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ABSTRACT  

Highly stretchable and durable conductors are significant to the development of wearable 

devices, robots, human-machine interfaces and other artificial intelligence products.  

Although many respectable methods have been reported, it is still a challenge to fabricate 

stretchable conductors with a large elastic limit, high conductivity and excellent reliability in 

rapid, effective and economic ways. Herein, a facile method is offered to fabricate high-

performance stretchable tubular conductors (TCs) based on a macro-confined structure of 

expanded graphite (EG) in rubber tubing by simply physical packing. The maximum original 
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electrical conductivity of TC reached a high value of 160.6 S/cm. Meanwhile, TCs showed 

more insensitive response of conductivity to increasing tensile strain compared to tubular 

conductors encapsulated with liquid metal or ionic liquid. The conductivity and effective 

stretchability of TCs can be adjusted by varying the packing density of EG. A low gauge 

factor below 3 was reached even under 400% stretching for TC with a packing density of 

1.233 g/cm3. The excellent resilience and good stability of conductivity of TC during 

dynamic stretching-releasing cycles are attributed to stable and rapid reconstruction of the 

percolation network of EG particles. The combination of high conductivity, tunable 

stretchability and good reliability renders TC with potential applications such as highly 

stretchable interconnects or strain sensors in human motion detection. 

 

1. INTRODUCTION 

The past decade has witnessed a rapid development of stretchable electronic devices. Such 

devices with integrated high performance and elastic mechanical responses are promising in 

the next-generation applications such as stretchable transistors,1-4 stretchable light-emitting 

diodes,5-7 smart stretchable sensors,8-10 stretchable energy harvesters,11-14 and stretchable 

energy-storage devices15-19. As one of the most important components for stretchable 

electronics, stretchable conductors (SC) can transport electrical signals effectively between 

electroactive components even under various and harsh mechanical deformations, which 

make them prospective as electrodes, interconnections or resistors in stretchable electronic 

devices. 

    Conventionally, the conductive mechanisms of stretchable conductors are classified into 

two types: ionic conduction and electrical conduction. A representative case of ion-

conductive stretchable conductor is the conductive hydrogels, which are highly stretchable, 
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transparent and easily deformable materials that exhibit ionic conduction.20,21 However, 

problems such as the low conductivity,22 electrochemical reactions,23 water electrolysis under 

voltage,24 evaporation of water during operation and poor mechanical properties25 limit the 

application of a conductive hydrogel as an electronic conductor. For electron-conductive 

stretchable conductors, the key point that should be considered is how to maintain the 

effectiveness and reliability of percolation networks even when the structure was under a 

variety of harsh mechanical deformations. In order to achieve this, various conductive 

materials including conventional metals (e.g., Cu, Ag, Au)26-27, liquid metals (e.g., eutectic 

GaIn (EGaIn), Galinstan)28-29, carbon materials (e.g., graphite, carbon fiber, carbon black)4,8-

9,30, nanoscale materials (e.g., nanowires, nanoparticles)1,16,18,31, conductive polymers (e.g., 

polyaniline, polypyrrole, poly(3,4-ethylenedioxythiophene))32-33 and their hybrids were used 

as conductive components to combine with various stretchable elastomer substrates.  

Although numerous fabrication techniques and methods have been reported, most 

approaches of integration between conductive materials and elastic substrates can be 

classified as two main types: conductive networks embedded in a soft matrix and conductive 

films attached on a soft substrate. In the former cases, researchers have put much attention to 

conductive elastomer composites. Many methods including traditional blending34-35, latex 

coating then compressing36 and casting a polymer into pre-made conductive 3D networks37 

were used to secure effective and stretchable conductive percolation paths. However, the 

contradiction between high conductivity and high stretchability has become the biggest 

obstacle for traditional conductive elastomer composites. Composites prepared by in-situ 

formation of 3D conducting networks provided much better conductivity than the traditional 

blends, but the 3D conductive network imbedded were usually rigid, and the mismatch 

between the network and soft matrix caused limited stretchability.38,39 Besides, such methods 

involve tedious steps and high costs, which may not be suitable for scale-up production.  
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    In recent years, more and more researchers have paid attention to the integration of a 

