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We report a non-perturbative study of the effects of shear flows on turbulence reduction in a

decaying turbulence in two dimensions. By considering different initial power spectra and shear

flows (zonal flows, streamers and zonal flows, and streamers combined), we demonstrate how

shear flows rapidly generate small scales, leading to a fast damping of turbulence amplitude. In

particular, a double exponential decrease in the turbulence amplitude is shown to occur due to an

exponential increase in wavenumber. The scaling of the effective dissipation time scale se, previ-

ously taken to be a hybrid time scale se / s
2=3
X

sg, is shown to depend on types of shear flow as

well as the initial power spectrum. Here, sX and sg are shearing and molecular diffusion times,

respectively. Furthermore, we present time-dependent Probability Density Functions (PDFs) and

discuss the effect of enhanced dissipation on PDFs and a dynamical time scale s(t), which repre-

sents the time scale over which a system passes through statistically different states. Published by

AIP Publishing. https://doi.org/10.1063/1.5003014

I. INTRODUCTION

Large scale shear flows are one of the most ubiquitous

structures that naturally occur in a variety of physical systems

and play an essential role in determining the overall transport

in those systems. For example, stable shear flows can dramati-

cally quench turbulent transport by shear-induced-enhanced-

dissipation (see, e.g., Refs. 1–16). This occurs as a shear flow

distorts fluid eddies, accelerates the formation of small scales,

and dissipates them when a molecular diffusion becomes

effective on small scales. One remarkable consequence of this

turbulence quenching is the formation of transport barrier

where the transport is dramatically reduced. The transition

from low-confinement to high-confinement mode (L-H transi-

tion) in laboratory plasmas results from such formation of a

transport barrier by shear flows (e.g., see Refs. 1, 2, 5, and

16), which is believed to be crucial for a successful operation

of fusion devices. A similar transport barrier is also induced

by a shear layer in the oceans18 and by an equatorial wind in

the atmosphere.17 In the solar interior, a prominent large-scale

shear flow due to the radial differential rotation was shown to

lead to weak anisotropic turbulence and mixing in the tacho-

cline7,8—the boundary layer between the stable radiative inte-

rior and unstable convective layer. Our theoretical predictions

have been confirmed by various numerical simulations (e.g.,

see Refs. 19 and 20).

The purpose of this paper is to investigate the effect of

shear flows on the time-evolution of turbulence. In most of

the previous works, the main focus was on the calculation of

turbulent transport in a stationary state in a forced turbu-

lence. Different models of turbulence such as 2D and 3D

hydrodynamics and magnetohydrodynamic turbulence with/

without rotation and stratification as well as different types

of shear flows (e.g., linear, oscillatory, and stochastic shear

flows)5–9 were considered previously. In comparison, much

less work was done on the effect of shear flows on the

dynamics/time-evolution of turbulence, more precisely, how

the enhanced/accelerated dissipation is manifested in time-

evolution. A clear manifestation of shear flow effects on the

dynamics seems especially important, given an ongoing con-

troversy over the role of a shear flow in transport reduction,

e.g., whether it is due to the reduction in cross phase (via an

increased memory, as caused by waves) or the reduction in

the amplitude of turbulence via enhanced dissipation (e.g.,

see Refs. 16 and 20 and references therein). A decaying tur-

bulence provides us with an excellent framework in which

this can be investigated in depth. We thus consider a simple

decaying two-dimensional hydrodynamic turbulence model

and examine the transient relaxation of the vorticity by dif-

ferent types of shear flows. We present time-dependent

Probability Density Functions (PDFs) and discuss the effects

of enhanced dissipation by shear flows on PDFs and effective

dissipation time scale se. We also introduce a dynamical

time scale s(t), which measures the rate of change in infor-

mation associated with time-evolution; 1/s(t) represents the

rate at which a system passes through statistically different

states at time t (see Sec. III).

The simplicity of our model permits us to perform

detailed analysis for different power spectra and shear flows.

Nevertheless, our result that the dissipation and dynamical

time scale depend on power spectrum and different types of

shears is generic. The remainder of this paper is organised as

follows: Section II introduces our model and highlights the

importance of (i) a careful treatment of a diffusion term in a

PDF method and (ii) a non-perturbative treatment of shear

flows. Section III introduces dynamical time unit s(t).

Section IV discusses the effect of different shear flows on

the evolution of Gaussian PDFs for different power spectra.

Section V presents the analysis of one example of non-

Gaussian PDFs. Discussion and Conclusions are found in

Sec. VI. Appendixes contain some of the detailed mathemat-

ical derivations.
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II. PROBABILITY DENSITY FUNCTION (PDF)

We consider the evolution equation for the fluctuating

vorticity x in two dimensions (2D). In the presence of a

large-scale shear flow U, turbulence becomes weak,6–9 and

we can thus consider the following linear equation for fluctu-

ating vorticity x (¼ –r2/ where / is a stream function, or

electric potential in plasmas):

@t þ U � r½ �x ¼ �r2x : (1)

For simplicity, Eq. (1) is taken to be dimensionless after

appropriate rescaling of U, x, �, x, and t. Note that since our

main focus is on elucidating the effect of shear flows, scaling

relations and relative values are of interest. Despite the fact

that Eq. (1) is linear in x, the equation for p(x, x, t) is not

closed due to the dissipation term involving the second deriva-

tive. To show this, we express p(x, x, t) as the Fourier trans-

form of the average of a generating function Z ¼ exp

ðikxðx; tÞÞ (e.g., see Refs. 21–23) as

pðx; x; tÞ ¼ hdðxðx; tÞ � xÞi ¼ 1

2p

�
ð

dk e�ikðx�xðx;tÞÞ
�

¼ 1

2p

ð

dk e�ikxhZi; (2)

where the angular brackets denote the average. By differenti-

ating Z and using Eq. (1), we obtain

@tZ ¼ ikð@txÞZ ¼ ik �U � rxþ �r2x½ �Z: (3)

By using @jZ ¼ ikð@jxÞZ and @jjZ ¼ ikð@jjxÞZ � k2 ð@jxÞ2Z,
we recast Eq. (3)

@tZ þ U � rZ ¼ � @jjZ � @jðlnZÞ2
h i

Z

h i

¼ � r2Z þ k2ð@jxÞ2Z
h i

: (4)

The second equation in Eq. (4) shows that the diffusion term

gives rise to a nonlinear term in Z (½@jðlnZÞ2�Z). The Fourier
transform of h½@jðlnZÞ2�Zi would then induce a convolution

of p(x, x, t). On the other hand, the Fourier transform of

hk2ð@jxÞ2Zi in the last equation in Eq. (4) would require a

conditional probability.21 For statistically independent @jx
and Z, a linear equation can be written as

@tpþ U � rp ¼ �r2p� �hð@jxÞ2i@xxp: (5)

For a homogeneous turbulence, p(x, x, t) becomes indepen-

dent of x, reducing Eq. (5) to

@tp ¼ ��hð@jxÞ2i@xxp: (6)

In general, the treatment of the diffusion term involving � is

tricky and has often been done approximately, or the diffu-

sion term is simply neglected. Unfortunately, such an approx-

imation cannot be justified in the presence of a shear flow as

its effect is enhanced due to the accelerated formation of

small scales, demanding the exact treatment of this diffusion

term. For the same reason, the effect of U cannot be treated

perturbatively.

