 then R = S1

∐
Nil(R), Nil(R) = NR (Corollary 3.10.(3)), S1 = R\NR ∈ Den(R, 0)

(Theorem 3.9), and so S1,c = S1.
2. Suppose that n ≥ 2. For each i = 1, . . . , n, C′

i := Si ∩
⋂

j 6=i aj 6= ∅, see the statement (ii) in
the proof of Theorem 3.9. By Theorem 3.9, the map

σ :=

n∏

i=1

σi : R →
n∏

i=1

Ri, r 7→ (r1, . . . , rn),

is a ring monomorphism. Since Ri = S−1
i R is a local ring with rad(Ri) = NRi

(Theorem 3.9), by
Lemma 4.1 and (10),

R = Si

∐
σ−1
i (NRi

).

Clearly, ai = {r = (r1, . . . , rn) ∈ R | ri = 0}. Each element s′ of the set C′
i has the form

(0, . . . , 0, s′i, 0, . . . , 0) with s′i ∈ R∗
i . Then clearly, s′ai = 0 and so C′

i ⊆ Si,c. To show that
the equality S′

i = Si,c holds it suffices to show that every element s ∈ Si\C′
i does not not belong

to Si,c. Fix s such that s ∈ Si\C′
i. Then there is an index, say j, such that j 6= i and such that

sj 6= 0 in s = (s1, . . . , sn). Then s · C′
j 6= 0 but C′

j ⊆ ai. Therefore, the element s does not belong
to Si,c. �

Corollary 4.3 Let R be a ring that satisfies the condition of Theorem 3.12 and π′ : R → R′ :=
R/lR, r 7→ r + lR. Then, for all S ∈ max.Denl(R), π′(Sc) ⊆ π′(S)c.

Proof. By Corollary 3.13.(1), the map φ : max.Denl(R) → max.Denl(R
′), S 7→ π′(S), is a

bijection. Moreover, ass(π′(S)) = ass(S)/lR. Hence, π
′(Sc) ⊆ π′(S)c. �

5 Criterion for a semilocal ring to be a weakly left localiz-

able ring

A ring R is called a semilocal ring if R/rad(R) is a semisimple (Artinian) ring.

The next theorem is a criterion for a semilocal ring R to be a weakly left localizable ring with
rad(R) = NR.

Theorem 5.1 Let R be a semilocal ring. Then the ring R is a weakly left localizable ring with
rad(R) = NR iff R ≃

∏s
i=1 Ri where Ri are local rings with rad(Ri) = NRi

.

Proof. (⇐) Suppose that R =
∏s

i=1 Ri is a direct product of local rings with rad(Ri) = NRi
.

Then rad(R) =
∏s

i=1 rad(Ri) and NR =
∏s

i=1 NRi
. Then the equality rad(R) = NR follows from

the equalities rad(Ri) = NRi
for i = 1, . . . , s. The local rings Ri = R∗

i

∐
rad(Ri) = R∗

i

∐
NRi

=
R∗

i

∐
Nil(R) are weakly left localizable rings. Hence, so is their direct product R, by Theorem 3.2.

(⇒) The ring R is a semilocal ring, i.e. R := R/rad(R) =
∏s

i=1 Ri where Ri are simple
Artinian rings, i.e. Ri = Mni

(Di) is a ring of ni × ni matrices with coefficients from a division
ring Di for i = 1, . . . , s. Let Epq(i) be the matrix units of Mni

(Di) where p, q = 1, . . . , ni. Since
rad(R) = NR is a nil ideal, the decomposition of 1 in R as a sum of orthogonal idempotents

1 =
s∑

i=1

ni∑

j=1

Ejj(i),
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can be lifted to a decomposition of 1 as a sum of orthogonal idempotents in the ring R,

1 =
s∑

i=1

ni∑

j=1

Ejj(i).