conductive thin film with an elastomeric substrate to fabricate stretchable conductors. By 

designing the structure of the conductive layer as wavy33, buckled40, wrinkled41, serpentine42 

or other configurations43-45, they managed to take advantage of the electrical performance of 

the nanoscale fillers and obtain good stretchability. However, most of the approaches used to 

make stretchable electronic devices are complicated, costly, low-yielding, and difficult to 

control33, 41, 44. Moreover, when suffering large and quick stretching and releasing, big 

mismatches in the mechanical properties within these conductors caused severe interface 

delamination between the rigid conductive film and the soft elastomer substrate, which 

further deteriorated the reliability of the devices46,47. 

Encapsulating conductive fluids such as liquid metals or ionic liquids within an elastomer 

gives another way to fabricate stretchable electronic devices in which the conductive material 

can support deformation. For example, Park et al.48 reported a 3D polydimethylsiloxane 

(PDMS) nano-networks filled with EGaIn, which showed a very high and stable conductivity 

of 24,100 S cm-1 even under 200% tensile strain. Choi et al.49 fabricated a stretchable and 

transparent strain sensor with high performance by encapsulating ethylene glycol/sodium 

chloride ionic liquid into a wavy-shaped PDMS channel. Muth9 embedded conductive carbon 

grease into PDMS by an embedded 3D printing method to fabricate highly stretchable strain 

sensors with more than 400% stretchability for use as soft functional devices for wearable 

electronics, human/machine interfaces, and soft robotics. However, to our best knowledge, no 

reports are available to investigate a stretchable conductor encapsulated with solid conductive 

particles.  

Herein, a macro-confined packing method was developed to readily fabricate tubular 

conductors (TC) with high conductivity, stretchability and reliability. Expanded graphite 

(EG), a porous combination of multi-layered graphene with high electrical conductivity and 
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low cost was chosen as the packed conductive filler. A highly elastic and strong natural 

rubber (NR) tubing was selected to provide excellent elasticity and mechanical strength. 

When the tubing was stretched, the confined EG particles were expected to orientate and 

slide, yet a robust and stable percolation network could still be maintained when a high 

amount of EG was packed in the tubing. Meanwhile, the conductivity, sensibility and 

effective working range of TCs can be tuned by varying the packing density of EG. The 

combination of high conductivity, stretchablity and good reliability ensures TC potential for 

serving not only as stretchable electrodes, interconnections and resistors, but as strain sensors 

to detect the human joint and muscle motions which was demonstrated in this work. 

2. EXPERIMENTAL SECTION 

Materials 

The low temperature expandable graphite (LTEG) with an average particle size of 900 µm 

and initial expanded temperature of 150 oC was provided by Shijiazhuang ADT trading Co., 

Ltd (China). The expanded graphite was obtained by expanding 1 g LTEG in a microwave 

oven (800 W) for 30 s. A medical grade natural rubber tubing (Product No. 6707) with an 

inner diameter of 1.6 mm and an outer diameter of 3.6 mm was provided by PAR Group Ltd. 

Unplated copper wire with a diameter of 2 mm was purchased from MetalClays4You. A 

commercial cyanoacrylate glue (AD125) was provided by 3M Company. 

 

Preparation of stretchable tubular conductors (TCs) 

The TCs were fabricated by simply packing EG into a latex rubber tubing. Before filling, the 

latex rubber tubing was cut to 90 mm length. Then a copper wire with diameter of 2 mm was 

roughened by sandpaper and applied with the commercial glue. The copper wire was inserted 

into the tubing with an embedded length of 20 mm. After curing 24 h in ambient condition, 
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the half-sealed tubing was ready for filling. Weighed conductive EG powders were packed 

into the tubing by a funnel and a wooden stick, and then the filling side was also sealed with 

copper wire and glue. Finally, the packed and sealed tubing was manually stretched to nearly 

400% and released for ten times to promote the uniform dispersion of conductive fillers in the 

tubing. 

 

Characterization 

Optical microscopy was conducted on a Swift M10T-BTW1-MP benchtop microscope. 

