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Abstract Little is known about how plants deal with arthropod herbivores under the

fluctuating light intensity and spectra which occur in natural environments. Moreover, the

role of simultaneous stress such as excess light (EL) in the regulation of plant responses to

herbivores is poorly characterized. In the current study, we focused on a mite-herbivore,

specifically, the two-spotted spider mite (TSSM), which is one of the major agricultural

pests worldwide. Our results showed that TSSM-induced leaf damage (visualized by trypan

blue staining) and oviposition rate (measured as daily female fecundity) decreased after EL

pre-treatment in wild-type Arabidopsis plants, but the observed responses were not

wavelength specific. Thus, we established that EL pre-treatment reduced Arabidopsis

susceptibility to TSSM infestation. Due to the fact that a portion of EL energy is dissipated

by plants as heat in the mechanism known as non-photochemical quenching (NPQ) of

chlorophyll fluorescence, we tested an Arabidopsis npq4-1 mutant impaired in NPQ. We

showed that npq4-1 plants are significantly less susceptible to TSSM feeding activity, and

this result was not dependent on light pre-treatment. Therefore, our findings strongly

support the role of light in plant defence against TSSM, pointing to a key role for a photo-

protective mechanism such as NPQ in this regulation. We hypothesize that plants impaired

in NPQ are constantly primed to mite attack, as this seems to be a universal evolutionarily

conserved mechanism for herbivores.
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Introduction

In natural environments, plants are subjected to many simultaneous stresses which result in

the activation of various signalling pathways that are integrated into one regulatory net-

work (Koussevitzky et al. 2007; Mittler 2002; Mühlenbock et al. 2008; Trotta et al. 2014).

Light is one of the most important environmental factors for plants, as it provides the

source of energy for photosynthesis and plays a key role in multiple plant developmental

processes (Cerdán and Chory 2003; Jiao et al. 2007; Kaiserli et al. 2015). However, in

natural situations plants are exposed to varying light intensities due to the angle of the sun,

transient shading by the canopy, and diurnal and seasonal changes in light intensity and

quality. During sunny days plants encounter light intensities that often exceed their pho-

tosynthetic capacity (Mishra et al. 2012). The sudden exposure of plants to such light

episodes may cause a range of light stress effects. Dissipation of excess excitation energy

(EEE) in plants is achieved by a combination of so-called non-photochemical (NPQ) and

photochemical quenching processes. NPQ dissipates the EEE as heat. This process is

caused by the acidification of the chloroplast lumen, and involves a chlorophyll-pigment-

binding protein of the photosystem II (PSII) subunit S protein (PsbS), and other PS-

associated proteins (Ciszak et al. 2015; Li et al. 2004; Müller et al. 2001; Niyogi 2000;

Niyogi et al. 2005). EEE is ultimately associated with the production of reactive oxygen

species (ROS) such as hydrogen peroxide (H2O2), superoxide (O2
�-), and singlet oxygen

(1O2) that can both signal and cause damage. The detoxification of excess ROS relies on

antioxidants and antioxidant enzymes (Foyer and Noctor 2005, 2009; Noctor and Foyer

1998). Antioxidants include ascorbate, tocopherols, carotenoids, and anthocyanins (Del-

laPenna and Pogson 2006; Foyer and Shigeoka 2011). Antioxidant enzymes involve

superoxide dismutase (SOD) and ascorbate peroxidase (APX) that disproportionate O2
�

radicals and catalyse the conversion of H2O2 to water, respectively (Asada 1999). Accli-

mation responses to EL episodes are induced within minutes in distal leaves, and the

response is proportionally dependent on the quality and quantity of light (Gordon et al.

2013). Light stress induces plant tolerance to pathogen infection as well as to oxidative

stress in systemic tissues, indicating a cross-talk between light stress acclimation and

pathogen responses (Mühlenbock et al. 2008; Rossel et al. 2007; Szechyńska-Hebda et al.

