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Abstract: The study reported here examined, as the research subject, surface soils in the Liuxin
mining area of Xuzhou, and explored the heavy metal content and spectral data by establishing
quantitative models with Multivariable Linear Regression (MLR), Generalized Regression Neural
Network (GRNN) and Sequential Minimal Optimization for Support Vector Machine (SMO-SVM)
methods. The study results are as follows: (1) the estimations of the spectral inversion models
established based on MLR, GRNN and SMO-SVM are satisfactory, and the MLR model provides
the worst estimation, with R2 of more than 0.46. This result suggests that the stress sensitive bands
of heavy metal pollution contain enough effective spectral information; (2) the GRNN model can
simulate the data from small samples more effectively than the MLR model, and the R2 between
the contents of the five heavy metals estimated by the GRNN model and the measured values are
approximately 0.7; (3) the stability and accuracy of the spectral estimation using the SMO-SVM model
are obviously better than that of the GRNN and MLR models. Among all five types of heavy metals,
the estimation for cadmium (Cd) is the best when using the SMO-SVM model, and its R2 value
reaches 0.8628; (4) using the optimal model to invert the Cd content in wheat that are planted on
mine reclamation soil, the R2 and RMSE between the measured and the estimated values are 0.6683
and 0.0489, respectively. This result suggests that the method using the SMO-SVM model to estimate
the contents of heavy metals in wheat samples is feasible.

Keywords: mining area; reclamation soil; heavy metal; spectrum; estimation model

1. Introduction

Land reclamation in mining areas is a priority for agricultural production in China [1]. However,
the characteristics of the reclamation process and materials (i.e., filling the depressions with coal
gangue), and the complexity of the reclamation environment often result in heavy metal pollution in
the soil, which may directly or indirectly threaten human health by direct contact, through the food
chain or in other ways [2–6]. Due to the complex spatial heterogeneity of soil, the chemical analysis
methods that have been traditionally used to detect the heavy metal content are found to be laborious,
inefficient in terms of time required, and not suitable for large-scale monitoring [7–9]. Therefore, how
to monitor soil heavy metal pollution quickly and accurately has become an important research topic
in the field of mine reclamation.

Reflectance spectral characteristics are basic soil characteristics. Near-infrared reflectance
spectroscopy was first used to estimate the heavy metal content in lake sediments to prove its
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feasibility in investigating heavy metal content [10]. Using a remote sensing spectral analysis method
to estimate the content of heavy metals in soil can overcome the shortcomings of traditional sampling
methods and monitor the heavy metal pollution in soil dynamically and quickly on a large-scale.
Many studies have already been done on the spectral characteristics of soil. The early focus was
mainly on soil classification and the factors influencing the soil spectrum [11–19]. With continuous
research development, researchers began to combine mathematical analysis methods with spectral
characteristics, focusing on the quantitative investigation of the physical and chemical properties of
soils [20–27]. Although heavy metals have limited effect on the soil spectral curve because they are not
the main components of soil, a suitable spectral inversion model can be established and effectively used
to estimate the content of heavy metals in soil based on the information-rich spectral characteristics
of soil. Currently, many inversion models have been developed, which can be mainly divided into
two types—statistical analysis models and machine learning models. The statistical analysis models
have the characteristics of simple structure, few parameters and a relatively easy process. For example,
multiple linear regression can describe the linear connection between several independent variables
and a dependent variable; and the partial least squares method, first proposed in 1983 [28,29], is
a type of deformation of multiple linear regression models focusing on the characteristics of principal
component analysis, canonical correlation analysis and linear regression analysis methods in the
modeling process [30,31]. The machine learning models mainly refer to the artificial neural network
(ANN) and support vector machine (SVM) methods. The artificial neural network is a system that
imitates the structure and function of nerve cells in human brains [32]. It has been widely used in many
fields and achieved satisfactory results due to its ability to perform highly nonlinear mapping [33].
The support vector machine was first proposed in 1995 and its main advantages are that it can solve
small sample, nonlinear and high-dimensional pattern recognition problems very well, and can be
applied to other machine learning problems, e.g., function fitting [34,35].

Taking the artificial reclamation areas (coal gangue reclamation area and fly-ash reclamation area)
of the Liuxin mining area in Xuzhou, China as the case study, this paper establishes quantitative models
to simulate the connection between heavy metal contents in mine reclamation soil and characteristic
spectral remote sensing parameters, compares the estimation results of different models, and selects the
optimal model for the estimation of Cd content in wheat planted in the reclaimed mine soil. The paper
further proposes a quick and efficient method that is suitable for large-range monitoring of the heavy
metal pollution in mine reclamation soils, as well as the technical support required for the regulation
of heavy metal pollution and food security in mining areas.

