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Novelty and Impact: We present a new two-stage approach to identifying somatic mutations that are 29 

shared across multiple tumour samples or datasets (eg RNA and DNA sequenced separately) from 30 

the same patient, and test it in three independent cohorts of paired primary and recurrent 31 

glioblastoma samples. Our results show that our approach more sensitively detects shared genetic 32 

variants, which are candidate drivers of tumour progression. 33 
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ABSTRACT  35 

Many traits of cancer progression (e.g. development of metastases or resistance to therapy) are 36 

facilitated by tumour evolution: Darwinian selection of subclones with distinct genotypes or 37 

phenotypes that enable such progression. Characterising these subclones provides an opportunity to 38 

develop drugs to better target their specific properties but requires the accurate identification of 39 

somatic mutations shared across multiple spatiotemporal tumours from the same patient. Current best 40 

practices for calling somatic mutations are optimised for single samples, and risk being too 41 

conservative to identify shared mutations with low prevalence in some samples. We reasoned that 42 

datasets from multiple matched tumours can be used for mutual validation and thus propose an 43 

adapted two-stage approach: 1) low-stringency mutation calling to identify mutations shared across 44 

samples irrespective of the weight of evidence in a single sample; 2) high-stringency mutation calling 45 

to further characterise mutations present in a single sample. We applied our approach to three 46 

independent cohorts of paired primary and recurrent glioblastoma tumours, two of which have 47 

previously been analysed using existing approaches, and found that it significantly increased the 48 

amount of biologically-relevant shared somatic mutations identified. We also found that duplicate 49 

removal was detrimental when identifying shared somatic mutations. Our approach is also applicable 50 

when multiple datasets e.g. DNA and RNA are available for the same tumour. 51 

52 
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INTRODUCTION 53 

Analysing multiple tumours from the same patient provides novel insights into cancer evolution1-3. 54 

Genomic subclones shared across spatiotemporal samples highlight candidate drivers of progressive 55 

behaviours, such as metastasis (spatially separated samples) and recurrence (temporally separated 56 

samples)4, 5. Using high-coverage DNA sequencing to characterise somatic mutations in all samples 57 

is the first step to identifying shared subclones. Best practices for somatic mutation calling in 58 

sequencing data were developed for application to single tumour samples and aim to reduce false 59 

positive calls caused by the relatively high error rates in high-throughput sequencers6-8. However 60 

when analysing multiple tumours, the most biologically relevant mutations are arguably those present 61 

in small subclones in one sample but expanded in others. Analysis must, therefore, maximise the 62 

chance of capturing such situations, ensuring shared low-allelic fraction mutations are not filtered out 63 

from the sample where they are less prevalent. This is especially important for formalin fixed and 64 

paraffin embedded (FFPE) samples because this process is known to introduce artefacts at low-allelic 65 

fractions, and where multiple samples exist from the same patient it is likely that at least some will be 66 

in FFPE9, 10. In considering this problem, we reasoned that multiple samples from the same patient 67 

provide internal and mutual validation for mutations that may have otherwise been more difficult to 68 

assign correctly. We therefore propose a new approach to somatic mutation calling across multiple 69 

matched samples: 70 

1) A first round of low-stringency mutation calling to identify tumour-specific variants that self-71 

validate i.e. are present in more than one dataset irrespective of the strength of evidence of 72 

any one call. We denote these Somatic TPs (true positives); 73 

2) A second round of stringent mutation calling to additionally identify variants found only in one 74 

sample. We denote these Somatic Unknowns. 75 

 76 

MATERIALS AND METHODS 77 

More detailed methods are given in Supplementary Materials and Methods 78 

Samples 79 

We identified three independent cohorts of paired patient GBM samples (surgical tissue from primary 80 

GBM and subsequent recurrent samples). Clinical information is given in Supplementary Table S1. 81 
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Stead Cohort: Eight patients from three tissue banks (Leeds, Liverpool and Preston) with tumours in 82 

paraffin blocks and matched blood samples available. Ethical approval was acquired (REC 83 