2010; Zhao et al. 2014). EEE has been shown to induce systemic acquired resistance

(SAR) and basal defences to virulent biotrophic bacteria. This response is accompanied by

alterations in ROS and redox signals, and the induction of glutathione, salicylic acid (SA),

and ethylene (ET) in both local and systemic leaves (Mühlenbock et al. 2008; Szechyńska-

Hebda et al. 2010). Moreover, it was demonstrated that high-light pre-exposure caused

enhanced resistance to aphid infestation in wild-type plants and in mutant lines defective in

the composition of B-subunits on the trimeric protein phosphatase 2A (PP2A) holoen-

zymes (Rasool et al. 2014).

Most of the research on the plant-biotic stress interaction concerns plant defences

against different species of pathogens, nematodes, and insect-pests, while the studies on

plant defence against mite-pests are limited. The two-spotted spider mite (TSSM) (Te-

tranychus urticae Koch; Prostigmata: Tetranychidae) is one of the most destructive

polyphagous arthropod herbivores, feeding on hundreds of wild and crop plant species.

Recently, several transcriptomic approaches allowed to establish molecular basis of its

ability to adapt to different host plant species such as Arabidopsis, tomato and grapevine

(Grbić et al. 2011; Wybouw et al. 2015; Dı́az-Riquelme et al. 2016; Rioja et al. 2017).

These thorough analyses often included monitoring of host plant transcriptional dynamics

upon TSSM infestation and together with Arabidopsis and tomato focused research
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(Zhurov et al. 2014; Martel et al. 2015), gave an extensive overview on gene expression

changes occurred starting from the early time points of infestation. However, there is a lack

of data on how plants respond to TSSM in the presence of other stresses such as high light.

Increasing evidence indicates that plant response to the combination of biotic and abiotic

stresses cannot be considered from the knowledge of the individual stress responses

(Dworak et al. 2016; Suzuki et al. 2014). Such evidence strongly supports the idea of a

more detailed study with respect a plant’s response to simultaneously occurring stresses.

In the present study, using different light quality, we analysed the effect of high light

pre-treatment on the plant response to TSSM. To elucidate the involvement of photo-

protection mechanisms such as NPQ we used npq4-1 Arabidopsis thaliana mutants. Our

study showed that short EL episodes are memorized by plants, which in turn causes a less

susceptible response to TSSM. Therefore, our findings broaden the knowledge about how

plants function in the natural environment, which forces them to develop optimized

responses to combined biotic and abiotic stresses.

Materials and methods

Plant materials and growth conditions

All A. thaliana plants used in the experiments were of the Columbia ecotype (Col-0). The

npq4-1 mutant has a deletion in the NPQ4 gene (At1g44575) derived from fast neutron

bombardment, and was obtained from the Arabidopsis Biological Resource Center (ABRC,

Ohio State University, USA). Over a period of 4 weeks, A. thaliana (Col-0) plants were

grown under 8 h/16 h (light/dark) photoperiod at a low light (LL) intensity of

100 lmol photons m-2 s-1.

Excess light pre-treatment

Plants were exposed to 2 h (hours) of excess light using LED light sources (Photon

Systems Instruments, Brno, Czech Republic) including white light (HL) of

1500 lmol photons m-2 s-1; blue light (BL; 450 nm) of 1500 lmol photons m-2 s-1;

and red light (RL; 650 nm) of 2000 lmol photons m-2 s-1.

TSSM mass population rearing and oviposition rate assessment

The Warsaw TSSM strain originating from Sambucus nigra L. was reared on Phasoleous

vulgaris L. cv. Ferrari (PNOS, O _zarów Mazowiecki, Poland) for more than 150 genera-

tions. The stock mite colony was kept on bean plants grown in a growth chamber at 16 h/

8 h (day/night) photoperiod, temperature 23 ± 1 �C, and 60% relative humidity. To

synchronize the age of experimental females—at the time when female deutonymphs

appeared in the stock colony they were transferred to the detached fresh leaves and males

were added. After mating young females were maintained on bean leaves until first eggs

were laid. Five-day-old females were used in the ‘no-choice’ performance assay and leaf

damage test on Col-0 and npq4-1 mutant plants. Each experimental plant was infested with

20 females. Females were located in the middle of the rosette and had free choice to feed.

