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Key Points: 

 The monsoon season runoff hydrograph from Khumbu Glacier displays progressive 
changes in diurnal timing and recession characteristics.   

 We propose that observed hydrological behavior results from seasonal evolution of 
supraglacial ponds and connections. 

 Predicted expansion of debris-covered areas and pond extents will influence downstream 
timing, availability and quality of meltwater in the Himalaya. 
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Abstract   

 

Meltwater and runoff from glaciers in High Mountain Asia is a vital freshwater resource for one 1 

fifth of the Earth’s population. Between 13% and 36% of the region’s glacierized areas exhibit 2 

surface debris cover and associated supraglacial ponds whose hydrological buffering roles 3 

remain unconstrained. We present a high-resolution meltwater hydrograph from the extensively 4 

debris-covered Khumbu Glacier, Nepal, spanning a seven-month period in 2014. Supraglacial 5 

ponds and accompanying debris cover modulate proglacial discharge by acting as transient and 6 

evolving reservoirs. Diurnally, the supraglacial pond system may store >23% of observed mean 7 

daily discharge, with mean recession constants ranging from 31 to 108 hours. Given projections 8 

of increased debris-cover and supraglacial pond extent across High Mountain Asia, we conclude 9 

that runoff regimes may become progressively buffered by the presence of supraglacial 10 

reservoirs. Incorporation of these processes is critical to improve predictions of the region’s 11 

freshwater resource availability and cascading environmental effects downstream. 12 

 

13 
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1 Introduction 14 

An estimated 1.4 billion people depend on freshwater sourced from snow and ice melt in High 15 

Mountain Asia [Immerzeel et al., 2010]. Although highly variable across the region, this 16 

meltwater typically contributes between 20% and 50% of the total annual runoff [Bookhagen and 17 

Burbank, 2010; Immerzeel and Bierkens, 2012; Lutz et al., 2014]. Contemporary observations 18 

[Bolch et al., 2012; Kaab et al., 2012; Pritchard, 2017; Brun et al., 2017] and predicted trends 19 

[e.g. Shea et al., 2015a; Soncini et al., 2016] of glaciers in the Himalaya demonstrate declining 20 

ice volumes, but highlight uncertainty over the associated glacio-hydrological impacts and 21 

consequent water stress arising from climate change. One important cause of this ambiguity is 22 

the presence of a supraglacial debris mantle present on many of the region’s glaciers, which 23 

covers up to 36% of the glacierized area in the Everest region [Bolch et al., 2012; Kaab et al., 24 

2012; Scherler et al., 2011; Thakuri et al., 2014]. This debris mantle commonly causes 25 

downglacier ablation areas to exhibit low surface gradients and velocities [e.g. Quincey et al. 26 

2007; Scherler et al., 2011; Thompson et al., 2016; Salerno et al., 2017] and its overall extent is 27 

increasing and predicted to expand further [Rowan et al., 2015; Thakuri et al., 2014; Bolch et al., 28 

2008]. Supraglacial debris exerts a critical influence on glacier response to climate forcing 29 

because, dependent on its thickness, debris can either accelerate or retard ablation [Østrem 1959; 30 

Evatt et al., 2015]. This effect, coupled with the dynamic topography of the glacier surface, 31 

promotes highly heterogenous ablation and the formation of surface lakes and ponds, which are a 32 

common feature of receding debris-covered glaciers [Reynolds, 2000; Benn et al., 2012; 33 

Gardelle et al., 2011; Watson et al., 2016; Bassnet et al., 2013; Miles et al., 2016, 2017a,b; 34 

Narama et al., 2017]. However, the processes and causal relationships underpinning the spatial 35 

distribution of supraglacial ponds remain unclear [Salerno et al., 2017].  36 

Supraglacial ponds are ‘hotspots’ of glacier ablation [Mertes et al., 2016] due to their reflective 37 

and thermal characteristics [Sakai et al., 2000; Benn et al., 2001; Miles et al., 2016; Watson et 38 

al., 2017a] and the presence of bare-ice cliffs associated with pond formation and growth [Sakai 39 

et al., 2002; Brun et al., 2016; Watson et al., 2017b]. Consequently, ponds may accelerate glacier 40 

thinning and recession and act as temporary meltwater storage reservoirs [Benn et al., 2001, 41 