13/SC/0509). DNA and RNA were extracted simultaneously from tumours (>60% cancer cells), and 84 

DNA from blood, using appropriate Qiagen kits (Qiagen, Sussex, UK). PE100 exome libraries (tumour 85 

and blood DNA) were made using the SureSelectXT V5 kit (Agilent). PE100 strand-specific whole 86 

transcriptome libraries were prepared using the NEBNext Ultra Directional RNA Library Prep Kit for 87 

Illumina (New England BioLabs, UK), following rRNA depletion with NEBNext rRNA Depletion Kit or 88 

Ribo-Zero Gold. Libraries were sequenced on a HiSeq2500. 89 

Rabadan Cohort: Ten patients from Wang, et al. 11 with exome and whole transcriptome sequencing 90 

data for paired tumours, and exome data for matched blood, downloadable from the sequencing read 91 

archive (accession SRP074425). 92 

Verhaak Cohort: Four patients from Kim, et al. 12 with high coverage exome (tumour and blood) and 93 

poly-A transcriptome sequencing alignment data (tumour) was acquired, and converted to raw fastq 94 

format, following application to the European Genome-Phenome Archive (accession 95 

EGAS00001001033).  96 

Sequencing Data Processing 97 

Quality processed exome sequencing data was aligned to human reference genome hg19 using BWA 98 

mem (v0.7.15)13. Two bam files were produced per sample: one with duplicates removed and one 99 

with them retained (Picard tools (v2.6.0). All bam files underwent base recalibration and indel 100 

realignment (GATK v3.4-46)14. RNAseq data was processed as previously described15. 101 

Variant Calling  102 

Variants were called in all DNA and RNA datasets using Varscan2 (v2.3.9). Briefly: samtools mpileup 103 

was run with low mapping and base quality threshold (Phred>=1) and duplicates ignored where 104 

required; Varscan2 is then run twice in somatic mode, once with the primary tumour and matched 105 

blood, and once with the recurrent tumour and matched blood (minimum coverage: 10X; minimum 106 

variant allele frequency [VAF] 3.5%); Varscan2 processSomatic (max VAF in the blood 0.5%) 107 

somaticFilter commands are run; finally a customised perl script iterates through the low confidence 108 

somatic calls in the primary tumour and re-annotates them as high confidence if they were also called 109 
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as somatic (either high or low confidence) in the recurrent sample and then repeats this for the low 110 

confidence somatic calls in the recurrent tumour via iterative inspection in the primary tumour somatic 111 

calls. Variant consequences were assigned using the Ensembl (release 86) Variant Effect Predictor16. 112 

All of our wraparound scripts are specific to the variant calling pipeline we have established in house 113 

but are available upon request, and guidance in the adaption of existing pipelines is also available via 114 

the corresponding author. 115 

Assessment of Variant Calls 116 

Three tables of annotated variation data were created per patient: Germline variants (found in either 117 

tumour DNA and in the blood DNA), Somatic TP (true-positive somatic mutations: found in more than 118 

one tumour dataset and not in the blood) and Somatic Unknown (found only in the DNA of one tumour 119 

only and not in the blood).  120 

Comparative Analysis 121 

To compare the number of Somatic TPs identified in our approach using paired versus unpaired 122 

samples, the somatic mutations in each primary tumour were also compared with three unpaired 123 

recurrences i.e. random selection of the same number of mutations that were in the paired recurrence 124 

from three unpaired recurrences from the same cohort. Somatic TPs identified by our approach were 125 

also compared with those from the original analyses (listed in supplementary tables of both published 126 

papers11, 12) 127 

SNP arrays 128 

80ng DNA from three Stead cohort tumours underwent the OncoScan™ FFPE SNP array assay. B-129 

allele frequencies (BAFs) in the raw_snps.txt files were compared with those from variant calling in 130 

the exome data. 131 

 132 

RESULTS 133 

To test our two-stage approach (Fig.1) we acquired high-coverage exome and RNA sequencing data 134 

from three independent cohorts of longitudinal glioblastoma (GBM) samples: the Verhaak cohort (four 135 
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patients from Kim, et al.12); the Rabadan cohort (ten patients from Wang, et al.11); the Stead cohort 136 

