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A B S T R A C T

Converging evidence suggests that bipolar disorder (BD) is associated with white matter (WM) abnormalities.

Meta-analyses of voxel based morphometry (VBM) data is commonly performed using published coordinates,

however this method is limited since it ignores non-significant data. Obtaining statistical maps from studies (T-

maps) as well as raw MRI datasets increases accuracy and allows for a comprehensive analysis of clinical

variables. We obtained coordinate data (7-studies), T-Maps (12-studies, including unpublished data) and raw

MRI datasets (5-studies) and analysed the 24 studies using Seed-based d Mapping (SDM). A VBM analysis was

conducted to verify the results in an independent sample. The meta-analysis revealed decreased WM volume in

the posterior corpus callosum extending to WM in the posterior cingulate cortex. This region was significantly

reduced in volume in BD patients in the independent dataset (p = 0.003) but there was no association with

clinical variables. We identified a robust WM volume abnormality in BD patients that may represent a trait

marker of the disease and used a novel methodology to validate the findings.

1. Introduction

Converging evidence from different MRI modalities suggests that

bipolar disorder (BD) is associated with white matter abnormalities.

Diffusion tensor imaging meta-analyses in BD have shown fractional

anisotropy reduction in clusters located in both anterior and posterior

white matter areas (Nortje et al., 2013; Vederine et al., 2011). In ad-

dition, meta-analyses of studies using T2 weighted images have con-

firmed increased rates of deep white matter hyperintensities (WMH) in

this disorder (Beyer et al., 2009; Kempton et al., 2008). Meta-analytical
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data on white matter volume in BD are still limited. Overall, total white

matter volume has been found to be preserved (Arnone et al., 2009;

Kempton et al., 2008; McDonald et al., 2004b). In terms of regional

change, two meta-analyses confirmed a reduction in cross-sectional

area of the corpus callosum in BD (Arnone et al., 2008a; Kempton et al.,

2008). These findings originate from region of interest (ROI) studies

that are restricted to pre-defined areas and so may exclude other re-

gions involved in the illness (Giuliani et al., 2005). Alternatively, voxel-

based morphometry (VBM) studies survey the whole brain and examine

regions not included in ROI studies (Giuliani et al., 2005; Mechelli

et al., 2005). There have recently been a number of meta-analyses of

grey matter VBM studies in BD (Bora et al., 2010; Ellison-Wright and

Bullmore, 2010; Houenou et al., 2011; Selvaraj et al., 2012; Wise et al.,

2016) many of which used published coordinate data (Bora et al., 2010;

Ellison-Wright and Bullmore, 2010; Houenou et al., 2011) and one

meta-analysis which examined white matter volume using coordinate

data from 5 studies (Ganzola and Duchesne, 2017). Meta-analyses of

coordinate data are limited because they take into account significant

peak findings but ignore sub-threshold results. Two studies (Selvaraj

et al., 2012; Wise et al., 2016) have performed a VBM meta-analysis of

grey matter using statistical maps (T-maps) in BD. These three dimen-

sional maps comprise statistical data of volume differences in thousands

of voxels in the brain. A T-map meta-analysis is more accurate than a

coordinate-based meta-analysis, although it requires T-maps to be ob-

tained from the authors of each study (Radua et al., 2012).

We used the software Seed-based d Mapping (SDM) in our meta-

analysis of white matter in BD, since it is possible to combine co-

ordinate data, T-maps and even processed raw data (Radua et al.,

2012). A growing controversy in scientific research is lack of reprodu-

cibility (Editorial, 2016) and this problem has been shown to apply to

VBM studies (Boekel et al., 2015). To address this issue we investigated

whether the volume reduction identified in our meta-analysis could be

replicated in an independent sample. Finally we examined the asso-

ciation between clinical variables and white matter volume in 6 raw

MRI datasets comprising 184 BD patients. To our knowledge, our meta-

analysis includes the largest number of T-maps of any structural MRI

meta-analysis in the bipolar disorder or schizophrenia literature.

2. Methods and materials

An overview of the methodology is shown in Fig. 1.

2.1. Meta-analysis of white matter VBM studies and creation of ROI

2.1.1. Data source and inclusion criteria of the studies

Articles were obtained from a literature search using the PubMed

database. The keywords used were “VBM”, “voxel-based”, “morpho-

metry”, “bipolar”, “mania” and “manic”. An additional manual search

within the references section of the articles obtained was also con-

ducted. The studies included were published up to September 2017.