2. Study Area and Data Collection

2.1. Study Area

The study area is in the Liuxin national reclamation demonstration area of Tongshan County,
which is located 20 km northwest of Xuzhou, China. The area has a temperate, humid to semi-humid
continental monsoon climate with an average annual precipitation of 800–930 mm, 56% of which falls
in July and August. The annual average air temperature is 14 ˝C with lowest temperature ranging
from´9 ˝C to´13 ˝C and highest temperature from 36 ˝C to 39 ˝C. The climate conditions are suitable
for the growth of crops. There are five large coal mines and two large power plants, Chacheng and
Huarun, in the demonstration area, and also large areas of subsided lands affected by many years
of mining (Figure 1). The coal mining subsidence was used for agriculture production after filling
the reclamation area with mainly coal gangue and fly ash. The collapsed area in the coal gangue
reclamation area (Zone A), backfilled in 1998, was directly filled with coal gangue of different block
sizes and then covered with 40–45 cm soil for subsequent planting. The collapsed area in the fly-ash
reclamation area (Zone B), backfilled in 1999, was directly filled with power plant fly ash and then
covered with 40–50 cm soil for subsequent planting. In addition, an area with a soil depth greater
than 1 m was used as the experimental control soil (Zone C). The control area has the same climatic
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conditions, tillage methods, planting crops and the influence groundwater as those of the reclamation
areas. The cultivation system of the study area follows the wheat and rice rotation mode.Int. J. Environ. Res. Public Health 2016, 13, 640 3 of 18 
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Figure 1. Location and maps of the study area.

2.2. Spectral Data Collection

Field sampling was completed in March 2012 and April 2012. The surface soil samples in the
coal gangue reclamation area, fly-ash reclamation area and control area were designated and collected
according to the plum blossom stationing method. Ten sampling points were determined in each area,
and a total of 30 soil samples were collected.

2.2.1. Heavy Metal Content Measurement

A traditional chemical detection method was used to measure the contents of heavy metals in the
soil samples. The soil sample pretreatment included air drying, grinding, mesh screening, digesting
and constant volume adjustment. After pretreatment, the heavy metal contents in the soil samples
were detected by an Inductively Coupled Plasma-Mass Spectrometry (ICP-MS, Agilent, Palo Alto,
CA, USA).

2.2.2. Outdoor Spectral Data Collection

The outdoor spectral data of the soil samples were collected from 11:00 a.m. to 2:00 p.m. using
an ASD FieldSpec 3 Spectrometer (ASD Inc., Boulder, CO, USA). A standard white reflection plate was
used to calibrate the instrument before collecting each soil sample spectrum. The sampling points were
identified with GPS to precisely fix the positions, and 10 spectral curves were collected for each soil
sample. The average of the 10 spectral curves for each soil sample was used as the actual reflectance
spectrum of the soil samples [36].

2.2.3. Indoor Spectral Data Collection

The soil samples were stored in a darkroom for indoor spectral data collection. The spectrometer
was preheated to stability, and the standard white reflection plate was used for instrument calibration.
The soil samples were placed on a plain black velvet, the surfaces of the soil samples were flattened
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before recording the spectral data in dishes. Finally, 10 spectral curves were collected for each soil
sample. The arithmetic average of the 10 spectral curves for each soil sample was used as the actual
reflectance spectrum of the soil sample.

2.3. Data Analysis

2.3.1. Heavy Metal Contents in the Soil Samples

The heavy metal contents in the soil samples from the three areas detected using the traditional
chemical detection methods are shown in Table 1. The heavy metal contents in the coal gangue
reclamation area are relatively close to the values in the fly-ash reclamation area, and the heavy metal
contents in both reclamation areas are obviously higher than those of the control area. Therefore,
taking the spectral characteristics and the sampling point quantity into account, the soil samples from
the coal gangue and fly-ash reclamation areas are both regarded as the mining area reclamation soil in
this research.

Table 1. Heavy metal concentrations of soil samples in the three different areas (mg/kg).