After 24 h, the eggs laid on all leaves were counted. Since the initial number of females on

Col-0 and npq4-1 mutant plants decreased similarly due to dispersal the TSSM oviposition
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rate was expressed as the average number of eggs 9 female-1 9 plant-1 day-1 consid-

ering the number of remaining females.

Leaf-damage assessment

Leaf damage was evaluated using the same Arabidopsis plants. Trypan Blue (TB) staining

was performed based on Keogh et al. (1980). Mite-infested leaves were submerged in TB

solution (0.016% TB, 8% phenol, 8% glycerol, 8% lactic acid, and 65% ethanol) in a

15 mL conical polypropylene tube, placed in a boiling water bath at 95 �C for 2 min. and

then left in staining solution overnight at room temperature. Later, leaves were cleared with

6 M chloral hydrate solution diluted in water (Avantor, Poland). Stained leaves were

observed and digital images of the leaves were captured by stereo microscope (Leica

M165-FC; Leica Microsystems, Wetzlar, Germany). Quantification of mite-induced leaf

damage was performed using ImageJ software (Schneider et al. 2012). Firstly, leaf area

was outlined, image was binarized and damage area was calculated using measurement

tool.

Photosynthetic pigments analysis

After long HL pre-exposure

Three-week-old A. thaliana plants growing in the conditions described above were

exposed to 800 lmol HL for 1 week. The remainder of the plants were maintained in LL

conditions. Three mite-infested leaves collected from mite-infested plants (20 females per

rosette for 48 h) and three respective non-infested (control) leaves from control plants were

used to evaluate the contents of chlorophyll a, chlorophyll b, and carotenoids (four bio-

logical replicates). All leaves were weighed, ground in liquid nitrogen, after which the

photosynthetic pigments were extracted using 95% ethanol and determined as was

described in Lichtenthaler (1987).

After short HL pre-treatment

Four-week-old A. thaliana plants growing in the conditions described above were treated

for 3 h with HL, BL, or RL. Three mite-infested leaves collected from mite-infested plants

(20 females per rosette for 72 h) and three respective non-infested (control) leaves from

control plants were used to evaluate the contents of chlorophyll a, chlorophyll b, and

carotenoids as described above.

Chlorophyll a fluorescence assessment

Three week-old A. thaliana plants growing in the conditions described above were used to

analyse chlorophyll a fluorescence parameters. The plants were previously exposed to an

excess of HL, RL, or BL (described in the excess light pre-treatment section) and then 20

TSSM females per rosette were placed for 96 h for plant infestation. Next, the plants were

used to determine the chlorophyll a fluorescence measurement. A PAM FluorCam 800 MF

PSI device (Photon Systems Instruments) and FluorCam 6.0 Software, supplied by man-

ufacturer were used for analysis. Prior to the measurements, the plants were dark adapted

for 30 min in order to determine F0 and Fm.
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Statistical analysis

Statistical analysis was performed with R software v.2.13. Tukey’s honestly significant

difference (HSD) function was used from the R base package.

Results

TSSM feeding activity and oviposition rate

To assess how the plant–mite herbivore interaction is modulated in fluctuating light

environments we used plants pre-exposed to 2 h of excess light (EL) treatment with

different wavelengths: white light (HL), red light—650 nm (RL), and blue light—450 nm

(BL). To differentiate intact leaf cells and those with mite-disrupted cell membranes we

performed TB vital staining which is accumulated only in damaged cells (Fig. 1a). In our

study, TSSM feeding activity quantified as the area of damage was less extensive if plants

were pre-exposed to EL treatments before mite infestation. Pre-exposure to BL and RL, EL

caused a reduction in the level of mite-damaged cells similar to HL (Fig. 1b).