Studies were considered if they reported a VBM analysis of white or

grey matter volume or density comparing BD patients to healthy con-

trols. A flow chart regarding the selection of the included studies is

shown in Fig. s1. Authors of VBM studies were contacted by e-mail

asking for their T-map contrast of white matter volume in BD patients

compared to controls, and if required, additional information about the

associated design matrix to clarify the number of covariates used. To

increase the number of studies included in our meta-analysis, authors of

studies that only reported grey matter data were contacted to determine

whether they had conducted an unpublished white matter analysis.

VBM studies were excluded if the study did not report coordinates of

white matter changes and if the authors were unable to provide a T-map

image or raw MRI data. In studies where separate subgroups of patients

were reported, the largest subgroup was used. To ensure that there was

no bias to a priori small volume corrections, only studies including

whole brain analyses have been considered.

2.1.2. Selection of studies

The initial search retrieved 142 studies of which 81 were eligible. Of

the 81, 62 studies reported a grey matter VBM analysis only, and 19

conducted a white matter VBM analysis between BD and controls (Fig.

s1). After contacting all of the authors, T-maps of white matter differ-

ences between BD patients and controls were obtained from 12 studies

including 4 unpublished white matter analyses (Castro-Fornieles et al.,

2017; Dukart et al., 2014; Ivleva et al., 2012; Matsubara et al., 2016). In

addition a further 5 research groups which published grey matter

analyses but did not include VBM white matter analyses, (Emsell et al.,

2013; Haller et al., 2011; James et al., 2011; Kempton et al., 2009; Yip

et al., 2013) agreed to send us the anonymised individual MRI scans.

We subsequently conducted a white matter VBM analysis on these 5

datasets resulting in 5 new T-maps. Therefore, the present meta-ana-

lysis included a total of 17 T-maps (Fig. s1). In addition to the T-maps,

this meta-analysis included 7 studies for which the peak coordinates

were reported (Alonso-Lana et al., 2016; Bond et al., 2014; Farrow

et al., 2005; Ishida et al., 2017; McDonald et al., 2005; Stanfield et al.,

2009; Watson et al., 2012). The location of each study and the listed

authors were compared to determine if there was any possible sample

overlap between the studies, and no overlap was identified. Thus the

meta-analysis included a total of 24 studies comprising 765 BD patients

and 1055 healthy controls.

2.1.3. Creation of T-maps from voxel-based morphometry analysis of 5 raw

datasets

Anonymised MRI scans from 5 research groups were processed

using SPM8 assessing white matter differences. The VBM pre-processing

performed is described below in Section 2 of the methods. Following

pre-processing and voxel-wise statistical analysis, a T-map was created

from each dataset from the contrast ‘BD patients > controls’ for re-

gional white matter volume. As T-maps include T-scores for every white

matter voxel in the brain no threshold was required before including

them in the meta-analysis.

2.1.4. Seed-based d mapping analysis

The meta-analysis was performed using the software Seed-based d

Mapping (SDM v5.141; available online at http://www.sdmproject.

com/) which allows for the combination of statistical maps (T-maps)

and peak coordinates (Radua et al., 2012) (Fig. 1). This method has

been described in detail by Radua et al. (2012) and the meta-analysis

was performed following the instructions available online at www.

sdmproject.com/manual/. After receiving T-map images from study

authors we verified that the degrees of freedom in each T-map file

matched the design matrix reported in the corresponding paper. The T-

maps were converted to an unbiased effect size and variance map using

the SDM software (Radua et al., 2012). For the studies where only peak

coordinates were available, SDM recreated an effect-size signed map

(with both positive and negative effect sizes) of the differences in white

matter. For each study reporting coordinates, the effect size was exactly

calculated within the peaks and was estimated for the other voxels

(Radua and Mataix-Cols, 2009; Radua et al., 2012). In order to avoid

potential bias from more liberal thresholds applied to particular regions

of the brain (e.g. small volume correction), the same threshold was used

throughout the entire brain within each study, while different studies

were permitted to use different thresholds (Radua, 2015). A z-score

map of the pooled effect size was subsequently created by meta-ana-

lytically combining each study map, weighted by the inverse variance

of each study with between study heterogeneity taken into account

(Lansley et al., 2013; Radua et al., 2012; Radua et al., 2011). Thus

studies with a larger sample size or less variability contribute more to

the pooled effect size (Radua et al., 2012). Statistical significance was

determined using a permutation test by means of Monte Carlo rando-

mizations, applying 100 permutations (Radua and Mataix-Cols, 2009;