Scanning electron microscope (SEM) was performed on a microscope (FEI Inspect F) with 

an acceleration voltage of 5 kV. Micro CT scanning was performed on a Skyscan 1172 Micro 

CT scanning machine with a source voltage of 51 kV and a source current of 149 µA. The 

instrument settings provided a resolution of 3.83 µm on the samples with a diameter of 2~3 

mm and a scan height of 3.6 mm. Samples were fixed on a Perspex sheet with a specific 

stretching ratio (0%, 250% and 400%). In order to reduce noise, the distance between the 

sheet and tubing sample was kept at 3 mm. Fifty 2D slices for every sample from the results 

of scanning were analyzed by graphic software to obtain the average area percentage of EG. 

   The relationships between resistance and strain under stretching and bending were 

measured by a programed moving platform, which consists of a control motherboard and a 

stepping motor. The motherboard was connected with a computer. Before testing, the tubular 

conductor was clamp-mounted on the platform with an initial gap of 10 mm. For the bending 

test, a poly(ethylene terephthalate) film was cut to fit the gap and put under the sample to 

maintain vertically deformation of the sample during testing. The resistance-strain curves 

were acquired by using a four-point probe method (Agilent 34410A multimeter) with an 

interval sampling time of 0.4 s. The four electrical probes directly contacted the Cu wire 

without coating a conductive paste. The moving speed was set as 60 mm/min. For the 
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twisting test, the sample was clamped at a distance of 40 mm, the four-probe resistance 

values were recorded at each 180o rotation of the sample. The I–V curves of TC under 

various stretching (0-400%) were measured in the voltage range from 0 V to +3 V by 

connecting the sample with a programmable voltage source (Keithley 230) and the 

multimeter. The LED was connected with the stretchable tubular conductor directly and 

tested under a working voltage of 3 V. 

   Quasi-static and cyclic tensile tests were conducted on a universal mechanical testing 

machine (Hounsfield, UK) with a speed of 50-500 mm/min and a 1 kN load cell at room 

temperature. At least 5 samples were tested. 

   To assemble the stretchable tubular conductor as a strain sensor, the sample was fixed on a 

finger or arm. Before testing, the whole circuit was checked carefully to make sure that all 

joints were safely connected and no damage or leak of the TCs was present. The tests of 

human motion detecting were conducted in real-time by a two-point measurement with the 

multimeter under a low input voltage (1 V). 

3. RESULTS AND DISCUSSION 

Expanded graphite or “graphite worm”50 is the product of graphite intercalation compound 

after heat treatment. Because of the rapid expansion and exfoliation of graphite platelets 

during the treatment, the micro morphology of EG shows highly porous and irregular 

honeycomb network of piled graphene sheets (Figure 1b). The high specific surface area (30-

40 m2/g), low density (2×10−3-10×10−3 g/cm3) and a relatively high conductivity (3-300 S/cm) 

make EG a promising carbon material51 and widely used in adsorption52, fire retardant53, 

electromagnetic interference shielding54, etc.  
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Figure 1 The structure schematic of the tubular conductor (TC): (a) the fabrication process of 

TC, (b) structure schematic of the TC (Inset: SEM image of the EG sheets used for packing), 

(c) photographs of TCs with various filling densities (left to right: 0 g/cm3, 0.497 g/cm3 and 

1.175 g/cm3, scale bar: 0.5 mm) (top) and optical micrographs of each sample under 300% 

strain (scale bar: 1 mm) (bottom), and (d) reconstructed 3D tomography of TC (1.175 g/cm3) 

with no cut, half-cut and single slice (scale bar: 500 �m).  

 

EG was packed into an elastic natural rubber tubing to prepare compressible and macro-

confined conductive components, as shown in Figure 1a, and observed by optical 
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microscopy (Figure S1). In order to control the filling density of TCs, all the samples were 

fixed on a frame and marked before packing to make sure the same nominal packing length. 