Moreover, we analysed the mite oviposition rate expressed as the average number of

eggs female-1 plant-1 day-1, which was reduced if the plants were subjected to EL for all

treatments (Fig. 1c). HL pre-exposure resulted in the most significant reduction of mite

oviposition. The excess of RL and BL had a similar but less significant effect on mite
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Fig. 1 a Mite-induced leaf damage visualized by TB staining 24 h post infestation of Arabidopsis thaliana
(Col-0) plants. b Extent of damage assessed by the percentage of damaged leaf area (n = 3). c TSSM
oviposition rate expressed as the average number of eggs female-1 plant-1 day-1 (n = 9). LL represents
LL-acclimated control plants, and HL, RL, and BL represent plants pre-treated with excess white light, red
light, and blue light, respectively. Asterisks indicate significant differences from the LL treatment according
to the Tukey HSD test at the level of **0.001, *0.01
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performance. Our results show that EL pre-treatments (HL, RL, BL) decreased suscepti-

bility to TSSM infestation.

The effect of long and short HL pre-exposure on photosynthetic pigments

In control plants grown under HL conditions for 1 week, the content of chlorophyll a

decreased compared to the LL plants. Interestingly, there was no change in the level of this

pigment caused by HL treatment when infested plants were analysed (Fig. 2a). HL

treatment also resulted in a decline in the chlorophyll b quantity for both control and

infested plants. Additionally, we observed a reduction in the total chlorophyll content due

to HL treatment, but the differences were mitigated if infested and control plants were

compared. For all treatments, the contents of carotenoids were similar and did not change

upon HL exposure or TSSM infestation.

Short HL pre-treatment with different light qualities had no effect on the contents of

chlorophyll a for the control and infested plants (Fig. 2b). We observed an increase in the

chlorophyll b value in infested plants in all HL pre-treated plants, which also translated

into changes in the total chlorophyll content, but these changes were not significant.

Similarly, for previous experiments we recorded no changes in carotenoids for any of these

treatments.
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Fig. 2 A comparison of the contents of leaf pigments in non-infested (control; CTR) and TSSM-infested
(INF) Arabidopsis thaliana plants for chlorophyll a, chlorophyll b, total chlorophyll, and total carotenoids.
a Analyses were performed on plants that had been grown for 3 weeks under low light (LL) and then either
maintained for a further week under LL growth conditions, or transferred to high light (800 lmol m-2 s-1)
for a subsequent week (HL). b Analyses were performed on plants that had been grown for 4 weeks under
low light (100 lmol m-2 s-1) and then exposed to 3 h of EL. LL represents control LL acclimated plants,
and HL, RL, and BL represent plants pre-treated with excess white light, red light, and blue light,
respectively. Asterisks indicate significant differences according to the Tukey HSD test at the level of
***0.0001, **0.001, *0.01
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Chlorophyll a fluorescence quenching parameters

Chlorophyll a fluorescence quenching parameters were measured on plants exposed for 2 h

to EL (HL, RL, and BL) and then infested with TSSM. Measurements were performed

96 h post excess light treatment for the control and the infested plants to examine how

TSSM infestation affects the activity of the photosynthetic apparatus. No statistically

significant differences in the maximum quantum efficiency of PSII (Fv/Fm) were observed

for the control and mite-infested plants (Fig. 3). In the control plants the Fv/Fm values

were very stable among the replicate measurements, however the infestation caused slight

variation, but no visible trend nor statistical significance was noted. Other parameters

which we measured included NPQ, which monitors the apparent rate constant for heat loss

from PSII (Baker 2008). NPQ increased after TSSM infestation in all cases (Fig. 3), but it

was not dependent on previous EL exposures.

The role of NPQ in plant responses to TSSM

To assess the role of photo-protection mechanisms in the plant response to TSSM, we

quantified the area of leaf damage caused by mite feeding activity and performed fecundity

assays on npq4-1 mutant plants lacking the PsbS protein associated with photosystem II

(PSII). The area of TSSM caused damage on npq4-1 leaves was significantly smaller than on

the leaves of Col-0 control plants, and was similar to the wild-type plants pre-treated with HL

(Fig. 4a). We observed a similar trend when analysing the mite oviposition rate—npq4-1

mutant plants were less susceptible to TSSM attack, and this result was not affected by EL.