It is thus pivotal to solve Eq. (1) exactly in the Fourier

space by using a time-dependent wave number. For example,

let us consider a general type of a shear flow U¼ (Us,

Uy)¼ (–yXs, –xXz), where Uz and Us are orthogonal flows,

with their shearing rates Xz and Xs, respectively. We call Uz

zonal flows (ZF) and Us streamers in this paper. U has the

mean vorticity hxTi ¼ r � U ¼ ð�Xz þ XsÞẑ. In order to

capture the effect of shear non-perturbatively, we use the fol-

lowing time-dependent wavenumber (e.g., see Refs. 6–9)

xðx; tÞ ¼ ~xðk; tÞ exp fiðkxðtÞxþ kyðtÞyÞg ; (7)

where kx(t) and ky(t) satisfy

dkxðtÞ
dt

¼ Xzky
dkyðtÞ
dt

¼ Xzkx: (8)

Equations (7) and (8) give us a linear equation for the

Fourier component ~xðk; tÞ as
@ ~xðk;tÞ

@t ¼ ��½kxðtÞ2 þ kyðtÞ2�
~xðk; tÞ with the solution

~xðk; tÞ ¼ ~xðkð0Þ; t ¼ 0Þ exp ��

ðt

0

dt1 kxðt1Þ2 þ kyðt1Þ2
h i

� �

:

(9)

Equation (9) would then permit us to compute Z ¼ exp

ðikxðx; tÞÞ and thus p(x, x, t) in Eq. (2). Once we have p(x,

x, t), we can then find the equation for p(x, x, t).

III. DYNAMICALTIME UNIT s(t)

Having introduced a time-dependent PDF in Sec. II, we

now present how to utilize it to extract useful information

diagnostics. A key characteristic of non-equilibrium pro-

cesses is the variability in time (or in space), time-varying

PDFs manifesting the change in information content in the

system. We quantify the change in information by the rate at

which a system passes through statistically different

states.24–29 Mathematically, for a time-dependent PDF p(x, t)

for a stochastic variable x, we define the characteristic time-

scale s(t) over which p(x, t) temporally changes on average

at time t as follows:

E � 1

sðtÞ½ �2
¼
ð

dx
1

pðx; tÞ
@pðx; tÞ

@t

� �2

: (10)

As defined in Eq. (10), s(t) is a dynamical time unit, measur-

ing the correlation time of p(x, t). Alternatively, 1/s quanti-

fies the (average) rate of change of information in time. A

special case of s(t)¼ constant is a geodesic where the infor-

mation change is independent of time. Note that s(t) in Eq.

(10) is related to the second derivative of the relative entropy

(or Kullback-Leibler divergence) (see Appendix A and Ref.

26) and that E is the mean-square fluctuating energy for a

Gaussian PDF (see Ref. 27).

The total change in information between the initial and

final times, 0 and t, respectively, is then computed by the

total elapsed time in units of s(t) as LðtÞ ¼
Ð t

0
dt1
sðt1Þ. L (infor-

mation length) provides the total number of different states

that a system passes through from the initial state with the
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PDF p(x, t¼ 0) at time t¼ 0 to the final state with the PDF

p(x, t) at time t. For instance, in equilibrium, s(t1) is infinite

so that measuring dt1 in units of this infinite s(t1) at any t1
gives dt1/s(t1)¼ 0 and thus LðtÞ ¼ 0, manifesting no flow of

time in equilibrium. See Appendix A for the interpretation of

L from the perspective of the infinitesimal relative entropy.

We note that ‘ [and thus s(t)] is based on Fisher information

(cf. Ref. 30) and is a generalisation of statistical distance31–33

to time-dependent problems.

As an example, let us consider the Gaussian PDF of the

total vorticity xT ¼ hxTi þ x given by

pðxT;x; tÞ ¼
ffiffiffi

b

p

r

exp �bðxT � hxTiÞ2
h i

: (11)

Here, the angular brackets denote the average (hxi ¼ 0). b

¼ 1
2hx2i is the inverse temperature and b ! 1 for a very nar-

row PDF. By using the property of the Gaussian distribution

(e.g., hx4i ¼ 3hx2i2) (e.g., see Refs. 21 and 23), we can show
that E in Eq. (10) is (see Refs. 26 and 28)

EðtÞ ¼ 1

sðtÞ2
¼ 1

2

ð@tbÞ2

b2
þ 2bð@thxTiÞ2: (12)

The first term in Eq. (12) is due to the temporal change in

PDF width (/ b�1=2), while the second is due to the change

in the mean value measured in units of PDF width.

IV. GAUSSIAN PDFs

To gain a key insight, we start with the case where

~xðkðt ¼ 0ÞÞ satisfies the Gaussian statistics. Using Eq. (9),

we compute the average of the generating function Z ¼ exp

ðikxðx; tÞÞ as follows:

hZi ¼ h exp ðikxðx; tÞÞi ¼ exp � 1

2
k2hx2ðx; tÞi

� �

; (13)

where

hx2ðx; tÞi ¼
ð

dkðtÞdk0ðtÞeiðkðtÞþk0Þðt0Þ�xh~xðkðtÞÞ~xðk0ðtÞÞi:

(14)

Using Eq. (13) in Eq. (2) gives

pðx; x; tÞ ¼
ffiffiffi

b

p

r

exp �bx2
	 


: (15)

Here, b ¼ 1
2hx2ðx;tÞi is again the inverse temperature.

On the other hand, taking the time derivative Eq. (13)

and Fourier transform gives

@tpðx; x; tÞ ¼
1

2

@2

@x2
@thx2ðx; tÞi
	 


pðx; x; tÞ
	 


; (16)

consistent with Eq. (15).

In comparing the RHS of Eqs. (6) and (16), we have

1

2
@thx2ðx; tÞi ¼ ��hð@jxÞ2i ¼ �hxr2xi: (17)

We will shortly show that Eq. (17) indeed holds for the

Gaussian x(x, t) in a homogeneous turbulence. In the follow-

ing, we analyse the zonal case in Sec. IVA and the combined

shear flow cases Xz> 0 and Xs> 0 in Sec. IVB, and Xz> 0

and Xs< 0 in Sec. IVC.