(our own six patients). These were first diagnosis GBM samples acquired from an initial surgical 137 

resection (denoted the primary sample) and post-treatment recurrences (recurrent sample) from a 138 

second surgical resection. The Verhaak and Rabadan samples had mutations called, and published, 139 

using best practices and validated somatic mutation calling pipelines11, 12. Stead tumours were FFPE; 140 

Rabadan and Verhaak were snap frozen. Clinical information and sequencing metrics for all samples 141 

are in Supplementary Tables S1-3. Supplementary Table S4 shows how many Somatic TPs were 142 

validated in the DNA of the remaining tumour and how many, instead, in the RNA of either tumour. 143 

The ability to validate within RNA was varied (8±14% of TPs were validated this way) but indicates the 144 

applicability of this approach when a single tumour is being analysed but using more than one 145 

sequencing dataset. 146 

 147 

Our Approach Identifies Additional Shared Variants that are Biologically Relevant 148 

A paired sample analysis identifies significantly more biologically relevant shared mutations. Our 149 

approach assumes that observing a mutation in more than one dataset from the same patient 150 

validates its existence, irrespective of the strength of evidence in any single dataset. To assess this 151 

assumption, in contrast to the possibility than the same mutations may be observed in different 152 

tumours owing to technical errors biased towards certain genomic loci, or by chance because relaxed 153 

filters identify so many variant loci, we also inspected the number of Somatic TPs acquired when our 154 

approach was applied to unpaired primary and recurrent tumours i.e. from different patients. We 155 

repeated our analysis three times per primary tumour, randomly selecting the same number of 156 

mutations found in its paired recurrence from the mutations called in a different patient’s recurrence 157 

(same cohort). On average, there were 98±1% (97±5% with duplicates retained) fewer Somatic TPs in 158 

unpaired snap frozen samples versus the paired analyses, and 92±6% (93±5% with duplicates 159 

retained) fewer in FFPE samples. This indicates that our approach identifies variants that are shared 160 

for biological rather than technical reasons. 161 

Comparison with the original Verhaak cohort analysis. Variants called in both our and the original 162 

Verhaak cohort (n=4) analysis are in Supplementary Table S5. 241 Somatic TPs were identified in 163 

both studies and for these the VAF correlation was 1.00 for both primary and recurrent tumour 164 
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samples (0.99 when we retained duplicates). The previous analysis identified one Somatic TP that we 165 

called germline as there were reads supporting the variant in the blood according to our alignment. 166 

We, however, identified 583 protein-altering Somatic TPs not previously published, likely because 167 

they were filtered out during independent tumour variant calling. These were in 517 genes enriched in 168 

members of Signalling Pathways in Glioblastoma (Wikipathways WP2261, hypergeometric adjusted 169 

p=0.036) including: a PTEN splice site mutation previously observed in glioma (COSM39456) and 170 

predicted to be pathogenic (fathmm score of 0.99); a NF1 splice site mutation; an EGFR missense 171 

mutation, predicted to be damaging (PolyPhen2 p=0.997), only identified in the recurrence in the 172 

original analysis. Within the 60 Somatic TPs, uniquely identified by our approach, with a VAF increase 173 

of 5% or more from primary to recurrence (i.e. potentially located within clones that not only survived 174 

but expanded following therapy), 29 were predicted to be damaging by SIFT, PolyPhen2 and/or 175 

fathmm including several in genes previously associated with gliomagenesis e.g. EXT1, NOTCH1 and 176 

TRAF117-19. 177 

Comparison with the original Rabadan cohort analysis. Variants called in both our and the original 178 