Radua et al., 2011). We used the three thresholds suggested by Radua

et al. (2012). The main threshold applied was an uncorrected p value of
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0.005 as it this been found to be an optimal balance between sensitivity

and specificity, (Radua et al., 2012). Further, to reduce the possibility of

false positives, the recommended threshold of z > 1 was applied. Al-

though the z > 1 threshold is usually associated with a non-significant

p value under the standard normal distribution, this is not the case

under the empirical distribution determined by the permutation tests

(Radua et al., 2012). Finally the recommended extent threshold of 10

voxels was applied to exclude smaller clusters. Region names were

determined using a white matter atlas (Thiebaut de Schotten et al.,

2011). To examine heterogeneity the I2 statistic was calculated, which

is equal to the percentage of total variation between studies due to

heterogeneity. Finally, jackknife sensitivity analyses were conducted in

order to assess the reproducibility of the results by repeating the ana-

lysis removing one study each time (Radua et al., 2012). In addition, a

meta-analysis was performed by including only the 17 studies for which

the T-maps were available.

2.1.5. Creation of white matter ROI mask

A region of interest (ROI) mask based on the most significant peaks

from the meta-analysis was created by applying a more conservative

threshold of z > 3 (Fig. 1). This mask is used in Sections 2.2 and 3.3

below. The ROI was entirely based on the results of the meta-analysis

and as such combines more than one anatomically distinct region. The

purpose of the ROI is to define a region which most effectively distin-

guishes patients with bipolar disorder from healthy controls.

2.2. Validation of meta-analysis results in an independent VBM study

To independently verify the results of the meta-analysis, a VBM

study was conducted using a completely independent sample of BD

patients and controls. This additional analysis is reported following the

ten rules for VBM studies suggested by Ridgway et al. (2008).

2.2.1. Participants, MRI acquisition and DARTEL analysis

Full details may be found in the supplementary materials. Briefly 26

Fig. 1. Overview of the three sections of analysis. 1) An ROI in MNI space is created which outlines regions of robust white matter reduction in BD from the meta-analysis. 2) An

independent BD dataset is normalised, segmented and modulated using DARTEL and these images are multiplied by the ROI image to give the volume of the ROI in each individual, BD

patients are compared to controls. 3) Associations between clinical variables and ROI volume is determined from all available raw patient data.
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Table 1

Characteristics of the 18 studies included in the meta-analysis.

Study Patients Controls Mean Age of Patients Mean Age of Controls Diagnosis of Patients Mean Age of Onset Patients

Medicated

WM Measure Covariates Data

Alonso-Lana et al.

(2016)

33 28 44.13 (± SD 6.63) 44.01 (± SD 6.03 Euthymic BDI NS NS Volume No covariates Peak

Coordinates

Bruno et al. (2004) 39 35 39.1 34.8 28 BDI 25.9 31 Density No covariates T-map

Range 21–63 Range 26–54 11 BDII

Bond et al. (2014) 57 55 22.8 22.2 Remitted First- Episode

Mania BDI

22.8 53 Volume Age, gender Peak

Coordinates

Castro-Fornieles et al.

(2017)

15 70 16.5 (± SD 0.7) 15.3 (± SD 1.5) Early-onset first episode

psychosis

NS NA Volume Age, sex, TIV, scan site were T-map

Colombo et al. (2012) 26 94 27.12 (± SD 8.47) 30.21 (± SD 8.40) First Episode Psychosis BDI 26.6 NS Volume Gender, total WM T-map

Dukart et al. (2014) 15 21 NS 47.3±9.6 Depressed BD pre ECT NS NS Volume Age, sex, TIV T-map

Emsell et al. (2013) 60 60 42 (± SD 10) 42 (± SD 10) Euthymic BDI 28 (± SD 8) 60 Volume Age, TIV Raw data

Farrow et al. (2005) 8 22 F: 17 (± SD 2) F: 21 (± SD 4) First Episode Psychosis BDI NS NS Volume NS Peak