A. ZF case: Xz> 0 and Xs5 0

For the case of zonal flow only (ZF), U¼ (0, �xXz), the

mean vorticity hxTi ¼ �Xz, and the time dependent wave-

number follows from Eq. (8) as

kxðtÞ ¼ kxð0Þ þ kyXzt; kyðtÞ ¼ kyð0Þ; (18)

Q1ðtÞ �
ðt

0

dt1jkðt1Þj2

¼ 1

3
ðkyXzÞ2t3 þ kykxð0ÞXzt

2 þ ðkxð0Þ2 þ k2yÞt: (19)

With Eq. (19), Eq. (9) is rewritten as

~xðkxðtÞ; kyÞ ¼ e��Q1ðtÞ ~xðkxð0Þ; kyÞ: (20)

To compute the mean square of x(x, t) from Eq. (20), we

assume a homogeneous turbulence at t¼ 0 so that the transla-

tional invariance in space constrains the correlation function

in the Fourier space as h~xðkð0ÞÞ~xðk0ð0ÞÞi ¼ dðkð0Þ þ k0ð0ÞÞ
wðkð0ÞÞ, where w(k(0)) is the initial power spectrum. Eq. (9)

then gives us

h~xðkðtÞÞ~xðk0ðtÞÞi ¼ dðkð0Þ þ k
0ð0ÞÞwðkðtÞÞ; (21)

wðkðtÞÞ ¼ e�2�Q1ðtÞwðkð0ÞÞ: (22)

Using Eqs. (21) and (22) in (14), we then obtain

hx2ðx; tÞi ¼
ð

dkwðkðtÞÞ: (23)

We now confirm that Eq. (17) holds for Eqs. (22) and (23)

since

@thx2i ¼ �2�

ð

dkjkðtÞj2wðkðtÞÞ;

hxr2xi ¼ �
ð

dkjkðtÞj2wðkðtÞÞ: (24)

In Secs. IVA 1–IVA 3, we discuss PDFs and characteristic

dissipation times scales by using different w(k(0)).

1. d-function power spectrum

The simplest case to consider is a d-function power

spectrum given by

wðkð0ÞÞ ¼ dðkxð0Þ � aÞdðky � bÞ/; (25)

where / is a constant. The power spectrum w(k(t))) contin-

ues to have a d-function with the peak at kxðtÞ ¼ aþ bXzt

and ky(t)¼ b given by Eq. (18) with kx(0)¼ a and ky(0)¼ b

wðkðtÞÞ ¼ e�2�Q1ðtÞdðkxðtÞ � a� bXztÞdðkyðtÞ � bÞ/: (26)
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Using (23) and (26), we have

hx2ðx; tÞi ¼ exp

�

� 2�

3
ððkyXzÞ2t3 þ 3kyXzt

2kxð0ÞÞ

� 2�ðkxð0Þ2 þ k2yÞt
�

/; (27)

providing b ¼ 1
2hx2ðx;tÞi in Eq. (15).

For a strong shear Xz � �k2y , the term
2�
3
ðkyXzÞ2t3 in Eq.

(27) causes the enhancement of dissipation over a usual

exponential viscous damping exp ð�2�ðkxð0Þ2 þ k2yÞtÞ. The
effective dissipation time scale se for such enhanced damp-

ing is found from 2�
3
ðkyXzÞ2s3e � 1 as

se � �k2yX
2
z

� ��1
3 � sgs

2
Xz

� �1
3

; (28)

where sg ¼ 1
�k2y

and sXz
¼ 1

Xz
are the viscous and shearing

time scales, respectively. We now compare se with the char-

acteristic time scale sðtÞ ¼ E�1=2 in Eq. (12) over which the

information changes. From E in Eq. (12), we have

ffiffiffiffiffiffiffiffiffiffiffi

2EðtÞ
p

¼ �jkðtÞj2

¼ � k2yX
2
z t
2 þ kykxð0ÞXztþ kxð0Þ2 þ k2y

� �

: (29)

The time scale sðtÞ ¼ E�1=2 / t�1 as t ! 1 represents a

very short dissipation time scale and enhanced dissipation

due to the accelerated formation of small scales and their

disruption. Clearly, unlike se, s(t) captures the dynamics of

the systems, i.e., the dependence of the rate of dissipation

on time. When Xz ¼ 0; sðtÞ ¼ �ðkxð0Þ2 þ k2yÞ in Eq. (29)

becomes constant, which is the case of a geodesic (see Sec.

III). The value of this constant s(t) however depends on the

initial wave number k(0), meaning that s(t) is not scale

invariant. This is to be contrasted to the case considered in

Sec. IV B 2. Scalings of se and s(t) are summarized in

Table I.

Figures 1(a) and 1(b) compare the time evolution of

p(x, t) for Xz¼ 2 in (a) and for Xz¼ 0 in (b) by using ky¼ 1,

kx(0)¼ 0, /¼ 1, and �¼ 0.1. The initial PDF is shown in

the bottom red curve and the time increases from the bot-

tom to the top curve as t¼ 0.6� n, where n ¼ 0; 1; 2; 3;
…; 10. The narrowing of PDF width in time in Fig. 1(a) is

in sharp contrast to a much smaller change in Fig. 1(b)

between t¼ 0 and t¼ 6. A much faster narrowing in Fig.

1(a) manifests the enhanced dissipation of the mean square

vorticity by Xz.

2. Constant power spectrum

se / X
�2=3
z in Eq. (28) is specific to the case of the d-

function power spectrum where there is unique wavenumber

at t¼ 0 that evolves according to Eq. (18). To understand

how se is affected in the presence of different k(0) modes,

we consider a constant spectrum by taking

w¼ constant¼/. Then, the power spectrum evolves in

time as follows:

wðkðtÞ; tÞ ¼ e�2�Q1ðtÞ/; (30)

where Q1(t) is given in Eq. (19). From Eqs. (23) and (30), we

obtain

TABLE I. Scalings of se and s(t) for the initial d-function and constant

power spectra in the case of ZF with the shearing rate Xz and hyperbolic

ZFþST with the shearing rate Xz¼Xs¼X. Gaussian power spectrum has

the scaling between d-function and constant power spectra.

Shear flows ZF: Xz ZFþST: Xz¼Xs¼X

d-function se / X
�2

3
z se / X

�1lnX

Spectrum sðtÞ / t�1 sðtÞ / e�Xt

Constant se / X
�1

2
z se / X

�1

Spectrum sðtÞ / t sðtÞ / ½X tanhðXtÞ��1

FIG. 1. Time evolution of p(x, t) in

panels (a) and (b) for the d-function

power spectrum in (25) and in panels

(c) and (d) for the Gaussian power

spectrum in Eq. (A1); t¼ 0.6� n

where n ¼ 0; 1; 2; 3;…; 10 increases

from the bottom to the top curves. The

bottom red curve is for the initial PDF.

a¼ 100, �¼ 0.1, kx(0)¼ 0, ky¼ 1, and

/¼ 1.
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hx2ðx; tÞi ¼ p

2�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ 1

3
X

2
z t
2

r / (31)

after performing the Gaussian integrals over ky and kx(0).