2012]. Ponds on debris-covered glaciers are commonly either transient features due to inception 42 

or collapse of near-surface or shallow englacial drainage routes and consequent drainage, or 43 
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appear ‘perched’ in closed basins where efficient flowpaths are absent [Reynolds, 2000; Benn et 44 

al., 2001; Miles et al., 2017b; Watson et al., 2017a]. Seasonally, ponds on Himalayan glaciers 45 

typically grow both in area and depth [Watson et al., 2017a], attaining maximum extent mid-46 

monsoon and declining in size thereafter [Miles et al., 2017a; Narama et al., 2017; Watson et al., 47 

2016]. Inter-annually, debris redistribution and change in surface topography results in variation 48 

in pond positions [Narama et al., 2017; Watson et al., 2016] and as ponds attain their local 49 

hydrological base-level they may evolve into larger scale lakes [Thompson et al., 2016; Mertes et 50 

al., 2016]. Observations of supraglacial pond water quality confirm that hydrological linkages do 51 

exist between ponds [Takeuchi et al., 2000; Bhatt et al., 2016], and pond extent may be governed 52 

by the evolving development and (re)organization of supraglacial drainage systems [Watson et 53 

al., 2016, 2017a; Miles et al., 2017b]. Yet the extent to which these ponds impact upon 54 

meltwater generation and modify the seasonal hydrograph remains poorly quantified.  55 

A lack of in situ observations of meltwater generation, transit and runoff for Himalayan glaciers 56 

[Immerzeel et al., 2012; Bajracharya et al., 2015] has led to uncertainties in the prediction of 57 

their hydrological response to environmental forcing. For example, some numerical models of 58 

debris-covered glacier systems utilize a linear reservoir parameterization linking proglacial 59 

discharge to meltwater production [e.g. Ragettli et al., 2015; Fujita and Sakai, 2014]. Such 60 

methods though fail to account for the potential hydrological complexities in the region. 61 

Specifically, the presence of interconnected supraglacial ponds implies a potentially complex 62 

hydrological system [Miles et al., 2017b] that will modulate the water inputs to, and outputs from 63 

the glacier system. Hence, the acquisition of detailed measurements characterizing the 64 

hydrological behavior of debris-covered glaciers on diurnal to seasonal timescales is an 65 

imperative for improved predictions of meltwater delivery to downstream water resources 66 

throughout the Himalaya. Here, we present the results of a glacier-scale runoff monitoring 67 

program at the debris-covered Khumbu Glacier in the Everest region of Nepal. Our 68 

measurements span a 190-day period from April to November 2014 including the summer 69 

monsoon season. 70 

2 Field Site and Methods 71 

Khumbu Glacier (27.97°N, 86.83°E) flows from the southern flanks of Mount Everest to its 72 

terminus at ~4900 m a.s.l. (Figure 1a). The terminus elevation is slightly lower than the local 73 
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permafrost limit of ~5000 m a.s.l. [Schmid et al., 2015]. The glacier is likely to be polythermal, 74 

with an estimated 17 m deep cold surface ice layer [Mae et al., 1975]. The glacier thinned at 75 

approximately –0.6 m a-1 between 2000 and 2015, with losses of –1.4 m a-1 at elevations of 76 

5200–5300 m [King et al., 2017]. Approximately 47% of the 41 km2 glacier including the 77 

Changri Nup and Changri Shar tributaries is debris-covered (Figure 1b). Supraglacial debris 78 

thickness varies from 0.1 m to over 3 m and is concentrated over the lowermost 8 km of the 79 

glacier [Soncini et al., 2016], overlying 20 m to 440 m of glacier ice [Gades et al., 2000]. Recent 80 

observations [e.g. Nuimura et al., 2011] indicate that this debris cover has become increasingly 81 

topographically uneven: differential ablation has resulted in a complex glacier surface 82 

characterized by the presence of numerous supraglacial water bodies [Wessels et al., 2002; 83 