Therefore, our results demonstrate that npq4-1mutant plants are less susceptible to mites, and

the EL episodes do not change the plant susceptibility, contrary to wild-type plants.
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Fig. 3 Photosynthetic parameters of control (CTR) and mite-infested (INF) Arabidopsis thaliana plants.
The maximum quantum efficiency of PSII—Fv/Fm and NPQ were examined. (LL) represents LL-
acclimated plants, whereas (HL), (RL), and (BL) represent plants pre-treated with excess white light, red
light, and blue light, respectively (n = 6). Asterisks indicate significant differences according to the Tukey
HSD test at the level of ***0.0001
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Discussion

Light is a main factor which modulates plant growth, development, and yield. Moreover,

its excess as well as deficiency has detrimental effects on photosynthesis. In natural

conditions optimization of photosynthesis is challenging, because plants cope not only with

fluctuating light intensity but its efficiency is an outcome of a plant’s response to a

combination of biotic and abiotic stresses (Pandey et al. 2015). Therefore, photosynthetic

machinery is a fine-tuneable mechanism whose functioning cannot be considered only in

the context of plant productivity, as it seems to play a dominant role in the regulation of

plant stress resistance (Kangasjärvi et al. 2014; Trotta et al. 2014). Increasing evidence

reinforces the profound effect of light on plant resistance/susceptibility to biotic stresses

(Göhre et al. 2012; Hua 2013; Rasool et al. 2014; Roden and Ingle 2009; Szechyńska-

Hebda et al. 2010). This regulation is connected not only with light pre-treatment (Sze-

chyńska-Hebda et al. 2010), but is also dependent on the circadian clock (Bhardwaj et al.

2011; Zhang et al. 2013). It was documented that EL incidents are physiologically

memorized by plants, and modulate plant resistance to Pseudomonas syringae (Sze-

chyńska-Hebda et al. 2010) in a wavelength specific manner. Such a mechanism is called

light memory, and it is connected with changes in NPQ and membrane potential induced

by local EL treatment. Locally induced HL stress is propagated within minutes to systemic

leaves by photo-electrochemical signals, such as NPQ and H2O2, in a phenomenon known

as systemic acquired acclimation (SAA) (Karpinski et al. 1999). So far there is limited data

concerning the role of light in plant resistance to mite pests. It was documented that light

intensity and photoperiod affected glandular trichome density in tomato plants (Nihoul

1993). However, these observations described only plant responses to LL

(100 lmol photons m-2 s-1) and shaded (50 lmol photons m-2 s-1) conditions. The

density of trichomes which produce exudates increased in plants grown in LL conditions,

and caused a rise in mite entrapment by their immobilization. While cited reports point to

the reaction of stressed plants, there could be a direct light influence on herbivores. For

instance, UVA and UVB radiation have an effect on mite survival, reproduction, and

spatial distribution on host-plants (Ohtsuka and Osakabe 2009; Sakai and Osakabe 2010).

It was also determined that visible light treatment after UVB treatment caused photo-

reactivation of adult females, resulting in the increased survival recovery of T. urticae and

Tyrophagus putrescentiae (Santos 2005), and effects on the egg hatchability of T. urticae

as well as predatory mite (Koveos et al. 2017; Murata and Osakabe 2014).
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Fig. 4 a Extent of damage assessed by the percentage of damaged Arabidopsis thaliana leaf area for Col-0
and the npq4-1 mutant (n = 3). b TSSM oviposition rate expressed as the average number of eggs
female-1 plant-1 day-1 for Col-0 wild-type plants and npq4-1 mutant plants (n = 8). Asterisks indicate
significant differences according to the Tukey HSD test at the level of ***0.0001, **0.001
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Here, we described the first evidence of a regulatory role for HL in the plant response to

mite herbivory. Our results showed that in HL pre-treated plants feeding activity was less

extensive if we previously exposed plants to light stress. The mite oviposition rate was also

significantly lower compared to the control. However, the observed reduction in daily mite

fecundity was not dependent on the light quality. Presumably, these light-induced changes

are memorized by plants and modulate plant resistance to mites. Therefore, the obtained

data confirmed that HL stress can build cross-tolerance to TSSM. On the other hand, if we

compare the chlorophyll content in control LL plants and those exposed for HL for 7 days