Equation (31) shows that Xz changes the scaling of hx2ðx; tÞi
from t�1 to t�2 by the enhanced dissipation. In this case, se is

found from �Xzs
2
e � 1 as

se / ðXz�Þ�
1
2: (32)

Thus, the dependence of se / X
�1=2
z on Xz is weaker than

se / X
�2=3
z for a d-function spectrum as the effect of shear-

ing is reduced in the case of multiple modes. This is basically

because the distortion of an eddy by shearing follows a wave

number specific time evolution [e.g., Eq. (18)]; the effect of

a shear on multiple modes is not coherent as eddies with dif-

ferent wave numbers evolve differently and is thus less

effective.

This reduced shearing effect can also be inferred from E
in Eq. (12), which becomes

EðtÞ ¼
4þ 2

3
Xzt

2

� �2

2t2 4þ 1

3
Xzt

2

� �2
: (33)

Thus, Eq. (33) gives the time scale sðtÞ ¼ E�1=2 / t for

Xzt� 1. This should be compared with sðtÞ / t�1 in the case

of a d-function power spectrum above (see Table I). The

increase of s(t) with t means a longer time scale of dissipa-

tion and thus it manifests that the dissipation becomes less

effective for large time. Similar results are shown for the

case of an anisotropic power spectrum with kx(0)¼ 0 in

Appendix B. We note that the mean square vorticity in Eq.

(31) apparently diverges at t¼ 0 due to the unlimited range

of the k integral for an initial constant power spectrum.

Mathematically, this problem is readily ratified by using a

localised spectrum in Sec. IVA3.

3. Gaussian power spectrum

The initial Gaussian power spectrum wð0Þ ¼ 1
ap

e�
1
a
ðkxð0Þ2þk2y Þ/ gives

wðkðtÞÞ ¼ 1

ap
e�

1
a
ðkxð0Þ2þk2y Þ�2�Q1ðtÞ/; (34)

where Q1(t) is given in Eq. (19); a represents the width of

the initial power spectrum; a ! 0 and a ! 1 recover the d-

function and constant power spectrum, respectively. To

understand the effect of Xz on the evolution of w(k(t)) in

(34), we use kxð0Þ ¼ kxðtÞ � Xzkyt and present w(k(t)) in Fig.

2. Without diffusion (�¼ 0), w(k(t)) in Fig. 2(a) shows the

generation of large kx wave number due to ZF shearing.

When a diffusion (�¼ 0.1) is included in Fig. 2(b), large kx
(and ky) modes quickly damp due to molecular dissipation,

w(k(t)) forming a sharp peak around kx¼ ky¼ 0.

On the other hand, using Eqs. (34) and (19) in (23), we

find

hx2ðx; tÞi ¼ 1

a

ffiffiffi

1

A

r

/; (35)

where A ¼ ð2�tþ a�1Þ2 þ 1
3
ð�tÞðXztÞ2½�tþ 2a�1�. We note

that in the limit of t ! 0 and t !1, Eq. (A1) is reduced to

hx2ðx; tÞit!0 ! /; hx2ðx; tÞit!1 !
ffiffiffi

3
p

a�Xzt2
/; (36)

respectively. The second equation in Eq. (36) recovers the

limit of a d-function power spectrum in Eq. (31) (up to an

unimportant small numerical factor). Eq. (35) very

FIG. 2. (a) Time evolution of power spectrum (t¼ 0, 1, 2, 3 increasing from left to right) for Xz¼ 2, Xs¼ 0, a¼ 100, /¼ 1, and �¼ 0. (b) The same as (a) but

for �¼ 0.1.
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conveniently shows the transition of the scaling of se from

/ X
�2=3
z in Eq. (28) to / X

�1=2
z in Eq. (32) as a increases

(see also above).

Figures 1(c) and 1(d) show the evolution of p(x, t) for

this Gaussian power spectrum for Xz¼ 2 and Xz¼ 0, respec-

tively. Here, parameter values are the same as those in Figs.

1(a) and 1(b) apart from a¼ 100. Comparing Fig. 1(c) with

Fig. 1(a), we see much slower narrowing of the PDFs as the

shearing effect is less effective in the presence of multiple k

modes. As observed in Figs. 1(a) and 1(b), the PDF in Fig.

1(d) for Xz¼ 0 narrows slower than that in Fig. 1(c).

However, comparing Figs. 1(b) and 1(d), the presence of

multiple k modes tends to promote dissipation (due to high

wave number modes).

B. Hyperbolic ZF1ST case: Xz> 0 and Xs> 0

Compared with the case of zonal flows, the combined

effect of Zonal Flows and STreamers (ZFþST) has been stud-

ied much less. We show below that the action of ZFþST can

lead to an exponentially fast formation of small scale struc-

ture. For U ¼ ð�yXs;�xXzÞ with Xs> 0 and Xz> 0, U has

the mean vorticity r� U ¼ ð�Xz þ XsÞẑ, which becomes

zero for Xz¼Xs. The solution to Eq. (18) can be found as

kyðtÞ ¼ �k
X

Xz

coshðXtþ hÞ; kxðtÞ ¼ �ksinhðXtþ hÞ; (37)

where

X ¼
ffiffiffiffiffiffiffiffiffiffi

XzXs

p

; �k kyð0Þ2 þ kxð0Þ2
X

2

X
2
z

" #1
2

; (38)

sinhðhÞ ¼ kxð0Þ
�k

; cosh h ¼ Xzkyð0Þ
X�k

: (39)

We focus on the case of Xz¼Xs¼X with zero mean vortic-

ity, in which case k2x þ k2y ¼ �k
2
cosh½2ðXtþ hÞ� follows from

Eq. (37). Thus, with the help of Eqs. (38) and (39), we obtain

Q2ðtÞ ¼
Ð t

0
dt1jkðt1Þj2 as

Q2ðtÞ ¼
1

4X
½ðkxð0Þ þ kyð0ÞÞ2ðe2Xt � 1Þ

þ ðkxð0Þ � kyð0ÞÞ2ð1� e�2XtÞ�: (40)

Since k(t) starting with k(0) changes in time according to

Eq. (37), in order to see how the power spectrum evolves in

time, we need to express Q2(t) in Eq. (40) in terms of k(t).

To this end, we solve Eq. (37) for kx(0) and ky(0) to find

kyð0Þ ¼ kyðtÞcoshðXtÞ � kxðtÞsinhðXtÞ and kxð0Þ ¼ kxðtÞ
coshðXtÞ � kyðtÞsinhðXtÞ, and thus

kxð0Þ þ kyð0Þ ¼ kxðtÞ þ kyðtÞ
	 


e�Xt;

kxð0Þ � kyð0Þ ¼ kxðtÞ � kyðtÞ
	 


eXt:
(41)

By using Eq. (41) in Eq. (40), we have

Q2ðtÞ ¼
1

4X
½ kxðtÞ þ kyðtÞ
	 
2ð1� e�2XtÞ

þ kxðtÞ � kyðtÞ
	 
2ðe2Xt � 1Þ�: (42)

Interestingly, Eq. (42) shows that the dissipation Q2(t) takes

its minimum value when kx(t)¼ ky(t). Furthermore, from Eq.