Watson et al., 2016]. Throughout 2014, ~1% of the total debris-covered area comprised 84 

supraglacial ponds (Figures 1b-e). However, as elsewhere in the region, the hydrological 85 

evolution and connectivity of these supraglacial ponds is poorly constrained. The Changri Nup 86 

and Changri Shar tributaries are now physically disconnected, but retain a surface hydrological 87 

connection with the Khumbu Glacier tongue [Vincent et al., 2016]. The only visible source of 88 

meltwater runoff flowing from the Khumbu catchment emerges from a turbid supraglacial lake 89 

situated close to the eastern glacier margin (Figure 1c). There is no evidence of alternative, 90 

active terminal or lateral outlets for englacial or subglacial drainage pathways. Runoff data were 91 

recorded immediately downstream of this outlet lake, where meltwater drains via a breach in the 92 

eastern Little Ice Age lateral moraine to the upper Dudh Koshi.  93 

 



Confidential manuscript submitted to Geophysical Research Letters 

6 
 

 



Confidential manuscript submitted to Geophysical Research Letters 

7 
 

Figure 1: (a) ASTER imagery (Sept 2012) of the Everest region, Nepal, outlining lower 94 

elevations of the Khumbu Glacier detailed in (c); (b) hypsometry and supraglacial pond area in 95 

Khumbu Glacier ablation zone based on satellite imagery from 26 April, 22 May and 6 96 

December 2014 [see Watson et al., 2016]; (c) ablation zone of Khumbu Glacier highlighting key 97 

data collection sites and major geomorphological features, including hydrologically inactive 98 

outlets (IAOs) indicative of abandoned drainage routes and supraglacial lake positions on 26 99 

April 2014 prior to the onset of the monsoon season; (d, e) oblique images illustrating typical 100 

debris cover and pond morphology, taken during the pre-monsoon period, May 2014. 101 

 102 

Discharge (Q) data were collected between 14 May and 12 November (Day of Year (DOY) 135 103 

to 317) using standard methods [Herchy, 1995]. A hydrological monitoring station was 104 

established in a stable reach of the sole outflow channel at 4930 m a.s.l.. Average water stage 105 

was recorded at 30 min intervals using a Druck PDCR1730 pressure transducer and Campbell 106 

Scientific (CS) CR1000 data logger. A stage-discharge rating curve was developed using 107 

triplicate dilutions [Hudson and Fraser, 2005] of 3 mL aliquots of 10% fluorescein and a Turner 108 

Designs Cyclops7 fluorometer linked to a CS CR10X datalogger. A non-linear stage-discharge 109 

relationship yielded a coefficient of determination of r2 = 0.79 (n = 18). Estimated uncertainty in 110 

Q is <15%, although this is increased for higher Q values [see Supplementary Information; Rantz 111 

et al., 1982; Sakai et al., 1997; DiBaldassarre and Montanari, 2009]. On-glacier air temperature 112 

(Ta) and debris temperature (Td) were monitored at 4935 m a.s.l. using Gemini TinyTag2 logging 113 

thermistors with a stated measurement accuracy of ±0.4°C (Figure 1c). The Ta sensor was 114 

mounted in a naturally aspirated radiation shield 1 m above the debris surface; the Td sensors 115 

were located within the debris layer at depths of 0.55 and 1.0 m below the surface and away from 116 

the debris-ice interface. All temperature measurements were recorded at 30-min intervals. Local 117 

incident shortwave radiation (SWin) was recorded at an automatic weather station 5363 m a.s.l. 118 

on the Changri Nup Glacier (Figure 1c) using a Kipp & Zonen CNR4 sensor with 3% 119 

uncertainty. Precipitation (P) was measured at Pyramid Observatory (Figure 1c) at 5035 m a.s.l. 120 