(Fig. 2a) the observed changes in the mite-infested plants were less pronounced. Moreover,

in infested plants exposed to short EL episodes (Fig. 2b) the chlorophyll b content

increased, a result which was not observed in control plants. Such findings indicate that the

plant response to HL could be reversely modulated by subsequent TSSM infestation. Since

the fundamental role of light is connected with the regulation of the photosynthesis pro-

cess, it is not surprising that the photosynthetic machinery is well equipped to protect

plants from the harmful effects of the absorption of EEE. NPQ is a mechanism which

dissipates excess light energy as heat (Müller et al. 2001; Ware et al. 2015). The fastest and

the best described component of NPQ is qE, called energy-dependent quenching, which is

induced by the generation of a pH gradient across the thylakoid membrane (Krause and

Behrend 1986; Müller et al. 2001). Acidification of the thylakoid lumen results in the

protonation of amino acid residues of the PsbS protein, a crucial component of NPQ, which

allows the control of conformational changes in the antenna of PSII (Li et al. 2000, 2004;

Niyogi et al. 2005). Mutants impaired in NPQ, lacking PsbS, pigment binding protein

(npq4-1), as well as violaxanthin de-epoxidase [which takes part in the xanthophyll cycle

(vde1)], and the double mutant npq4vde1, showed an altered flg22 response, which sug-

gests that NPQ modulates PAMP-triggered immunity (PTI) (Göhre et al. 2012). It included

enhancement of ROS production in mutant and double mutant plants, as well as an increase

in the expression of WRKY22 and WRKY29 in npq4vde1 plants. On the other hand, the

levels of photosynthetic proteins change upon flg22 treatment including a decrease in the

PsbS level, with a simultaneous decline in NPQ. This parameter reaches a minimum at 1

and 2 h in the early perception of PAMPs, but then recovers. Prolonged time of exposure to

flg22 lead to an increase in NPQ, but a decrease in energy use for photosynthesis. Thus,

NPQ may modulate the PTI, but the converse effect of regulation of NPQ by the perception

of PAMPs was also observed. Additionally, PsbS-deficient rice showed enhanced resis-

tance to the fungal pathogen Magnaporthe oryzae PO6-6 and the bacterial pathogen

Xanthomonas oryzae pv. oryzae (Zulfugarov et al. 2016). The attractiveness of a plant to

grazing herbivory (netted slug; Deroceras reticulatum) was also affected by NPQ effi-

ciency, and was lower for the npq4-1 mutant compared to wild-type plants (Frenkel et al.

2009). The observed response is connected with altered levels of JA in plants growing in

field conditions and subjected to grazing, which caused an increase in the JA levels in the

npq4-1 mutant in comparison to wild-type plants. Finally, insect herbivores (Plutella

xylostella and Spodoptera littoralis) feed preferably on PsbS overexpressing (oePsbS)

plants. Interestingly, there were no significant differences between npq4-1, oePsbS, and

wild-type plants in the level of glucosinolates, which are key secondary metabolites in the

plant–herbivore defence response (Johansson Jänkänpää et al. 2013). Thus, it was postu-

lated that these preferences may result from differences in the primary metabolites,

including a modified amino acid pool and reduced sucrose content.