(41), we also find

kxð0Þ2 þ kyð0Þ2 ¼
1

2
½ðkxðtÞ � kyðtÞÞ2e2Xt

þ ðkxðtÞ þ kyðtÞÞ2e�2Xt�; (43)

which also takes its minimum along kx(t)¼ ky(t). The minimum

of Eqs. (42) and (43) along kx(t)¼ ky(t) is later shown to give a

peak in the power spectrum w(k(t)) in Sec. V (see Fig. 3). We

refer to kx(t)¼ ky(t) as the principle direction in the following.

1. d-function power spectrum

For a d-function power spectrum given by Eq. (25), the

power spectrum w(k(t)) continues to have a d-function with

the peak at kx(t) and ky(t) given by Eq. (37) with kx(0)¼ a

and ky(0)¼ b. This leads to

hx2ðx; tÞi ¼ exp

�

� �

2X
½ðkxð0Þ þ kyð0ÞÞ2ðe2Xt � 1Þ

� ðkxð0Þ � kyð0ÞÞ2ðe�2Xt � 1Þ�
�

/: (44)

From Eq. (44), we find the effective diffusion time se

se �
1

2X
ln

2X

�jk0j2

 !

: (45)

se in Eq. (45) is smaller than Eq. (28) for a sufficiently large

X, with a stronger dependence X
�1lnX on X, in comparison

with X
�2=3
z in ZF case. Furthermore, due to the double expo-

nential decrease in hx2i; sðtÞ in Eq. (12) is reduced exponen-

tially fast as

sðtÞ / e�Xt: (46)

The exponentially decreasing s(t) in Eq. (46) reflects a very

efficient dissipation by ZFþST. The evolution of PDF is

shown in Fig. 3 for X¼ 2 in (a) and X¼ 0 in (b). The time

t¼ 0.2� n, where n¼ 0, 1, 2, 3, 4, and 5 increases from the

bottom to the top curves. The bottom red curve is for the ini-

tial PDF. Comparing Fig. 3(a) with Fig. 1(a), we see a much

faster narrowing of the PDFs in the hyperbolic ZFþST case

due to a much faster dissipation. (Note that the total time span

t¼ [0, 1] in Fig. 3 is much smaller than t¼ [0, 6] in Fig. 1.)

The change in Fig. 3(b) with X¼ 0 is too small to be seen.

2. Constant power spectrum

For an initial constant power spectrum w(0)¼/, the

power spectrum again evolves as wðkðtÞ; tÞ ¼ e�2�Q2ðtÞ/,
where Q2 is given in Eq. (40). Therefore, by using Eqs. (23)

and (40), we find

hx2ðx; tÞi ¼ 1

2

ð

dpdq exp

� � �

2X
p2ðe2Xt � 1Þ þ q2ð1� e�2XtÞ
	 


� �

/

¼ X/

2p�sinhðXtÞ : (47)
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Here, we performed the integrals over p � kx(0)þ ky(0) and

q � kx(0) – ky(0).

Compared with the d-function power spectrum, the

effect of shear flow is reduced from double exponential to

exponential. For Xt � 1; hx2ðx; tÞi � X

2p� e
�Xt/, giving an

effective diffusion time

se � X
�1: (48)

Interestingly, s(t) in this case has a similar dependence on X

since

sðtÞ ¼ 1

X tanhðXtÞ ; (49)

approaching a constant value X
�1 (!) for t � X

�1. This is

another example of a geodesic, which is more interesting

than the case of Xz¼ 0 in Eq. (29) because Eq. (49) is

induced by non-zero X in the presence of different k(t)

modes which evolve from an initial constant power spec-

trum. In fact, s(t) � X
�1 explicitly shows that X is the very

cause of information change. On the other hand, in compari-

son with the exponentially decreasing s(t) in Eq. (46), Eq.

(49) again illustrates the reduced shearing effect due to the

presence of multiple k modes. Finally, we note that the

divergence at t¼ 0 is due to the unbounded power spectrum

as in the case of Eq. (31). Scalings of se and s(t) are summa-

rized in Table I.

3. Gaussian power spectrum

For wð0Þ ¼ 1
ap
e�

1
a
ðkxð0Þ2þkyð0Þ2Þ/, we have

wðkðtÞÞ ¼ 1

ap
e�

1
a
ðkxð0Þ2þkyð0Þ2Þ�2�Q2ðtÞ/; (50)

where Q2 is given by Eq. (40). By using Eqs. (42) and (43)

in Eq. (50), we present the evolution of the power spectrum

w(k(t)) in Fig. 4 for X¼ 2, where time increases from left to

right as t¼ 0, 0.6, 1.2, and 1.8. Without diffusion (�¼ 0),

w(k(t)) in Fig. 4(a) shows a fast reduction in w(k(t)) along

kx(t)þ ky(t)¼ 0, with the peak forming along the principle

direction kx(t)¼ ky(t). When diffusion (�¼ 0.1) is included

in Fig. 4(b), modes of large wavenumber also damp along

the principle direction in time due to the molecular dissipa-

tion although the damping is weaker compared to that along

kx(t)þ ky(t)¼ 0. This is because the dissipation Q2(t) in Eq.

(42) and kx(0)
2þ ky(0)

2 in Eq. (43) are minimized along

kx(t)¼ ky(t), as noted previously.

Now, Eq. (50) leads to the mean square vorticity

hx2ðx; tÞi ¼ 2

ap

ð

dpdq exp

�

� �

2X

�

p2ðe2Xt � 1Þ

þ q2ð1� e�2XtÞ � 1

a
ðp2 þ q2Þ

��

/

¼ 2

a
ffiffiffiffiffiffi

AB
p ; (51)

where

A ¼ �

2X
ðe2Xt � 1Þ þ 1

a
; B ¼ �

2X
ð1� e�2XtÞ þ 1

a
: (52)

se / X
�1 is thus similar to Eq. (48) for t � X

�1. However,

in contrast to Eq. (49), s(t) becomes constant for t � X
�1

only for a sufficiently large a, that is, in the limit of a con-

stant power spectrum. Figure 3(c) shows the evolution of

p(x, t) for this case using the same parameter values

Xz¼Xs¼X¼ 2 as in Fig. 3(a) apart from a¼ 100.

Comparing Fig. 3(c) with Fig. 3(a), we see much slower nar-

rowing of the PDFs as the shearing effect is less effective in

the presence of multiple k modes, as observed in Fig. 1. The

evolution of p(x, t) for X¼ 0 is shown in Fig. 3(d), which

hardly changes.

FIG. 3. Time evolution of p(x, t) for

the d-function power spectrum in Eq.