CoordinatesM: 18 (± SD 2) M: 20 (± SD 4)

Haller et al. (2011) 19 47 68.53 (± SD 5.89) 69.77 (± SD 6.55) Euthymic 10 BDI 39.37 (± SD 15.26) 17 Volume Age, TIV Raw data

9 BDII

Matsubara et al. (2016) 10 27 46.9 (± SD 12.3) 48.3 (± SD 13.0) 7 BDI 32.2 (± SD 11.5) 10 Volume Age, sex, premorbid IQ scores T-map

3 BDII

Ivleva et al. (2012) 17 10 38.24 (± SD 7.28) 43.9 (± SD 9.86) BDI with psychosis 27.7 (± SD 6.3) 16 Volume Age T-map

James et al. (2011) 15 20 15.0 (± SD 2.0) 15.3 (± SD 1.0) BDI with psychosis 14.0 (± SD 2.0) 14 Volume Age, TIV Raw data

Kempton et al. (2009) 30 52 39.4 (± SD 9.8) 35.2 (± SD 13.0) Euthymic BDI 23.5 (± SD 6.7) 27 Volume Age, TIV Raw data

Ishida et al. (2017) 29 33 42.7 (SD±13.3) 37.6 (SD±9.8) 15 BDI NA 27 Volume Age, sex, intracranial volume Peak

Coordinates14 BDII

Matsuo et al. (2012) 35 40 40.8 (± SD 9.2) 41.6 (± SD 9.1) BDI 19.6 (± SD 10.3) 13 Volume Age, gend., scan., years ed., hand.,

total WM

T-map

McDonald et al. (2005) 37 52 40.7 (± SD 11.6) 39.3 (± SD 14.8) BDI with psychosis 22.9 (± SD 5.5) 32 Volume Age, gender, global tissue vol Peak

Coordinates

Nugent et al. (2006) 20 65 41 (± SD 8.3) 38 (± SD 11.8) 4 BDI 18 (± SD 8.8) 20 Volume Age, gender and scanner T-map

16 BDII

Redlich et al. (2014) 58 58 37.5 (± SD 11.0) 37.7 (± SD 9.7) BD during a depressive

episode

23.2 (± SD 9.4) 54 Volume Age, sex, site T-map

Rossi et al. (2013) 14 40 43 (± SD 8) 40 (± SD 11) Euthymic 13 BDI 26 14 Volume Ed., TIV, abuse alcohol/substance T-map

2 BDII

Sani et al. (2016) 78 78 44.56 (± SD 13.26) 44.38 (± SD 13.31) 49 BDI NS 78 Volume Age T-map

29 BDII

Singh et al. (2012) 26 24 15.7 (± SD 1.6) 14.9 (± SD 1.4) BDI NS 22 lifetime

exposure

Volume Age, TIV, IQ T-map

Stanfield et al. (2009) 66 66 36.4 (± SD 11.1) 39.0 (± SD 10.9) Familial BDI 21.0 NS Density Total brain volume Peak

Coordinates

Watson et al. (2012) 24 24 36.0 (± SD 10.0) 35.6 (± SD 9.7) First Episode Psychosis BD 35.3 NS Volume Age Peak

Coordinates

Yip et al. (2013) 34 34 20.94 (± SD 3.16) 21.29 (± SD 2.37) Bipolar II/NOS disorder NS 0 Volume Age, TIV Raw data

BDI and BDII = Bipolar Disorder I and II; HC = Healthy Controls; FEP = First Episode Psychosis; TIV = Total Intracranial Volume; SD = Standard Deviation; NS = Not Stated; PBD = Pediatric Bipolar Disorder; V = Volume; Ed. = Education;

Scan. = Scanner; Gend. = Gender; Hand. = Handedness.
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euthymic patients and 23 closely matched healthy controls were

scanned using T1 weighted acquisition and the resulting images were

processed using the standard DARTEL (Diffeomorphic Anatomical

Registration using Exponentiated Lie algebra) algorithm (Ashburner,

2007) to produce normalised, segmented and modulated images.