using a Geonor T-200 gauge; these hourly data were corrected for undercatch of solid 121 

precipitation and have an estimated accuracy of ±15% [Sherpa et al., 2017]. 122 
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We examined the timing of peak discharge and the shape of the diurnal hydrograph using 123 

standard approaches; lag times between time-series were identified using a moving window 124 

cross-correlation [e.g. Jobard and Dzikowski, 2006], while we classified diurnal hydrographs 125 

using a paired Principal Components Analysis (PCA) and Hierarchical Cluster Analysis (HCA) 126 

approach [e.g. Hannah et al., 2000; Swift et al., 2005]. Specifically, daily (24 hr) hydrographs 127 

were assumed to commence at low Q at 06:00, PCA was conducted without rotation and only 128 

components with eigenvalues > 1.0 were retained. PCA identified modes of diurnal Q variation 129 

defined by the standardized component loadings and these loadings for each day were clustered 130 

using Euclidean distance measures and a within-groups linkage method. A total of 6 groups were 131 

identified and further classified using a second, independent HCA that defined diurnal 132 

hydrograph similarity based on key discharge metrics following z-score normalization. Daily 133 

hydrographs were then described based on ‘shape’ defined by PCA clusters and ‘magnitude’ 134 

identified in the secondary HCA.  135 

Estimates of recession storage constants (K) for each diurnal hydrograph were derived from 136 

semi-logarithmic plots of Q versus time [e.g. Gurnell, 1993; Hodgkins et al., 2013] where: 137 

          Eq.1 138 

for which t is time since the start of the recession segment, and Q0 and Qt the discharge at the 139 

start of the recession segment and at time t, respectively. For all days classified as exhibiting 140 

diurnal discharge cycles (n = 117) or constant recessional hydrographs (n = 29), K-values were 141 

calculated from the time-step following peak discharge, or from 18:00 in the case of persistent 142 

recession hydrographs. Recession segments and associated aggregate recession constants were 143 

identified using segmented linear regression for cases exhibiting durations >1 hr.  144 

3 Results 145 

The meteorological and discharge time-series (Figure 2a-d) for the 2014 monsoon season reveal 146 

that Ta and SWin exhibited strong diurnal variations, with highest incident energy fluxes between 147 

10:00 and 15:00, as typifies the region [see Shea et al., 2015b]. These two variables were highly 148 

correlated over the diurnal cycle (r > 0.5, p < 0.05) throughout the observation period (Figure 149 
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2e). Seasonal changes in Td aligned well with Ta, although at the daily timestep, correlation 150 

suggested a changing lag between variables (Figure 2e). Despite a distinct diurnal variability in 151 

Td, variation was suppressed at depth (Figure 2b), and Td remained below 0°C following DOY 152 

300. The seasonal pattern of Q broadly followed that of Ta with an underlying diurnal fluctuation 153 

of between 0.005 and 12.3 m3 s-1, and daily mean Q peaking at ~9 m3 s-1 which compares well 154 

with published records of discharge during 2014 for the upper Dudh Koshi [Soncini et al., 2016; 155 

see Supplementary Information]. Interestingly, diurnal correlation indicated Q and both Ta and 156 

SWin vary out of phase for much of the observation period (Figure 2e). Q lagged Ta progressively 157 

decreasing from 12 to 6 hrs until DOY 220, and subsequently returning to lags >12 hrs until 158 

DOY 285 when lags dropped again to ~6 hrs (Figure 2f). The diurnal hydrograph cycle became 159 

steadily delayed until DOY270 when Td declined to ~5°C and continued to fall when a 160 

protracted hydrograph recession dominated. While statistically significant diurnal correlations 161 

between Q and P were found, these were inconsistent and showed no systematic trend (Figure 162 