Rabadan cohort (n=10) study are in Supplementary Table S6. 357 Somatic TPs were identified in 179 

both analyses; 7 that were experimentally validated and all 14 known GBM driver mutations. The VAF 180 

correlation was 0.99 for both tumours (0.95 and 0.96 with duplicates retained). The previous analysis 181 

identified 25 unclustered Somatic TPs that our approach did not: we called 24% germline, 60% only in 182 

one tumour and did not observe 16%. We missed one experimentally validated mutation in the 183 

primary tumour as it was below our VAF threshold. However, we identified 6416 protein-altering 184 

Somatic TPs not previously published. The 4667 genes containing these are: significantly expressed 185 

in brain (normal and tumour) and epithelial tissue; enriched for genes involved in nervous system and 186 

neuron development and in Signalling Pathways in Glioblastoma (Wikipathways WP2261, Table 1) 187 

(hypergeometric, q<0.05); contain a significant number of the 75 GBM mutational driver genes listed 188 

in the Integrative Onco-Genomics database (n=35, chi-squared p=0.04). The uniquely identified 189 

genes in which VAF increased by 5% or more were enriched for members of MAPK and Wnt 190 

signalling (Wikipathways WP382 and WP399, hypergeometric q<0.05), both strongly associated with 191 

gliomagenesis20, 21.  192 

Duplicate Removal Can Reduce Biological Information 193 
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Detecting low VAF (potentially subclonal) variants requires high sequencing coverage7. Most analysis 194 

pipelines remove duplicates before variant calling for fear that these are PCR artefacts that will 195 

amplify errors6. However, duplicate removal programmes define duplicates as reads sharing start and 196 

end alignment coordinates, ignoring actual sequence. As coverage increases, the chance of two 197 

independent reads sharing alignment coordinates increases; if such reads span the position of a low 198 

allelic fraction variant, the evidence for it will likely be removed as the programme selects one 199 

‘duplicate’ at random (or the best according to the summation of base qualities) to retain. We 200 

inspected how retaining duplicates affects the number and VAF of each type of variant (Fig.2). 201 

Retaining duplicates increases the number of both types of internally validated variation: Germline 202 

and Somatic TPs. However, there is a disproportionate increase (note the log scale, Fig.2B) in the 203 

number of Somatic Unknowns (comprising false and true positives). The VAF correlation between 204 

duplicate removed versus duplicate retained data is always >0.8, though a reduction in the correlation 205 

coefficient is observed as the proportion of duplicates increases (Fig.2C). To recap from above, 206 

retaining duplicates also did not i) increase the Somatic TPs found in unpaired samples, ii) reduce the 207 

VAF between ours and previously published (duplicate removed analyses) Somatic TPs. 208 

We then compared results from SNP microarrays to those of sequencing data (10-27% duplicates) for 209 

three Stead cohort samples. In all cases (duplicate removed and retained), the BAF correlated 210 

significantly. However, duplicate retention increased the number of variants that could be used in the 211 

comparison by 2-5%. 212 

DISCUSSION 213 

Best practice analysis pipelines aim to maximise both sensitivity (detection of real events) and 214 

specificity (avoidance of non-real events) and standardise approaches for better cross-dataset 215 

comparison. Their use must be with the understanding that each analysis is unique (different data, 216 

different questions) and even best-practice cannot reveal the whole truth. For identifying somatic 217 

mutations in tumours from sequencing data, best practices were developed for application to single 218 

tumour samples, with matched normal (most often blood DNA) providing a germline reference. 219 

Commonly studies now require somatic mutation calling across multiple tumours, or regions, from the 220 

same patient. We propose that these analyses would benefit from an adapted two-stage approach 221 