2.2.2. Validation: extraction of white matter volumes from ROI defined

from meta-analysis

To determine if the most significant results from the VBM meta-

analysis could be replicated using this independent dataset, a region of

interest (ROI) mask based on the most significant peaks from the meta-

analysis was created by applying a threshold of z > 3 to the pooled

meta-analysis result. White matter regions defined by the ROI mask

were extracted from each smoothed, segmented, normalized, and

modulated image from the independent dataset using the MarsBar

toolbox for SPM, see Fig. 1. MarsBar returns a single value for each

participant which represents their mean voxel value of the ROI. As the

segmented data was modulated the mean voxel value was equal to the

volume of the ROI in each participant. As the final result was a volume

for each participant, rather than voxelwise data, no correction for

multiple comparisons was required. The advantage of this method is

that it allows a single falsifiable hypothesis to be tested in a new dataset

rather than qualitatively comparing clusters of the new dataset to the

meta-analysis result. Differences in the ROI volumes between the BD

and control groups were assessed with a general linear model (GLM)

using total white matter volume as a covariate (SPSS v21).

2.2.3. Examining the association between lateral ventricle volume and the

white matter ROI

As the white matter ROI identified in the SDM meta-analysis was

adjacent to the lateral ventricles, a region which is known to be en-

larged in BD (Kempton et al., 2008), it was important to verify that the

ROI decrease was not simply due to this phenomenon. Therefore lateral

ventricle volume was determined from the independent dataset using

ALVIN (Automatic Lateral Ventricle delIneation, sites.google.com/site/

mrilateralventricle) (Kempton et al., 2011). The validation analysis was

then repeated using both total white matter volume and lateral ven-

tricle volume as covariates of no interest in the GLM.

2.3. Clinical-MRI associations from individual patient data

Investigating the association between clinical and MRI variables in a

meta-analysis of case-control studies is challenging because individual

patient data are not usually accessible. Meta-regression may be used to

analyse study-level data, but this technique is typically low powered.

However in the present study we had access to 6 datasets with in-

dividual patient data: 5 external datasets (Emsell et al., 2013; Haller

et al., 2011; James et al., 2011; Kempton et al., 2009; Yip et al., 2013)

and our own dataset. Thus we were able to examine the effect of 6 key

clinical variables (age of onset, duration of illness, current lithium use,

current antipsychotic use, history of psychosis, BD type) as well as age

and gender, on the volume of the region reported in the meta-analysis.

Not all clinical variables were recorded at each centre so the number of

patients in each analysis was variable as indicated in the results section.

Using the ROI mask technique described in the section above, white

matter volume was extracted from each BD patient from the 6 VBM

processed datasets (184 bipolar patients in total, controls were not in-

cluded). For each clinical variable, a linear regression analysis was

conducted with the clinical measure as the explanatory variable, the

ROI white matter volume as the dependent variable, the research centre

(a possible confounding categorical variable) and total white matter as

a covariate of no interest. For the age of onset and duration of illness,

age was additionally included as a covariate of no interest. Standardised

coefficients (β) were determined for each regression to indicate the

magnitude and direction of the association between the clinical variable

and the ROI volume.

3. Results

3.1. Meta-analysis of white matter VBM studies and creation of ROI

The meta-analysis included a total of 24 studies, comprising 765 BD

Fig. 2. Meta-analysis results showing A) regions of decreased white matter in bipolar patients compared to healthy controls, and B) regions of increased white matter in bipolar patients

compared to healthy controls. The colour bars indicates z scores with the standard SDM thresholds applied (p < 0.005 uncorrected, z > 1 and clusters> 10 voxels).
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patients and 1055 healthy controls. The demographic and clinical

characteristics of the subjects are shown in Table 1. Regions of de-

creased and increased white matter volume in BD patients compared to

controls are shown in Fig. 2 and Table 2. Regions of decreased white

matter included a large cluster encompassing the posterior corpus cal-

losum and white matter tracts adjacent to the cingulate gyrus with

smaller clusters in the left optic radiation and right frontal superior

longitudinal tracts. Regions of increased white matter included small

clusters within the cerebellum, and right lenticular nucleus. Hetero-

geneity was low; I2 = 0% for the peak voxel in all clusters except for

three clusters where I2 < 13% (Table 2). The jackknife sensitivity

analyses (Table 2, Fig. s2) that examined the effect of excluding in-

dividual studies revealed that the main clusters were highly robust with

smaller clusters showing greater sensitivity to excluding individual

studies. Results with a Z score > 3 generated the white matter ROI

which was used in the sections below. Only regions of white matter

reduction in BD were included in the ROI, as white matter volume in-

creases were associated with smaller Z values (Table 2). The results of

the meta-analysis performed by including t-maps only are reported in

supplementary Table s1.