(i) n1 = · · · = ns: If not then, say ni ≥ 2, we seek a contradiction. The nonzero idempotent
e1 = E11(1) is a left localizable element of the ring R, i.e. e1 ∈ S for some S ∈ Denl(R). Since
e1Eii(j) = 0 for all idempotents Eii(j) distinct from e1, we must have Eii(j) ∈ a := ass(S). Let
J be the ideal in R generated by the idempotent Eii(j) such that Eii(j) 6= e1. Then J ⊆ a and
J + rad(R) = R (since ni ≥ 2 and the rings Rj are simple rings), and so j′ + r = 1 for some
elements j′ ∈ J and r ∈ rad(R). This implies that the element j′ = 1 − r is a unit in R, and so
a = R, a contradiction.

(ii) The idempotents E11(i), i = 1, . . . , s are central idempotents: Notice that 1 = E11(1) +
· · ·+ Ess(s) = e1 + e2 is the sum of orthogonal idempotents. The ring R can be seen as a matrix
ring

R =

2⊕

i,j=1

Rij =

(
R11 R12

R21 R22

)
where Rij := eiRej.

Let S and a be as above. Since e1(R21 + R22) = 0 and R12e1 = 0, we must have the inclusion
R21 +R22 +R12 ⊆ a (as e1 ∈ S and S ∈ Denl(R)). Since R11 is a local ring and rad(R11) is a nil
ideal (since rad(R11) ⊆ rad(R)) we must have the inclusion

S ⊆

(
R∗

11 R12

R21 R22

)

where R∗
11 is the group of units of the ring R11. In more detail, suppose that the inclusion does

not hold, that is there exists an element s =

(
λ µ
ν δ

)
∈ S ∩

(
rad(R11) R12

R21 R22

)
. Using the fact

(Corollary 4.3, [6]) that if T ∈ Denl(R, ass(T )) then T +ass(T ) ∈ Denl(R, ass(T )), we may replace

S by S + a and then we may assume that S + a ⊆ S. Since

(
0 µ
ν δ

)
∈ R21 + R22 +R12 ⊆ a, the

element s′ =

(
λ 0
0 0

)
∈ S ∩

(
rad(R11) R12

R21 R22

)
. This is impossible as λ ∈ rad(R11) is a nilpotent

element.

We claim that R12 = 0. Let a ∈ R12, i.e. a =

(
0 a
0 0

)
then sa = 0 for some elements

s =

(
u x
y z

)
∈ S where u ∈ R∗

11. Now,

0 = sa =

(
u x
y z

)(
0 a
0 0

)
=

(
0 ua
0 ya

)
.

Then a = 0 since u ∈ R∗
11, i.e. R12 = 0. Using the same argument but for the idempotent e2,

we obtain that R21 = 0. This means that e1 and e2 are central orthogonal idempotents. By
symmetry, the idempotents E11(1), . . . , E11(s) are central. This means that R ≃

∏s
i=1 Rii is the

direct product product of local rings. Since rad(R) = NR, we must have rad(Ri) = NRi
for all i.

�

Corollary 5.2 Let R be a left Artinian ring. Then R is a weakly left localizable ring iff R =∏s
i=1 Ri is a direct product of local left Artinian rings.

Proof. Every left Artinian ring is a semilocal ring with rad(R) = NR. Now, the corollary
follows from Theorem 5.1. �

Corollary 5.3 Let R be a weakly left localizable, semilocal ring with rad(R) = NR, i.e. R =∏s
i=1 Ri is a direct product of local rings, by Theorem 5.1. Let 1 = e1+· · ·+es be the corresponding

sum of central orthogonal idempotents. Then
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1. max.Denl(R) = {S1, . . . , Ss} where Si = R1 × · · · ×R∗
i × · · · ×Rs for i = 1, . . . , s; ass(Si) =

R1 × · · · × 0× · · · ×Rs and S−1
i R ≃ Ri.

2. The core of Si is 0× · · · × 0×R∗
i × 0× · · · × 0.

3. For each i = 1, . . . , s, Sei := {1, ei} ∈ Denl(R, ass(Si)) and S−1
ei R ≃ S−1

i R ≃ Ri.

4. Nil(R) = NR.

Proof. 1 and 2. The ring Ri are local rings with rad(Ri) = NRi
. Therefore, the rings Ri are

left localization maximal rings, i.e. max.Denl(Ri) = {R∗
i }. Now, statements 1 and 2 follow from

Theorem 2.6.
3 and 4. Trivial . �
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