The diameter (d) and length (l) of confined EG columns were measured for the calculation of 

packing (filling) density (ρd) according the formula below:  

%
d 2

4M
100

ld
ρ

π
= ×                                                  (1) 

where M denotes the packing mass of EG. The average value of 50 measurements was 

regarded as the packing density. It was noted that the rubber tubing swelled obviously as EG 

particles getting more compact. It can be seen from Figure 1c and Figure S1 that both the 

packing length and diameter of the TC with a filling density of 1.175 g/cm3 are larger than 

those of TC (0.497 g/cm3). Micro-CT scanning was applied to further investigate the 3D 

microscopic morphology of TCs. Figure 1d shows the 3D structure of the TC (1.175 g/cm3), 

which was reconstructed from a stack of 1000 single 2D slices. Being confined in the rubber 

tubing, the percolation network of EG is believed with robust and reversible piezoresistivity 

when suffering loading and unloading because of the insignificant volume changing of rubber 

tubing under stretching55. 
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Figure 2 Basic electrical properties of stretchable TCs: (a) electrical conductivity of TCs 

with different filling densities, (b) resistance of TCs with different filling densities as a 

function of applied tensile strain, (c) relationship between normalized resistance (R/R0) and 

strain under effective working ranges, (d) photographs of a LED in the TC (1.233 g/cm3)-

integrated circuit (3 V applied): original (left), and stretching up to 400% strain (right).  

 

As shown in Figure 2a, the conductivity of TCs increases from 15.1 S/cm to 160.6 S/cm 

with increasing filling density, which are significantly higher than the values of some 

stretchable conductors, e.g. 0.1-9.8 S/cm, reported in previous works6, 8, 20, 46. Such a high 

conductivity is attributed to the direct contact of conductive EG particles without any 

interference from the insulated polymer matrix. Figure 2b displays the resistance of TCs with 

various filling densities as a function of tensile strain at a stretching speed of 60 mm/min. All 
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samples show low resistances below 20 � at initial stress-free state (R0). Even for TC with 

the lowest filling density of 0.497 g/cm3, the resistance at 100% strain is also below 60 �. It 

is noted, though, the conducting channel becomes unstable for all TCs when the tensile strain 

is further increased. This brings the concept of effective stretchability (or working range) that 

means reversible and reliable responses of a sample under the strain range.56 So, the values 

for effective stretchability are determined as 50%, 100%, 200% and 400% for the 0.497 

g/cm3, 0.924 g/cm3, 1.175 g/cm3 and 1.233 g/cm3 samples, respectively. All the samples 

show relatively good stability in their working ranges during 1000-times cyclic tests (Figure 

S2). 

Figure 2c shows the strain dependence of the normalized resistance (R/R0) of TCs. The 

dotted curve represents the theoretic normalized resistance calculated from equation (2) by 

assuming the total volume is conserved,32 which were obeyed by devices based on ionic 

conductor49 and liquid metal57: 

2

0

0 0 0 0

LSR L

R L S L

ρ

ρ

 
= =  

 
                                                  (2) 

where L and S are the corresponding length and cross-sectional area of packed EG column in 

the tubing, while the subscript 0 refers to the original un-stretched state. The normalized 

conductivity (σ/σ0) equals to 1 as deduced in equation (3) below:  

2

0 0 0

0 0 0

LR S R L
1

RSL R L

σ

σ

 
= = = 

 
                                         (3) 

    It can be observed that all the normalized resistance data of TCs stay below the theoretical 

curve. As a result, all the normalized conductivity data of TCs are greater than the theoretical 

dotted line displayed in Figure S3. This means the normalized conductivity of TCs increases 

with increasing tensile strain. This result can be attributed to the orientation and sliding of 

packed layer-structured EG nanoparticles along the stretching direction, which maintained 
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the electron-conductive paths under large strains. The high conductivity and excellent 

effective stretchability make these TCs surpass both film-based stretchable conductors, which 

have a high conductivity but a low working range (generally <100%) 27,47,58,59, and the 

conductive polymer-based gels, which have a high effective stretchability but low 

conductivity32. The keeping of excellent conductivity under stretching was demonstrated in 

Figure 2d by the well-functioned LED light with a similar light brightness even under 400% 

strain. 