(44) in panels (a) and (b) and for the

Gaussian power spectrum in Eq. (51)

in panels (b)–(d); t¼ 0.2� n, where

n¼ 0, 1, 2, 3, 4, 5 increases from the

bottom to the top curves. The bottom

red curve is for the initial PDF.

a¼ 100, �¼ 0.1, and /¼ 1.
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C. Elliptic ZF1ST case

For the hyperbolic ZFþST case in Sec. IVB, the sign of

zonal flow and streamer shear is the same. When they have

different signs, ZFþST leads to a rotating wave number. To

see this, we consider U ¼ ðyXs;�xXzÞ with Xs> 0 and

Xz> 0 which has the nonzero mean vorticity r� U

¼ �ðXz þ XsÞẑ. For this ZFþST, we find the solution to Eq.

(18) as kyðtÞ ¼ �k X

Xz
cos ðXtþ hÞ and kxðtÞ ¼ �k sin ðXtþ hÞ,

where X ¼
ffiffiffiffiffiffiffiffiffiffi

XzXs

p
; �k ¼ ½kxð0Þ2 þ kyð0Þ2 X

2
z

X
2�

1
2, and sin ðhÞ

¼ kxð0Þ
�k
; cosh¼ Xzkyð0Þ

X�k
. When Xz ¼ Xs ¼ X; k2x þ k2y ¼ kxð0Þ2

þkyð0Þ2 is a constant in time, with no enhancement of dissi-

pation. However, for Xz 6¼Xs, k2x þ k2y ¼ �k
2½ sin2ðXtþ hÞ

þXs

Xz
cos2ðXtþ hÞ�. Although the overall dissipation may not

be significantly enhanced by this shear flow, there is an inter-

esting effect on the dynamics due to oscillatory dissipation,

kx or ky, which provides a periodic background (or potential).

This is discussed in our accompanying paper.34

V. NON-GAUSSIAN PDFs

In Sec. IV, we investigated the effect of shear flows on

the evolution of the Gaussian PDFs and power spectra. The

main effect was the shift of power to larger wavenumber,

accelerating dissipation, and narrowing PDF width. We now

extend our study to a non-Gaussian case to examine the

effect of shear flows on the form of PDF. Although there are

many possible causes for non-Gaussian PDFs, we consider

one example of an inhomogeneous turbulence. That is, we

drop the assumption of homogeneous turbulence and instead

prescribe the profile of the initial vorticity fluctuation as

~xðkð0Þ; t ¼ 0Þ ¼ 1

ap
e�

1
a
ðkxð0Þ2þkyð0Þ2Þ;

xðx; t ¼ 0Þ ¼ e�
a
4
ðx2þy2Þ;

(53)

where a is a positive random variable. Note that when a¼ 0,

Eq. (53) gives a constant x(x, 0) while the nonzero constant a

(> 0) gives the typical length scale l of the profile of the initial

vorticity fluctuation as l � a�1=2. A random positive a makes

the profile of the initial vorticity fluctuation on different length

scales. By considering the hyperbolic shear flow considered in

Sec. IVB, we have

~xðkðtÞ; tÞ ¼ 1

ap
e�

1
a
ðkxð0Þ2þkyð0Þ2Þ��Q2ðtÞ; (54)

where Q2(t) is given in Eq. (40). In order to take the inverse

Fourier transform of Eq. (54) to find x(x, t), we first write

Eq. (37) in terms of p¼ kx(0)þ ky(0) and q¼ –kx(0)þ ky(0)

as kyðtÞ ¼ 1
2
½peXt þ qe�Xt� and kxðtÞ ¼ 1

2
½peXt � qe�Xt� so

that

kðtÞ � x ¼ 1

2
peXtz1 þ qe�Xtz2
	 


; (55)

where

z1 ¼ xþ y; z2 ¼ y� x: (56)

Then, by using Eqs. (40), (54), and (55), we obtain xðx; tÞ
¼
Ð

dkðtÞ eikðtÞ�x ~xðkðtÞ; tÞ as

xðx; tÞ ¼ 1

2a
ffiffiffiffiffiffiffi

CD
p exp � e2Xtz21

8C
� e�2Xtz22

8D

� �

: (57)

FIG. 4. (a) Time evolution of power spectrum (t¼ 0, 0.6, 1.2, 1.8 increasing from left to right) for Xz¼Xs¼X¼ 2, a¼ 100, /¼ 1, and �¼ 0. (b) The same as

(a) but for �¼ 0.1.
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Here

C ¼ �

4X
ðe2Xt � 1Þ þ 1

2a
; D ¼ �

4X
ð1� e�2XtÞ þ 1

2a
: (58)

As t ! 0; C ! 1
2a
; D ! 1

2a
, and Eq. (57) recovers Eq. (53).

For t 6¼ 0, C and D depend on the relative magnitude of 4�/X
and 1/2a.

Before proceeding to random a, we note that for a con-

stant value of a, Eq. (57) shows the anisotropic distortion

and decay of the profile of vorticity fluctuation by shear

flows. The time evolution of x(x, t) for constant a¼ 100 is

shown in Fig. 5, where time t¼ 0, 5, 1, and 1.5 increases

from left to right. Of notable is the flattening and elongation

of x(x, y, t) along z1¼ xþ y¼ 0, with the formation of a

sheet like structure. This is quite similar to what is seen in

Fig. 4, recalling that a narrow k profile corresponds to a

broad x profile.

When a (> 0) is random, the statistics of x(x, t) depends

on a as

pðx; x; tÞ ¼












da

dx













pðaÞ: (59)

In particular, at t¼ 0, Eq. (53) gives a ¼ �4ln ðxðt ¼ 0ÞÞ=
r2, where r2¼ x2þ y2, leading to

pðx; x; 0Þ ¼ 4

xr2
pðaÞ: (60)

For our purpose, it suffices to assume that a is uniformly

distributed within a certain range. Two cases of our interest are

the limit of weak inhomogeneity, where (i) a ¼ ½0; 2X� e�2Xt�
and of a strong inhomogeneity and (ii) a ¼ ½2X� ; ac� with

ac >
2X
� . In case (i), the shearing does not have much influence

on the scale of inhomogeneity, while in case (ii), it does have a

significant effect. Starting our analysis in case (i), we approxi-

mate C � D � 1
2a
, and consequently

xðx; tÞ � exp � a

4
e2Xtz21 þ e�2Xtz22
� �

� �

¼ exp � a

4
G1

� �

;

(61)

where G1 ¼ e2Xtz21 þ e�2Xtz22. Eqs. (59) and (61) will then

give us

pðx; x; tÞ ¼ 2�

xXðz21 þ e�4Xtz22Þ
; (62)

for a < 2X
� e�2Xt. In Eq. (62), we used pðaÞ ¼ �e2Xt

2X
for

a ¼ ½0; 2X� e�2Xt�. A rapid decrease of p(x, x, t) in Eq. (62)

for large z21 is similar to the elongation of the vorticity profile

along z2, observed in Fig. 5. We note here that the condition

on a < 2X
� e�2Xt is translated into xðx; tÞ > exp ½� XG1

2� e�2Xt�
� exp ½� X

2� ðz21 þ e�4Xtz22Þ�:
The case (ii) where a ¼ ½2X� ; ac�, we have xðx; tÞ

� 2X
a� e

�Xt�G2 , where G2 ¼ X

2� ðz21 þ e�2Xtz22Þ. Thus,

pðx; x; tÞ / 2X

a�x2
e�Xt�G2 ; (63)

for x ¼ ½2X�ac e
�Xt�G2 ; e�Xt�G2 �, becoming very small for large

z21. Compared with Eq. (60) or (62), p(x, x, t) / x�2 in Eq.