2e). Lag analysis highlighted statistically significant correlations (r > 0.405, p < 0.05) between Q 163 

and P over 24 hr periods, predominantly with Q lagged by >10 hrs, however no pattern in lag 164 

time was observed.    165 
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Figure 2: Time-series of (a) on-glacier air temperature Ta and total daily precipitation P, (b) 167 

debris temperature Td at 0.55 and 1.0 m below the debris surface, (c) incident shortwave 168 

radiation SWin and (d) meltwater discharge Q. Analyses identify (e) daily correlations between 169 

Ta, SWin, P and Q with the 95% confidence levels indicated for the hourly (r  0.41) and half-170 

hourly (r  0.29) data sets, (f) the lag time between daily peak Ta and maximum Q, (g) the timing 171 

of minimum and maximum Q, (h) the daily hydrograph classification based on shape and 172 

magnitude, and (i) the three principal hydrograph recession constants (KP, KR and KB). 173 

 174 

  175 

Three sequential recession segments were identified as typical within the time-series: (i) slow 176 

decrease in Q lasting ≤ 7 hours immediately following peak Q (KP), (ii) major recession 177 

component of rapid decrease in Q over ~9 hours duration (KR), and (iii) a second slow decrease 178 

for ~5 hours prior to the onset of the next diurnal cycle (KB). Where only a singular extended 179 

recession was identified, this was taken to be KR. KP and KB were found to be statistically 180 

similar, but lacked a significant temporal trend, while KR showed a strong non-linear association 181 

with peak Q, decreasing and increasing as the monsoon season progressed. While aggregate K-182 

values broadly agree with the magnitude of those identified in other glacial runoff records (mean 183 

KP = 86.7 and KB = 72.4 hrs, while mean KR = 108 hrs for the season, but 31.1 hrs before 184 

DOY270), the recession segment pattern contrasts with the commonly reported systematic 185 

increase in K-values over diurnal hydrograph recession segments [e.g. Gurnell, 1993; Hodgkins 186 

et al., 2013]. No association between K-values and P or daily peak Q was found. In tests, 187 

uncertainty related to the rating curve used to derive the Q time-series [see Supplementary 188 

Information; Rantz et al., 1982] did not impact the recession patterns identified; however, if 189 

using a power-law rating curve [Herchy, 1995], recession constants KP, KR  and KB increased by 190 

81±30%, 51±50% and 57±26% respectively.  191 

4 Discussion 192 

Our results from Khumbu Glacier indicate a hydrological configuration with both similarities 193 

and distinct differences to those typically reported for Alpine glacier systems in Europe and 194 
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elsewhere. Systematic progression in timing of peak Q, seasonal undulation in diurnal discharge 195 

amplitude, diurnal hydrograph asymmetry, and clear patterns in hydrograph classification are 196 

commonly described for temperate, debris-free alpine glaciers [e.g. Richards et al., 1996; 197 

Hannah et al., 2000; Swift et al., 2005; Jobard and Dzikowski, 2006]. Typically, as the snowline 198 

recedes upglacier and melt season advances, peak Q occurs progressively closer to the time of 199 

heightened SWin and Ta and, even for large south-facing valley glaciers such as Aletschgletscher, 200 

equivalent in size to Khumbu Glacier, Q lags the meteorological drivers of melt by <5 hrs during 201 

much of the ablation season [e.g. Lang, 1973; Verbunt et al., 2003]. As ablation continues on 202 

debris-free glaciers, the amplitude of Q increases, and the hydrograph form becomes more 203 

accentuated. Here, particularly prior to DOY230 (Figures 3f-h), the patterns of hydrograph 204 

characteristics resemble those reported for temperate alpine settings.  205 

However, in contrast to debris-free alpine counterparts, the timing of daily peak and minimum 206 

discharge at Khumbu Glacier shows a more marked delay relative to meteorological drivers of 207 

ablation: peak Q occurs ≥6 hours after maximum SWin and Ta, while minimum Q commonly 208 

coincides with peak irradiance. Q lagging energy fluxes reflects the delay in energy transfers that 209 

initiate melt, particularly for those associated with exchange at the atmosphere-debris interface 210 

and through the debris layer [Carenzo et al., 2016] (Figure 2b). Further lags may relate to 211 

meltwater transit to the monitoring site. Transition in lag time between Ta and Q mid-season is 212 

ascribed to changes in weather systems and lapse rates reported for the region during the 213 

monsoon [e.g. Shea et al., 2015b, Steiner and Pelliciotti 2016], the reduction in both Ta and 214 