3.2. Validation of meta-analysis results in an independent VBM study

Patients with BD and controls did not significantly differ in age,

gender, race/ethnicity, weight, height, handedness, premorbid IQ,

years of education, lifetime drug and alcohol use or total intracranial

volume (Table s2). Clinical characteristics of the BD patients are shown

in Table s3. Patients with BD showed a highly significant decrease of

the white matter ROI volume (p = 0.0031), validating the findings of

the meta-analysis. As the white matter ROI mask generated a single

volume for each participant no correction for multiple comparisons was

required. When lateral ventricle volume was controlled for, the results

remained significant (p = 0.011). For completeness the voxelwise re-

sults of the VBM analysis of the independent dataset is shown in Tables

s4 and s5 and Fig. s4.

3.3. Clinical-MRI associations from individual patient data

Analyses of key clinical variables in the six datasets did not show a

significant association between the white matter ROI volume and age of

onset (n = 148, β = 0.02, p = 0.68), duration of illness (n = 148,

β = −0.02, p = 0.56), lithium use (n = 184, β = −0.02, p = 0.52),

antipsychotic use (n = 182, β = 0.00, p = 0.91), history of psychosis

(n = 136, β = −0.06, p = 0.34) or bipolar disorder type I (n = 184,

β = 0.09, p = 0.081).

In terms of other demographics there was no effect of age (n = 184,

β = −0.09, p = 0.066), but a significant effect of gender (n = 184

β = 0.116, p = 0.0002), with males having a smaller ROI as a fraction

of total white matter volume. To determine if the gender effect was

specific to patients we also examined the association in healthy controls

in the six datasets. There was also a significant association (n = 236

β = 0.061, p = 0.017) in the same direction in controls, and no gender

x diagnosis interaction (n = 420, p = 0.091). Thus this association

appears to be a general effect of gender rather than patient specific.

The meta-analysis result, white matter ROI, T-maps and results from

the independent VBM study are available to download from https://

www.bipolardatabase.org.

4. Discussion

The present study provides evidence supporting regionally specific

white matter volumetric abnormalities in BD. The meta-analysis iden-

tified a large region of decreased white matter volume that en-

compassed the corpus callosum and white matter adjacent to the cin-

gulate gyrus. A recent coordinate only based meta-analysis of 5 WM

VBM studies (Ganzola and Duchesne, 2017) found 3 small clusters of

reduced volume with one cluster in the posterior cingulate. Previous

ROI meta-analyses have also reported a reduction of the cross-sectional

area of the corpus callosum in BD (Arnone et al., 2008a; Kempton et al.,

2008). Consistent with these observations, a recent multicentre study

showed significantly decreased cross-sectional area of the posterior

Table 2

Meta-analysis results listing regions of decreased and increased white matter in bipolar patients compared to healthy controls. To keep the table to a manageable size we applied an

additional criteria of z > 1.5 *Heterogeneity was assessed at each peak voxel using the I2 statistic this was 0% for every peak voxel except for L inferior cerebellar peduncle (I2 = 12%),

R inferior longitudinal fasciculus (I2 = 3%) and R corpus callosum tract (I2 = 11%), Jackknife shows the number of sensitivity analysis (out of 24) where a result remained significant –

the higher the value the more robust the result.

Structure or Tract Cluster Size MNI coordinates SDM Z score (peak

voxel)

Uncorrected p value Hedges g (peak

voxel)

Jack-knife (peak

voxel)