From the discussion above, it is clear that TCs with different packing densities show 

similar trends of R/R0 with growing strain. As an example, the response of TC with a packing 

density of 1.175 g/cm3 is illustrated in Figure 3a. The curve can be divided into three 

different stages. When being stretched below 50% strain (stage 1), the wriggling and sliding 

of compacted EG particles are insignificant, so the increase of R/R0 is quite slow. As further 

strain is applied below 250% strain (stage 2), more noticeable growing of R/R0 can be 

observed. A distinct sharp increasing of R/R0, finally, can be detected when the stretching 

strain is above 250% (stage 3). Such different stages of the changing R/R0 are considered to 

be related to the evolution of the percolation network of EG particles.  

Considering the previous researches of conductive elastomers47,60,61, the piezoresistivity of 

TC can be described by models based on tunneling effect, in which the total resistance R is 

described using equation (4): 

exp( )
2 2

P 8 hs
R s

N 3 a e

π
γ

γ

  
=   
  

                                       (4) 

where N is the number of conducting paths, P is the number of particles forming a single 

conducting path, a2 is the effective cross-section, e is the electron charge, h is the Plank 

constant, and s is the smallest distance between conductive particles. Here, γ is calculated 

using equation (5). 
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4
2 m

h

π
γ ϕ=                                                   (5) 

where φ is the height of the potential barrier between adjacent particles and m is the electron 

mass. Similar to the model reported by Chen et al.62, R/R0 at stages 1-2 and stage 3 can be 

expressed by equations (6) and (7).  

( )exp( )
0

R
1 A B

R
ε ε= + +                                      (6) 

( ) exp( )2

0

R
1 A B

R
ε ε ε= + +                                    (7) 

    Here, ε is the strain, A and B are the fitting constants. As can be seen in Figure 3a, there is 

a good agreement between the fitting curves and the experiment data, which suggests that the 

tunneling effect plays an important role in the transportation of charge carriers in TCs. The 

piezoresistivity of TCs under effective stretchabilities, as shown in Figure 3b, can also be 

well fitted by equation (6). The fitted results are further listed in Table S1. 

In order to further understand the observed phenomenon during stretching, the possible 

mechanism of the piezoresistive behavior of the TCs is proposed. As can be seen in Figure 

3c, the shortest distance between two EG particles (Ds) < the size of EG particles (Dt) at stage 

1, where the joining type between particles is governed by total connection. At this stage, the 

growth of resistance is slow and only the increasing tunneling resistance contributes to the 

rise of resistance. With further stretching, most tunneling connection gradually becomes 

disconnected in stage 2, causing a faster increase of resistance than that during stage 1. The 

continuous stretching finally leads to partial damage of the topology of EG network when Ds 

> the cut-off distance (Dc)
31 and results in disconnection, evidenced by the drastically 

resistance growing (stage 3).  
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Figure 3 Quasi-static piezoresistive behavior of TCs. (a) Fitting R/R0 curves of TC (1.175 

g/cm3) for three stretching stages. (b) Fitting curves of R/R0 as a function of strain of TCs 

under corresponding stretchabilities. (c) Schematic illustration of EG conductive network 

packed in TC under three stretching stages. 

 

To verify the above proposed mechanism, micro-CT scanning was applied to obtain the 

change of the percolation network of EG during stretching. Uniform inter-connected EG 

particles can be seen under stress-free state (Figure 4a). As stretching goes, EG particles 

suffer compression on the radial direction and orient towards the stretching direction, which 

results in sparser network and some local detachment (Figure 4b). When being stretched to 

400% strain, particles are unconnected and the uniform topology of EG particles becomes 

inhomogeneous (Figure 4c). The area percent of EG extracted from CT slices is found 
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decreasing with growing strain (Figure 4f). In Figure 4g, through comparing samples with 

various EG packing densities at 250% strain, TC (1.175 g/cm3) maintains uniform and dense 

EG network with a high area percent over 90% sample, which guarantees the effective 

connection of the percolation network and stable electronic properties. 