We observed that A. thaliana plants lacking PsbS are less susceptible to TSSM, and this

result was not affected by light pre-treatment. Therefore, our findings strongly support the

idea that plants impaired in NPQ are primed to TSSM attack. It seems to be a general
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mechanism which is universal for herbivorous arthropods with different types of feeding,

or for fungal and bacterial pathogens, but the molecular basis of this phenomenon is still

unclear. On the other hand, modulation of NPQ by PsbS overexpression increases carbon

gain and water-use efficiency, and resulted in 15% improvement in crop yield (Kromdijk

et al. 2016). Thus, PsbS inversely regulates plant biomass production and susceptibility to

herbivore attack. Plant exposure to HL causes a reduction in the photosynthetic electron

transport chain components, and overproduction of ROS in the chloroplast, cytoplasm, and

apoplast (Karpiński et al. 2013). Such imbalances in the photosynthetic apparatus promote

the formation of not only ROS but also induce an array of defence related genes.

This paper is an attempt to answer how plants adjust their response, which ensures their

survival in a highly changeable environment. The results of this study and earlier obser-

vations clearly show that photosynthesis and the photosynthetic machinery influence the

plant defence response. We show not only the effect of light on plant susceptibility to

TSSM, but also the regulatory role of photo-protective mechanisms such as NPQ in this

regulation. We hypothesize that plants impaired in NPQ are constantly primed to mite

attack, and this seems to be a universal mechanism for herbivores with different types of

feeding, as well as for fungal and bacterial pathogens. Our research strongly supports the

idea that it may be an evolutionarily conserved trade-off mechanism between photo-

protection and the biotic stress response.
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Karpińska B, Karpiński S (2008) Chloroplast signaling and Lesion Simulating Disease1 regulate
crosstalk between light acclimation and immunity in Arabidopsis. Plant Cell 20:2339–2356

Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. a response to excess light energy. Plant
Physiol 125:1558–1566

Murata Y, Osakabe M (2014) Factors affecting photoreactivation in UVB-irradiated herbivorous spider mite
(Tetranychus urticae). Exp Appl Acarol 63:253–265

Nihoul P (1993) Do light intensity, temperature and photoperiod affect the entrapment of mites on glandular
hairs of cultivated tomatoes? Exp Appl Acarol 17:709–718

Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460
Niyogi KK, Li X-P, Rosenberg V, Jung H-S (2005) Is PsbS the site of non-photochemical quenching in

photosynthesis? J Exp Bot 56:375–382
Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev

Plant Physiol Plant Mol Biol 49:249–279
Ohtsuka K, Osakabe MMH (2009) Deleterious effects of UV-B radiation on herbivorous spider mites: they

can avoid it by remaining on lower leaf surfaces. Environ Entomol 38:920–929
Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple

individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci
6:723

Rasool B, Karpinska B, Konert G, Durian G, Denessiouk K, Kangasjärvi S, Foyer CH (2014) Effects of light
and the regulatory B-subunit composition of protein phosphatase 2A on the susceptibility of Ara-
bidopsis thaliana to aphid (Myzus persicae) infestation. Front Plant Sci 5:405

Rioja C, Zhurov V, Bruinsma K, Grbic M, Grbic V (2017) Plant–herbivore interactions: a case of an extreme
generalist, the two-spotted spider mite, Tetranychus urticae. Mol Plant Microbe Interact. https:\\doi.
org\10.1094/MPMI-07-17-0168-CR

Roden LC, Ingle RA (2009) Lights, rhythms, infection: the role of light and the circadian clock in deter-
mining the outcome of plant–pathogen interactions. Plant Cell 21:2546–2552

Rossel JB, Wilson PB, Hussain D, Woo NS, Gordon MJ, Mewett OP, Howell KA, Whelan J, Kazan K,
Pogson BJ (2007) Systemic and intracellular responses to photooxidative stress in Arabidopsis. Plant
Cell 19:4091–4110

Sakai Y, Osakabe M (2010) Spectrum-specific damage and solar ultraviolet radiation avoidance in the two-
spotted spider mite. Photochem Photobiol 86:925–932

Santos CD (2005) Photoreactivation of ultraviolet-B damage in Tyrophagus putrescentiae (Acari: Acaridae)
and Tetranychus urticae (Acari: Tetranychidae). Int J Acarol 31:429–431

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat
Methods 9:671–675

Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations.
New Phytol 203:32–43
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