Regions of decreased white matter in BD

Corpus callosum (left, posterior) 8843 −14 −26 30 5.60 < 0.000005 0.23 24

Left optic radiations 250 −30 −70 6 4.21 0.000059 0.21 24

Right frontal superior longitudinal 117 28 −16 56 4.15 0.000077 0.20 24

Left inferior cerebellar peduncle 113 −6 −42 −42 3.75* 0.00047 0.20 23

Left anterior corona radiata 87 −12 30 −10 3.59 0.00092 0.17 22

Right inferior network, inferior longitudinal

fasciculus

73 34 −32 2 3.82* 0.00034 0.19 23

Right inferior network, inferior longitudinal

fasciculus

62 38 −68 12 3.71 0.00055 0.18 18

Right Corpus callosum tract 10 18 36 20 3.28* 0.0031 0.17 7

Regions of increased white matter in BD

Left cerebellum, hemispheric lobule VIIB 1120 −40 −54 −46 2.31 0.0000018 0.11 24

Left striatum 200 −18 12 −6 1.60 0.00012 0.08 23

Right inferior temporal gyrus, BA 36 188 36 2 −42 1.72 0.000064 0.08 24

Left gyrus rectus, BA 11 152 −8 44 −20 1.86 0.000028 0.09 24

Right striatum 136 26 8 2 1.89 0.000023 0.09 24

Left median network, cingulum 131 −14 −62 24 2.15 0.0000049 0.11 24

Left lingual gyrus, BA 18 126 −20 −78 −12 1.59 0.00013 0.08 24

Right cuneus cortex 130 16 −68 30 1.35 0.00046 0.07 24

Right superior frontal gyrus, medial, BA 8 94 6 36 44 1.40 0.00036 0.07 23

Left inferior frontal gyrus, orbital part, BA 47 75 −36 50 −12 1.48 0.00024 0.07 24

Right superior frontal gyrus, orbital part, BA 11 63 12 46 −20 1.59 0.00013 0.08 24

Left inferior temporal gyrus, BA 37 52 −46 −58 −6 1.91 0.000022 0.09 24

Right supplementary motor area, BA 8 45 6 24 54 1.66 0.000093 0.08 23

Right middle frontal gyrus, BA 46 38 34 46 16 1.53 0.00018 0.07 23
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corpus callosum in BD compared to controls (Sarrazin et al., 2015). The

present voxel-based meta-analysis adds additional detail by revealing

white matter volume reductions emanating from this region to white

matter adjacent to the posterior cingulate gyrus.

Replication in an independent sample was a particular strength in

the present study. Attempting to replicate VBM results are complex

because thousands of voxels are involved and previous studies have

used the term ‘replication’ to indicate a qualitative similarity of cluster

locations (Nenadic et al., 2015). In contrast in the meta-analysis we

generated a single falsifiable hypothesis that a combined region of

white matter was reduced in bipolar disorder and found strong support

for this in the independent sample. We have made the ROI publically

available for other research groups to determine if they can replicate

this finding. The ROI is not a traditional anatomically defined region,

but is defined by the most robust reductions in white matter volume.

Interestingly, the clinical variables in the present study showed no

association with the white matter volume ROI in individual patient

data, suggesting that the observed white matter decrease is a trait

marker of the disease. It is therefore possible that the region is asso-

ciated with predisposition to BD rather than a manifestation of the

illness. An important emerging research focus is the detection of neural

abnormalities in those at risk of developing psychiatric disorders. The

ability to identify these individuals using neuroimaging would allow

subpopulations to be targeted for preventive treatment such as cogni-

tive behavioural therapy (Phillips et al., 2008). White matter altera-

tions, specifically of regional volume and fractional anisotropy, have

been found in individuals at genetic risk of BD, such as healthy co-twins

and unaffected first-degree relatives suggesting that white matter ab-

normalities might represent an endophenotype of bipolar disorder

(Borgwardt and Fusar-Poli, 2012; Chaddock et al., 2009; Kieseppa

et al., 2003; McDonald et al., 2004a). Longitudinal follow-up of those at

risk of BD or first episode patients are required to determine if the

volume reduction precedes the first symptoms of the illness. From an

etiological viewpoint, the absence of associations between the observed

MRI alterations and duration of illness or age of onset suggest a neu-

rodevelopmental origin rather than a consequence of the progression of

the disease. The demographic variables indicated that males had a

comparatively smaller ROI compared to females which was true in both

patients and controls and this is likely to be linked to males having a

smaller corpus callosum compared to females when correcting for brain

size (Ardekani et al., 2013).

The results of our meta-analysis, are consistent with diffusion tensor

imaging (DTI) studies that reported fractional anisotropy (FA) reduc-

tions in the genu, body and splenium of corpus callosum in BD (Barnea-

Goraly et al., 2009; Lagopoulos et al., 2013; Saxena et al., 2012; Wang

et al., 2008). In addition, a voxel-based meta-analysis of DTI studies

showed decreases of fractional anisotropy in the white matter adjacent

the left cingulate gyrus encompassing the middle and posterior cin-

gulum (Nortje et al., 2013). A second DTI meta-analysis found frac-

tional anisotropy reductions in the white matter near the right anterior

cingulate cortex and subgenual cingulate cortex (Vederine et al., 2011).