SWin, and subtle changes in the hydrological function of the drainage system. The lack of 215 

association between Q and precipitation has been observed elsewhere on debris-covered glaciers 216 

[e.g. Thayyen et al., 2005]. However, the elongated diurnal hydrograph recession diverges 217 

notably from other glacial observations and more specifically recession data reported here 218 

evidence neither ‘fast’ supraglacial and ‘moderate’ en- and sub-glacial drainage flowpaths, 219 

superimposed on a ‘slow’ persistent baseflow on a diurnal basis, nor a seasonal decline in 220 

recession storage constants [cf. Gurnell, 1993]. Furthermore, the gauging station elevation (4930 221 

m a.s.l.), ensures the Q record solely relates to the supraglacial (debris-covered) and shallow 222 

englacial environment. Observations during 2014 confirmed that some supraglacial meltwaters 223 

entered a shallow englacial network, potentially allowing flow between supraglacial ponds, 224 

evidenced by spatial variability in pond turbidity which suggested hydrological connectivity 225 
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(Figure 1e) [see Takeuchi et al., 2012]. While geomorphic signatures suggested that meltwater 226 

that had once drained or followed seepage pathways through other moraine breach locations, 227 

contemporary field observations indicate these are relict inactive features (IAOs: Fig. 1c). 228 

Consequently, we discuss our data in the context of a conceptual model of the dominantly 229 

supraglacial drainage system illustrated in Figure 3, comprising a debris layer punctuated by a 230 

cascade of lakes or ponds.  231 
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Figure 3: Conceptual model of the seasonal hydrological development of the surface of a 232 

Himalayan debris-covered glacier over an annual cycle. Indicative daily hydrometeorological 233 

plots for each stage are shown with SWin (dashed), Q (blue), and a natural logarithmic 234 

transformed Q used to identify the recession components (red).  Pre-monsoon (a) the surface is 235 

frozen following the winter period, but as the monsoon season approaches (b), the debris-cover 236 

begins to thaw, and water derived from melting intra-clast ice and ponds commences flow and 237 

thermal ablation at the base of ponds. Mid monsoon (c) the debris is fully thawed, ponds become 238 

connected and glacier ice melt occurs and ponds deepen through thermal ablation, which, 239 

coupled with monsoon rainfall, leads to more efficient drainage over the glacier ice surface. 240 

Towards the end of the monsoon season (d) the air temperatures drop and initiate freezing at the 241 

debris surface, while reductions in water flow facilitate upward freezing at the base of the debris 242 

layer; however, the thawed portion of the debris layer still transfers meltwater from ponds 243 

towards the glacier margin, albeit delayed. Post monsoon (e), which aligns with the latter portion 244 
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of our records, continued freeze-up of the lake and debris layer occurs restricting any 245 

transmission of meltwater as winter approaches and the glacier-wide hydrological system drains. 246 

 247 

The cascade of developing ponds represents a series of reservoirs capable of temporarily storing 248 

meltwater and delaying its transit downstream. Combining the pre-monsoon pond areas (~ 249 

2.5×105 m2; Figure 1) with observation of the outflow lake level varying by ~0.7 m over a 250 

diurnal melt cycle, we estimate the supraglacial pond cascade on Khumbu Glacier to account for 251 

a minimum daily storage capacity of ~1.75×105 m3 (equivalent to 23% of the observed mean 252 

daily discharge). Supported by evidence of progressive pond deepening during the monsoon 253 

season [e.g. Watson et al., 2017a] we conclude that the diurnal storage capacity of the pond 254 

system alone, not including the porous debris layer, can readily accommodate the observed daily 255 

mean P (~1.23×105 m3 over the whole glacier area). The timing and magnitude of on-glacier 256 