(63) drops more rapidly for large x. Interestingly, this is sim-

ilar to the narrowing of Gaussian PDFs by shear flows shown

in Sec. IV. Finally, going back to our discussion on the PDF

method in Sec. II, we can compute the first three terms in

Eq. (5) using our p(x, x, t) above to realize that a correct

form of the last term in Eq. (5) is quite complicated and non-

linear in p(x, x, t), as noted in Sec. II. The diffusion term in

Eq. (1) cannot be simply neglected and needs to be treated

very carefully.

VI. DISCUSSION AND CONCLUSIONS

We have presented the first analytical study of the

effects of shear flows on enhanced dissipation in a decaying

turbulence in 2D by incorporating the effects of shear flows

non-perturbatively. We considered different initial power

spectra and shear flows (ZF, ZFþST) and clearly demon-

strated how shear flows induce the rapid formation of small

scales (large wave number modes), significantly enhancing

the dissipation of turbulence. We presented time-dependent

PDFs and discussed the effects of enhanced dissipation by

shear flows on PDFs and effective dissipation time scale se.

While previous works advocated a hybrid time scale se
/ X

�2=3sg (e.g., Ref. 16), where sg is the time scale due to a

molecular diffusion, we showed that the dependence of se on

X (Xz) varies with initial power spectra and also types of

shear flows. In addition, we demonstrated the utility of a

dynamical time scale s(t) in understanding the effect of

shears, which quantifies the rate of the change in information

(the rate at which a system passes through statistically differ-

ent states).

Overall, se and s(t) tend to be much smaller for an initial

d-function power spectrum and for hyperbolic ZFþST. ZF

FIG. 5. Time evolution of x(x, y, t) for Xz¼Xs¼X¼ 2, t¼ 0, 0.5, 1, 1.5 increasing from left to right; a¼ 2, �¼ 0.1, and /¼ 1.
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can dramatically reduce s(t) for an initial d-function power

spectrum but not for a constant power spectrum. This was

however obtained in the case where the mean vorticity hxTi
is independent of time.35 A time-varying hxTi ¼ �Xz,

which is more likely in real situations (e.g., time-varying

zonal flows), would however make s(t) very small (see

Appendix C), with interesting consequences to be investi-

gated. Finally, hyperbolic ZFþST was shown to cause an

exponential increase in wavenumber, with a double exponen-

tial decrease in hx2i.
The preferential dissipation by shear flows in a certain

direction can lead to a strongly anisotropic turbulence, as

also shown in Refs. 7–9 (with a possibility of the reduction

in dimension), in analogy to the maintenance of a 2D flow in

a forced 3D rotating turbulence.36 In 3D, the vortex stretch-

ing (which is absent in 2D) could somewhat compensate the

severe quenching of vorticity amplitude. However, for a lin-

ear shear flow U ¼ �xXŷ, Eq. (D14) in Appendix D (see

also Ref. 8) shows that the Fourier components of the veloc-

ity damp in time as ~vx / t�2e��Qðt;0Þ; ~vz / e��Qðt;0Þ, and ~vy /
e��Qðt;0Þ to leading order for t > kxð0Þ

kyX
. Here, Qðt; 0Þ

¼ 1
3
ðkyXÞ2t3 þ kykxð0ÞXt2 þ ½kxð0Þ2 þ k2y þ k2z �t. Therefore,

in addition to the enhanced dissipation e–�Q(t,0) through the

time-dependent wave number, vx undergoes the additional

algebraic (/t�2) quenching. The vorticity fluctuation ~x would

then be at most /te–�Q(t,0) in y and z directions. Investigation

of the effect of different shear flows on 3D turbulence, the

extension to different models such as interchange turbu-

lence,34 magnetic dissipation, and dynamos, and implications

for extreme events37 are left for future work.

APPENDIX A: RELATION BETWEEN L AND RELATIVE

ENTROPY

We first show the relation between s(t) in Eq. (10) and

the second derivative of the relative entropy (or Kullback-

Leibler divergence) Dðp1; p2Þ ¼
Ð

dx p2lnðp2=p1Þ, where

p1¼ p(x, t1) and p2¼ p(x, t2) as follows:

@

@t1
Dðp1; p2Þ ¼ �

ð

dxp2
@t1p1
p1

; (A1)

@2

@t21
Dðp1; p2Þ ¼

ð

dxp2
ð@t1p1Þ2

p21
�
@2
t1
p1

p1

" #

; (A2)

@

@t2
Dðp1; p2Þ ¼

ð

dx @t2p2 þ @t2p2ðlnp2 � lnp1Þ
	 


; (A3)

@2

@t22
Dðp1; p2Þ ¼

ð

dx @2
t2
p2 þ

ð@t2p2Þ2
p2

þ @2
t2
p2ðlnp2 � lnp1Þ

" #

:

(A4)

By taking the limit where t2 ! t1¼ t (p2 ! p1¼ p) and by

using the total probability conservation (e.g.,
Ð

dx@tp ¼ 0),

Eqs. (D3) and (D5) lead to

lim
t2!t1¼t

@

@t1
Dðp1; p2Þ ¼ lim

t2!t1¼t

@

@t2
Dðp1; p2Þ ¼

ð

dx@tp ¼ 0;

while Eqs. (D4) and (D6) give

lim
t2!t1¼t

@2

@t21
Dðp1; p2Þ ¼ lim

t2!t1¼t

@2

@t22
Dðp1; p2Þ ¼

ð

dx
ð@tpÞ2
p

:

To link this to information length L, we then express

D(p1, p2) for small dt¼ t2 – t1 as

Dðp1; p2Þ ¼
ð

dx
ð@t1pðx; t1ÞÞ2

p

" #

ðdtÞ2 þ OððdtÞ3Þ; (A5)

where O((dt)3) is a higher order term in dt. We define the

infinitesimal distance (information length) dl(t1) between t1
and t1þ dt by

dlðt1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dðp1; p2Þ
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð

dx
ð@tpÞ2
p

s

dtþ OððdtÞ3=2Þ: (A6)