 

Figure 4 Morphology of TC with different stretching strains and packing densities: (a) ρ = 

0.497 g/cm3, 0% stretched. (b) ρ = 0.497 g/cm3, 250% stretched. (c) ρ = 0.497 g/cm3, 400% 

stretched. (d) ρ = 0.924 g/cm3, 250% stretched. (e) ρ = 1.175 g/cm3, 250% stretched (scale 
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bar: 500 �m). The statistical results of the EG area percent in CT slices with different (f) 

stretching strains and (g) packing densities. 

 

In practice, the weak adhesion between the rigid conductive film and soft polymer 

substrate caused irreversible disconnection of conducting channels, which were adverse to the 

reliability of strain sensors, especially under large deformations63,64. The resistance response 

of TC (0.924 g/cm3) with cyclic strains from 50% to 200% with a 50% increment is shown in 

Figure S4 It is noticed that the resistance of our TC can be fully recovered to the original 

value after the loading is released, through a hysteresis manner due to the resilient behavior 

of rubber tubing (Figure S5a). It is worth to mention that the response of our TCs is different 

from that of some film-based65 or blend66 strain sensors, for which the resistance cannot fully 

recover after releasing the loading. 
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Figure 5 R/R0 of TC (1.233 g/cm3) during 15 loading-unloading cycles under different strains 

(a) and (b). (c) R/R0 versus strain of TC (1.233 g/cm3) for the 100th and 500th cycle under 500 

mm/min testing speed. 
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With the purpose of testifying the dynamic properties of TC, the normalized resistance 

responses over 15 cycles with a maximum applied strain from 10% to 400% were 

investigated. It is seen from Figure 5a and Figure 5b that distinctive and stable responses of 

R/R0 are obtained. For TC with a lower packing density of 0.924 g/cm3, as shown in Figure 

S6, a very small strain of 0.75% can still be distinguished. Due to the increasing friction and 

sliding of EG particles when TC was tested under a larger clamping distance, more obvious 

responses of resistance to stretching strain are observed. Cyclic tests with different speeds 

shown in Figure S7 suggest reliable resistance response can be maintained even under the 

maximum tensile strain of 400% and a maximum speed of 500 mm/min. Figure 5c presents 

the resistance responses of TC (1.233 g/cm3) to strain for the 100th and the 500th cycle under 

500 mm/min speed, which shows relatively good stability. These cyclic tests suggest good 

reliability of our TCs for potential use as strain sensors (Movie S1). 
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Figure 6 (a) Stretching-holding-releasing measurements of TC (1.233 g/cm3) with a holding 

time of 120 s and a speed of 60 mm/min. (b) The relaxation curves of TC (1.233 g/cm3) under 

various tensile strains. The original resistance at the beginning of holding region was noted as 

R0. (c) Relaxation recovery time and overshoot percent of TC (1.233 g/cm3) under various 

tensile strains. 
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To further evaluate the dynamic response of TCs, the samples were subject to a stretching-

holding-releasing measurement. In Figure 6a it can be seen that when the strain is held at the 

end of stretching, R/R0 decreases slowly, which is known as overshoot56, caused by stress 

relaxation of the rubber tubing and sliding of the packed EG particles. In Figure 6b, it is 

obvious that the relaxation-induced reduction of R/R0 increases with tensile strain. In order to 

evaluate the relaxation behavior of TCs, the first derivative of �R/R0 versus time is 

calculated, and the relaxation recovery time is defined when the first derivatives reached -

0.001 (Figure S8a). Meanwhile, the overshoot percent (η) (Figure S8b) was also examined 

according to the formula below62: 

%m

s

R
100

R
η = ×                                                         (8) 

where Rm is the relaxation-induced reduction of resistance, and Rs is the increment of 

resistance during the stretching stage. The results of relaxation recovery time and overshoot 

percent are shown in Figure 6c. Upon growing strain from 10% to 400%, the relaxation 

recovery time increases from 4.4 s to 37.9 s and overshooting rises from 12.8% to 22.1%, 

respectively. It should be noted that the overshoot and relaxation are commonly observed for 

resistive strain sensors67-68. Similar phenomenon has also been reported in the research of 

graphene/natural rubber composites.67 

Stretchable conductors with high conductivity can be used as electrodes and 

interconnections, while stretchable conductors with good piezoresistivity have potential for 

serving as resistors and strain sensors69. It can be seen from the above discussion that TCs 

can generate distinctive feedback of resistance to a specific strain input. Although the gauge 

factor (GF=(�R/R0)/ε) of TCs (0.6-3) is in the same order of magnitude of conventional 

metal-foil-based strain gauges70 (Figure S9), the effective working range of the TCs reported 

herein is much higher than that of the metal-based stretchable electronics (< 5%).56  
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Compared to some stretchable conductors reported in the literature (listed in Table S2), our 