(Fig.1) that exploits mutual validation across samples to increase the sensitivity of shared mutations 222 
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detection; mutations of particular interest as they are candidates for conferring clinically relevant 223 

phenotypes e.g. the ability metastasize or resist therapy. We recognise, however, that this attempt to 224 

increase sensitivity could reduce specificity; low-stringency mutations could appear shared between 225 

samples owing to the repeated introduction of technical artefacts or FFPE-induced mutations. We 226 

tested this by assessing the number of Somatic TPs identified when primary tumours were analysed 227 

with unpaired recurrences i.e. where shared variation is due to artefacts at the same position in both 228 

samples or independently arising real mutations, which cannot be ruled out but could also be the case 229 

in paired samples owing to convergent evolution. We found a large (>90%) reduction in Somatic TPs 230 

in unpaired versus paired samples, indicating that our approach identifies real, biological mutations 231 

even in FFPE samples. Alternatively, our approach is mis-calling germline variants as shared somatic 232 

mutations. This is unlikely as all mutations are called in parallel to a matched blood, also sequenced 233 

to a high coverage (167±54X or 213±72X in duplicate removed and retained data) with minimum 10X 234 

is required at variant loci. Furthermore, Somatic TPs identified uniquely by our approach in the 235 

Verhaak and Rabadan cohorts are enriched in genes in biologically relevant pathways; germline 236 

variants and artefacts would occur randomly throughout the genome whereas somatic mutations 237 

occur more often in genes activated in the diseased tissue owing to DNA exposure upon 238 

transcription22. If sequencing is being done to detect specific mutations that may be driver events, 239 

therapeutic targets or useful in clinical diagnosis, specificity is key and false positives are intolerable. 240 

However, if the aim is to better understand patterns of tumour evolution across numerous patients as 241 

part of basic scientific discovery e.g. in order to assess gene networks, signalling pathways or 242 

biological processes enriched in clonally expanded populations, it is arguably worth risking noise in 243 

the data to ensure true signal is detected above such background. Findings then form the basis of 244 

hypotheses to be thoroughly tested in the laboratory. More sensitive detection of shared variation will 245 

also improve our detection of pan-genome mutational signatures which can: indicate cancer aetiology; 246 

inform on modes of evolution23; more accurately indicate therapy-driven mutational load24. 247 

We inspected the effect of duplicate removal on shared variant calling and found that the first round of 248 

low-stringency variant calling benefitted from duplicate retention but the second more stringent round 249 

of variant calling should be in duplicate-removed data.  250 

Numerous variant callers exist and benchmarking studies show they often give very different results25. 251 

Such studies are, however, challenging owing to the difference in parameter defaults for each caller, 252 



 10 

and the need to account for external variables e.g. sequencing depth and tumour purity. We herein 253 

used Varscan2, which we previously found to accurately identify low VAF somatic mutations7. The 254 

Verhaak and Rabadan cohort studies used different callers: MuTect and SAVI2 respectively (with 255 

different versions of BWA for the initial alignment). Despite this, we identified a high percentage of the 256 

same Somatic TPs (99.6% and 93.5% for each study respectively) but our approach additionally 257 

identified many more biologically relevant mutations. We suggest, therefore, that it is worth adapting 258 

existing pipelines, irrespective of the variant caller employed, to incorporate a reduced stringency first 259 

round of mutation calling and subsequent identification of mutually validating shared variants.  260 
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 350 

FIGURE LEGENDS 351 

Fig.1. An overview of our two-stage approach to identifying somatic variants across multiple tumour 352 

samples or datasets from the same patient. 353 

Fig.2. Assessing the effect of duplicate removal on variant calling in multiple glioblastoma (GBM) 354 

tumour samples. A) The fraction of reads marked as duplicates (± SD). B) The effect of retaining 355 

duplicates on the number of different types of mutation called (± SD). C) Scatterplot showing how the 356 

fraction of duplicates alters the correlation between allelic frequencies in variants identified in 357 

duplicate-removed versus duplicate-retained sequencing data. Verhaak, Rabadan and Stead are 358 

three independent cohorts of samples trios (blood, primary GBM and recurrent GBM). See Methods 359 

for the definition of Germline, Somatic TP and Somatic Unknown variants. 360 
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