The total change in information between time 0 and t is then

obtained by summing over dt(t1) and then taking the limit of

dt ! 0 as

LðtÞ ¼ lim
dt!0

dlð0Þ þ dlðdtÞ þ dlð2dtÞ þ dlð3dtÞ þ � � �dlðt� dtÞ½ �

¼ lim
dt!0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dðpðx; 0Þ; pðx; dtÞÞ
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dðpðx; dtÞ; pðx; 2dtÞÞ
p

þ � � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dðpðx; t� dtÞ; pðx; tÞÞ
p

�

/
ðt

0

dt1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð

dx
ð@t1pÞ2

p

s

: (A7)

APPENDIX B: ANISOTROPIC CONSTANT POWER
SPECTRUM

To demonstrate an incoherent shearing effect in the

presence of multiple modes, it is interesting to consider an

isotropic power spectrum by keeping a constant spectrum in

ky but taking kx(0) � 0. The mean square vorticity is obtained

from Eq. (31) by taking kx(0) ! 0, with the result

hx2ðx; tÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

2�t 1þ 1

3
X

2
z t
2

� �

v

u

u

u

t

/: (B1)

Thus, hx2ðx; tÞi / t�3=2, decreasing less rapidly than

hx2ðx; tÞi / t�2 in Eq. (31). On the other hand, the effective

dissipation time se is similar to Eq. (32).

APPENDIX C: SLOWLY TIME-VARYING ZF

We assume Xz ¼ Xz0e
�t=s0 and kx0 � 0. Then, we have

kxðtÞ ¼
ðt

0

dt1kyXzðt1Þ ¼ kyXz0s0ð1� e�t=s0Þ; (C1)

Q1ðtÞ ¼ ðkyXz0s0Þ2
s0

3
1� e�t=s0½ �3 þ k2y t

� 1

3
ðkyXz0Þ2t3 þ k2y t; (C2)
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@tXz � � 1

s0
Xz0; (C3)

for t 	 s0. Thus, Eqs. (12), (31), and (33) with the help of

Eqs. (C2) and (C3) give us

E ¼ 1

sðtÞ2
¼ 1

2

ð@tbÞ2

b2
þ 2bð@tXzÞ2

�
4þ 2

3
Xzt

2

� �2

2t2 4þ 1

3
Xzt

2

� �2
þ
2�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ 1

3
Xz0t

2

r

p/s20
X

2
z0: (C4)

The second term is due to the change of Xz measured in the

unit of the very small PDF width / b�
1
2 / hx2i12. As time

increases, the second term obviously makes a significant

contribution.

APPENDIX D: 3D HYDRODYNAMIC TURBULENCE

In 3D, the main governing equations for the total veloc-

ity u¼ vþU are8

@tuþ u � ru ¼ �rpþ �r2
uþ f; (D1)

r � u ¼ 0; (D2)

where f is a small scale forcing in general. By using

U ¼ �xXŷ,

@tv̂x ¼ �ikxp̂ þ f̂ x; (D3)

@tv̂y � Xv̂x ¼ �ikyp̂ þ f̂ y; (D4)

@tv̂z ¼ �ikzp̂ þ f̂ z; (D5)

0 ¼ kxv̂x þ kyv̂y þ kzv̂z; (D6)

where the second term in Eq. (D4) is due to the vortex

stretching. Here, ŵ and ~w for w¼ vi, p, and f are defined as

wðx; tÞ ¼ ~wðk; tÞ exp fiðkxðtÞxþ kyyþ kzzÞg; (D7)

ŵ � ~w exp f�ðk3x=3kyXþ k2HtÞg; (D8)

where k2H ¼ k2y þ k2z ; kxðtÞ ¼ kxð0Þ þ Xkyt. Now, to solve

coupled equations (D3)–(D6), we introduce a new time vari-

able s¼ kx/kyþXt and rewrite them as

X@sv̂x ¼ �iskyp̂ þ f̂ x; (D9)

X@sv̂y � Xv̂x ¼ �ikyp̂ þ f̂ y; (D10)

X@sv̂z ¼ �ikzp̂ þ f̂ z; (D11)

0 ¼ sv̂x þ kyv̂y þ
kz

ky
v̂z: (D12)

A straightforward, but rather long, algebra then gives us the

solutions in the following form:

v̂xðsÞ ¼
1

cþ s2

ðs

ds1h1ðs1Þ;

v̂zðsÞ ¼
ðs

ds1
~b

s1
v̂x �

~b

s1
f̂ x þ f̂ z

" #

;

¼ �
~bs

c
v̂x þ

ðs

ds1
1

c

� h2ðs1Þ �
~b

c1=2
tan�1 s

ffiffiffi

c
p � tan�1 s1

ffiffiffi

c
p

� �

h1ðs1Þ
" #

;

v̂yðsÞ ¼ �sv̂xðsÞ � ~buv̂zðsÞ;

p̂ ¼ X

ky
ð�@sv̂x þ f̂ xÞ; (D13)

where ~b ¼ kz=ky; c¼ 1þ ~b
2
; h1 ¼ ð1þ ~b

2Þf̂ x � sf̂ y � s~b f̂ z,

and h2 ¼�~b f̂ y þ f̂ z. Finally, going back to the original vari-

able kx¼kys, we obtain

~vxðkðtÞ; tÞ ¼
ð

dt1d
3k1

k2y

k2
ĝðk; t;k1; t1Þe��Qðt;t1Þ ~h1ðk1; x; t1Þ;

~vzðkðtÞ; tÞ ¼ � kxkz

k2H
~vxðkðtÞ; tÞ þ

ð

dt1d
3k1ĝðk; t;k1; t1Þ

� e��Qðt;t1Þ ~h2ðk1; x; t1Þ

�
k2y

k2H

~h2ðk1; x; t1Þ �
kzk

2
y

jk3Hj

"

� tan�1 kx

jkHj

� �

� tan�1 k1x

jk1Hj

� �� �

~h1ðk1; x; t1Þ
�

;

~vyðkðtÞ; tÞ ¼ � kx

ky
~vxðkðtÞ; tÞ �

kz

ky
~vzðkðtÞ; tÞ : (D14)

Here, Qðt; t1Þ ¼
Ð t

t1
dt0½k2xðt0Þ þ k2H� ¼ ½k3x � k31x�=3kyXþ k2H

ðt� t1Þ; k2H ¼ k2y þ k2z ; k
2 ¼ k2H þ k2x ; ĝðk; t; k1; t1Þ ¼ dðky

�k1yÞdðkz� k1zÞd½kx�k1x� k1y ðt� t1ÞX�; ~h1 ¼ð1þ k2z =k
2
yÞ~f x

�kx~f y=ky� kxkz~f z=k
2
y ;

~h2 ¼�kz~f y=kyþ ~f z. By taking ~f iðt1Þ
¼~viðt1Þdðt1Þ, we obtain the homogeneous solution without

the forcing.
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