TCs show a good combination of high stretchability, conductivity and piezoresistivity, which 

are promising for not only high-performance interconnections, but also excellent strain 

sensors with a wide working range. 

 

Figure 7 (a) R/R0 of TCs during repeated bending tests. (b) Resistance change of a knotted 

TC (1.233 g/cm3) during stretching from 0% to 400%. (c) Relationship between R/R0 and 

twisting angle of TCs, and photographs of a LED in the testing circuit with TC (1.233 g/cm3) 

under different twisting states. (d) Current–Voltage measurements of the LED circuit without 

and with TC (1.233 g/cm3) interconnected at various tensile strains. Insets of (d) show the 

brightness of LED integrated circuits interconnected with 400% stretched TC under different 

output voltages. 

 

Figure 7a shows the resistance change of TCs against time over 100 180o-bending cycles. 

While the resistance change is obvious for TCs with a low packing density, the fluctuation 

amplitude is still lower than 0.5. Meanwhile, this fluctuation becomes weaker with increasing 
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packing density. A similar relationship between R/R0 and the twisting angle is observed in 

Figure 7c. Excellent electrical stability of TCs is demonstrated by insignificant degradation 

of LED brightness during twisting and knotting-stretching operations as shown in Figure 7c 

(right) and the inset of Figure 7b. The I-V relationship of a LED integrated with TC (1.233 

g/cm3) in series was examined under various tensile strains (Movie S2). Although the current 

declined with increasing strain, all I-V curves in Figure 7d are close to the curve of single 

LED. 

 

Figure 8 Response of current signal of a TC (1.175 g/cm3) strain sensor to detect movements 

of human joints and muscles: (a) different bending-releasing motions of a finger, (b) finger 
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motions with different frequencies, (c) arm joint bending-releasing motions with different 

frequencies, (d) the movement of muscles on forearm, and (e) the motions of muscles on 

upper arm with different frequencies. 

 

As an example, TC with a packing density of 1.175 g/cm3 was used to successfully detect and 

monitor the bending degree of fingers with different patterns (Figure 8a and Figure 8b), 

joint motions (Figure 8c), and the movements of muscles (Figure 8d and Figure 8e). More 

details can be found in Movie S3 and Movie S4. Besides, owing to the high conductivity of 

these TCs, the working voltage of the sensor can be several orders of magnitude lower than 

some reported strain sensors68-69. This means the device can run with lower energy cost. 

Thus, this work provides a new design of highly conductive, stretchable devices with strain 

sensing capability, which has potential in applications such as evaluation of athlete training 

systems, physical data collection of patients and other significant terminal equipment for 

smart life. 

 

4. CONCLUSIONS 

A novel method was proposed to fabricate low-cost, high-performance tubular stretchable 

conductors based on a confined structure of EG. The confined space inside the elastic tubing 

gave the packed EG particles a robust and stable percolation network so that tubular 

conductors were still characterized with excellent electrical conductivity under stretching. 

The tubular conductor with a packing density of 1.233 g/cm3 obtained an outstanding 

conductivity of 160.6 S/cm and good reliability with a maximum effective stretchability of 

400%. The piezoresistive behavior of tubular conductors was explained based on tunnel 

effect. The electrical conductivity, piezoresistive sensitivity and working strain of tubular 
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conductors could be tuned by varying the content of EG, and excellent responsiveness and 

stability of tubular conductors under both low and high stretching speeds were achieved. 

These tubular conductors were also able to detect human motions including movement of 

fingers, arm joints and muscles for wearable electronics.  
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