storage may also be controlled by freeze-thaw processes, analogous to a periglacial environment 257 

given the local permafrost limit. During the winter, both the supraglacial debris layer and ponds 258 

are largely frozen, likely becoming impermeable and unable to convey any surface meltwater. As 259 

the monsoon season develops, the system progressively thaws [e.g. Sakai et al., 2000; Benn et 260 

al., 2001; Namara et al., 2017; Miles et al., 2016; Watson et al., 2017a]. The ponds may become 261 

hydrologically linked by three key flowpaths: those within the debris-covered mantle; shallow 262 

debris-filled crevasses [e.g. Benn et al., 2012; Gulley and Benn, 2007] or channels formed from 263 

collapsed near-surface englacial conduits [Miles et al., 2017b]; or debris- or water-choked near-264 

surface passages [Watson et al., 2017a]. Published figures for heterogeneous debris indicate 265 

permeability of between 10-2 to 10-6 m s-1 [Parriaux and Nicoud, 1990; Muir et al., 2011; Woo 266 

and Steer, 1983; Gulley and Benn, 2007] although mobilization of fines may further reduce 267 

hydraulic efficiency [Woo and Xia, 1995]. When thawed, therefore, we anticipate the debris 268 

layer and associated supraglacial and shallow or collapsed englacial features may act as a depth-269 

limited, transient storage reservoir, regulating bulk meltwater discharge over the glacier surface 270 

and between ponds and hence moderating the overall diurnal flow variance. The debris layer is 271 

underlain by glacier ice with discrete, spatially limited, shallow englacial flowpaths analogous to 272 

continuous permafrost with isolated, closed talik. The result, in the monsoon-influenced climate, 273 

is a thermal regime dominated by the seasonal freezing and thawing of the debris layer, as is 274 
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evident in our Td time-series, and for which the correlations between Ta and Td (Figure 2e) likely 275 

reflect change in debris heat capacity with water content. Khumbu Glacier’s supraglacial debris 276 

layer may therefore be considered equivalent to a seasonally cryotic active layer [Bonnaventure 277 

and Lamoureux, 2013]. 278 

As the monsoon season progresses, evolution of the debris mantle hydrological system may 279 

result in increased inter-pond connectivity. Progressive thaw at depth in the debris layer and 280 

glacier ice melt, despite enlarging the supraglacial storage capacity, also aids the development of 281 

increasingly efficient supra-permafrost drainage: inter-clast ice is replaced with water flow 282 

pathways and increased hydraulic permeability [Woo and Steer, 1983; Woo and Xia, 1995], 283 

providing more efficient connections through the debris and facilitating debris-ice interface and 284 

englacial flowpath development [Gulley and Benn, 2007; Gulley et al., 2009; Miles et al., 2017b; 285 

Watson et al., 2017a]. Strengthening connectivity increases the rapidity of runoff through the 286 

cascading pond system. Sporadic activation, modification or abandonment of flowpaths and 287 

diurnal or seasonal variation in supraglacial pond storage capacity likely contributes to the 288 

observed variation of discharge recession (Fig. 3i). Such delay, peak flow suppression and 289 

attenuated recession, as seen in our data, are indicative of level-pool routing controlling 290 

meltwater transfer through a series of reservoirs [Montaldo et al., 2004] and, as such, the ponds 291 

may be conceptualized as thermokarst [Kirkbride, 1993]. 292 

Evidence for this role of supraglacial ponds and debris as regulators of meltwater discharge is 293 

exemplified by the diurnal hydrograph recession. When pond levels are at their peak or minima 294 

at seasonal and diurnal time-scales, KP and KB are determined by the hydraulic conductivity of 295 

the (thawed) debris that separates the individual pond basins. KP was not clearly associated with 296 

either Ta or SWin nor with daily maximum discharge; the recession segment was not associated 297 

with the magnitude of meltwater production. Once daily meltwater provision declines or ceases, 298 

changes in hydraulic head drive drainage through the pond cascade and the major recession (KR) 299 

is governed by outflow channel geometry rather than rates of inflow controlled by debris 300 

permeability. KR remains broadly consistent over the hydrologically active period (DOY134-301 