Furthermore decreased white matter volumes may be related to the

increased prevalence of deep white matter hyperintensities (WMH)

which have been observed in BD (Kempton et al., 2008).

The white matter ROI lies adjacent to the posterior cingulate cortex

which is a core region of the default mode network (DMN) (Greicius

et al., 2003; Raichle et al., 2001). The DMN has been found to be al-

tered in mania (Ongur et al., 2010; Pomarol-Clotet et al., 2012) and

decreased connectivity within the posterior DMN has been found in BD

patients with psychosis (Khadka et al., 2013). Furthermore Rey et al.

(2014) found that BD patients, performing an emotional interference

control task, showed a deactivation of the posterior cingulate in hy-

pomania (Rey et al., 2014). Thus our results based on structural MRI

data may be linked to findings from resting state and task based fMRI

studies in BD.

It is unclear if this abnormality is specific to BD, as reductions in

corpus callosum area have also been shown in schizophrenia (Arnone

et al., 2008b). Meta-analyses of grey matter VBM studies have shown a

remarkably consistent pattern of volume reductions across diagnostic

boundaries (Goodkind et al., 2015) and it would be interesting to de-

termine if the pattern of white matter volume reduction observed in BD

is also present in other disorders. Future research into white matter

abnormalities in BD could integrate information from different neu-

roimaging techniques such as structural MRI, DTI tractography and T2

weighted imaging of hyperintensities to study not only volumetric

changes in white matter, but also the anatomical connectivity between

regions and their relationship to focal hyperintensities.

Several limitations should be taken into account when interpreting

the present results. We combined studies with different populations of

patients, and variations in MRI acquisition and analysis techniques

leading to increased heterogeneity, however this also ensures the re-

sults are representative of the current literature. VBM has more fre-

quently been used in identifying regional grey matter changes, however

VBM meta-analyses of white matter have been conducted in schizo-

phrenia, (Di et al., 2009) autism (Radua et al., 2011) and Alzheimer’s

disease (Li et al., 2012). White matter volume provides limited in-

formation regarding neuropathology and DTI is likely to be a better

measure of white matter integrity. However, white matter volume has

advantages as it is less sensitive to motion than DTI and is not affected

by artifacts caused by crossing fibers (Le Bihan et al., 2006). Further-

more to interpret DTI changes correctly it is important to know if there

are volumetric changes in white matter. We cannot exclude that white

matter hyperintensities contributed to the volume loss reported in the

posterior corpus callosum and adjacent areas near the lateral ventricles.

However, this is an unlikely scenario since it has been previously shown

that although deep white matter hyperintensities are increased in BD,

this is not the case for periventricular hyperintensities (Kempton et al.,

2008). We were not able to obtain T-maps for 7 studies and used

published coordinates instead. Including coordinates increased the

number of studies but may have increased heterogeneity. Although the

combination of T-maps and coordinates using SDM has been well va-

lidated (Radua et al., 2012), we performed the meta-analysis excluding

those 7 studies, obtaining overlapping results.

To our knowledge, our meta-analysis includes the largest number of

t-maps of VBM studies included within the bipolar disorder, and schi-

zophrenia literature. We also provide both white and grey T-maps from

our own study for future meta-analyses. Our work complements other

meta-analytical frameworks and consortiums such as ENIGMA (van Erp

et al., 2015) which have begun large-scale neuroimaging analyses of

psychiatric populations, principally using FreeSurfer to examine ana-

tomically defined ROIs. We have made the region from the meta-ana-

lysis available online (https://www.bipolardatabase.org) which will

allow other investigators to determine if they can also replicate the

findings reported here.

In conclusion, the present study demonstrates the presence a re-

gional white matter volume reduction in BD, adding further evidence of

abnormalities of white matter within this patient group. Further in-

vestigation of this region from MRS, DTI and postmortem data may

clarify the neuropathological origin of these changes and longitudinal

studies of those at risk of developing BD may clarify when these

changes first occur.
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