270). Subsequently, particularly as Ta and Td both fall and water drains from the pond cascade, 302 

water within the debris layer and debris-rich hydraulic connections between ponds refreezes, and 303 
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the hydraulic efficiency of the system declines. This change is highlighted by KR > KB, the post-304 

monsoon increase in KR and a strongly negative, non-linear relationship between KR and peak Q.  305 

The observations following DOY 230 of declining Q despite positive Ta and Td and precipitation 306 

contributions are counterintuitive. However, given our hydrological analysis and conceptual 307 

model it seems reasonable to suggest that this effect could have arisen from the fully thawed 308 

debris layer readily storing excess water produced in this period and mobilization of fines 309 

impinging on hydrological efficacy, with a consequent net reduction in throughflow evidenced 310 

by gradual increases in all K-values. The drainage of meltwater continued for ~45 days after 311 

night time Ta dropped to freezing, with around 7% of the observed runoff volume being 312 

delivered in this late- and post-monsoon period. This protracted drainage corresponds well to the 313 

delay in runoff thought to relate to hysteresis caused by a deep groundwater system in the Nepal 314 

Himalaya [Andermann et al., 2012]. Our data suggest that widespread supraglacial debris layers 315 

themselves may contribute to the observations of reservoir behavior in glacierized catchments at 316 

a seasonal timescale, and extend the duration of glacier meltwater delivery to downstream 317 

environments.   318 

5 Conclusions 319 

We have demonstrated that the evolving system of supraglacial ponds and accompanying debris 320 

has the capacity to act as a fundamental modulator of proglacial discharge regimes at Khumbu 321 

Glacier. Although there is uncertainty in the causal associations between glacier surface gradient, 322 

debris cover and pond occurrence [Salerno et al., 2017], supraglacial ponds are reported to be 323 

increasingly prevalent on debris-covered glaciers and represent an active and dynamic 324 

hydrological system [Miles et al., 2017a,b; Narama et al., 2017; Watson et al., 2016, 2017a]. 325 

Recently, there has been growing recognition that small changes in hydrological function in 326 

mountain regions can have substantial impacts on freshwater availability [e.g. Pritchard, 2017] 327 

and biodiversity [Jacobsen et al., 2012] in terrestrial water bodies and ecosystems in the 328 

Himalaya [Xu et al., 2009; Salerno et al., 2016]. To understand the hydrological response of 329 

debris-covered glaciers and to forecast changes in water resources and ecosystem services in the 330 

region, it is crucial to explicitly incorporate processes relating to the thermodynamics and 331 

hydrology of widespread debris mantles that can now be considered as cryotic, thermokarstic 332 

active layers – systems that are more commonly described solely in periglacial settings 333 
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[Bonnaventure and Lamoureux, 2013]. Further geophysical and hydrochemical exploration of 334 

debris cover [e.g. Muir et al., 2011; McCarthy et al., 2017] is needed to better define the nature 335 

of the supraglacial debris-covered drainage system and the modes and thermodynamics of 336 

hydraulic connectivity between ponds. With ~75 to 90% glacier area in the Himalaya above 337 

4500–5000 m a.s.l., the elevation range commonly associated with the regional permafrost limit 338 

[Schmidt et al., 2015], processes we describe here should be widely applicable throughout the 339 

region and highlight the important role that debris-layer supraglacial hydrology may have on 340 

mediating glacier runoff characteristics in High Mountain Asia.  Long-term increases in areal 341 

extent of debris cover and ponds will not only contribute to more rapid glacier mass loss but, we 342 

propose, also alter patterns of meltwater supply and quality to downstream catchments through 343 

their roles as temporary reservoirs and flow regulators. A more complete understanding of this 344 

buffering process is crucial to improving projections of the region’s future water resources in a 345 

changing climate. 346 
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