Areas Sampling Points Cd Cr Cu Pb Zn

Coal gangue
reclamation area

1 0.384 51.756 29.712 21.162 80.938
2 0.510 49.496 30.030 22.595 79.296
3 0.361 54.168 32.268 27.540 82.429
4 0.404 51.238 35.799 26.125 98.611
5 0.382 53.544 31.013 26.286 81.651
6 0.361 52.985 30.178 22.858 79.077
7 0.322 51.800 31.414 24.476 78.714
8 0.319 53.292 32.230 28.563 88.128
9 0.283 48.518 29.153 20.935 73.746
10 0.368 51.495 30.748 22.595 84.612

Fly-ash
reclamation area

1 0.332 50.521 33.060 21.816 90.538
2 0.304 50.118 30.326 17.847 87.332
3 0.316 49.734 30.939 25.728 85.356
4 0.406 48.650 31.093 20.270 90.164
5 0.286 48.433 29.224 21.370 86.750
6 0.307 50.419 31.719 23.664 80.423
7 0.249 49.228 30.391 21.310 77.741
8 0.404 50.992 33.791 26.145 81.173
9 0.217 50.491 29.910 24.364 83.532
10 0.345 45.866 30.033 22.746 92.878

Control area

1 0.098 27.164 11.066 13.030 36.460
2 0.079 27.173 9.518 11.085 33.156
3 0.065 30.223 10.822 11.417 73.868
4 0.104 26.949 10.381 11.071 35.289
5 0.137 33.536 16.440 11.125 45.329
6 0.209 30.271 15.919 12.609 43.733
7 0.193 30.918 14.065 14.595 40.906
8 0.133 28.210 13.794 12.093 35.852
9 0.190 27.893 12.224 11.674 34.292
10 0.112 29.380 12.775 13.031 36.126

2.3.2. Spectral Data of the Soil Samples

The original outdoor and indoor spectral curves of the soil samples in the mining area are shown
in Figure 2. There are two obvious reflection peaks in the outdoor spectral curve at 1400 nm and
1900 nm, which are influenced by the light intensity, air suspended particles, wind speed, gas and
polarization interference of the surrounding targets during the process of the outdoor spectral data
collection. In addition, missing or overlapping information in the soils’ typical reflection peaks and
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absorption valley bands is the most serious problem of the spectral data collected outdoors in this
study. It is generally considered that 600 nm and 815 nm are typically the reflection peak and the
second reflection peak of the soil organic matter, respectively, while the weak absorption peak of Fe2+

and Fe3+ is near 900 nm and the absorption peak near 1000 nm is the characteristic spectral band of
iron hydroxides in soil. The outdoor spectral data largely lose these spectral features. The indoor
spectral curve is relatively smooth, and there are no abnormal reflection peaks. Because of the large
differences in soil conditions between the control area and the reclamation area, this paper selected
the indoor spectral data of the two mine reclamation soils for the characteristics extraction and the
spectral estimation model construction.
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3. Research Methods

3.1. Multivariable Linear Regression

Multivariable linear regression, MLR, is used to predict the independent variable Y by establishing
the regression equation model with the optimal combination of multiple dependent variables X.
The MLR model is a classical statistical analysis method based on the least squares method. The basic
form is:

Y “ β0 ` β1X1 ` ¨ ¨ ¨ β jXj ` ¨ ¨ ¨ βnXn ` ε (1)

where Y represents the characteristics to be analyzed; Xj represents the jth independent variable; β j
represents the regression coefficient corresponding to the jth independent variable; and ε represents
a random error of the regression equation, subject to the normal distribution with a mean of zero,
where E pεq “ 0; and n represents the number of independent variables used for the modeling.

First, the overall parameters β “ pβ0, β1, ¨ ¨ ¨ , βnq are estimated based on the least square method.
The estimated quantity of β is denoted as B “ pb0, b1, ¨ ¨ ¨ , bnq; therefore, the estimated quantity of Y is:

Ŷ “ XB (2)

Since the difference between the estimated quantity Ŷ and the original vector Y must be minimized,
the least squares method is used again to calculate the overall parameters of the least squares
estimated quantity:

BLS “
`

X1X
˘´1 X1Y (3)

Thus, the least squares estimated quantity of Y is obtained:

Ŷ “ X
`

X1X
˘´1 X1Y (4)
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In Equation (4), X “ X1, X2, X3, ¨ ¨ ¨ , Xn, where the rank of X is n, does not have
a complete correlation.

3.2. Generalized Regression Neural Network

The generalized regression neural network, GRNN, is usually used for function approximation.
The entire network consists of four layers: input layer, pattern layer, summation layer and output layer.

The network input is X “ rx1, x2, ¨ ¨ ¨ , xns
T , and its output is Y “ ry1, y2, ¨ ¨ ¨ , yks

T . The number
of neurons in the input layer is equal to the dimension m of the input vector in the model sample.
Each neuron can be viewed as a simple distribution unit, which can directly transmit the input variable
into the hidden layer. The number of neurons in the model layer is equal to the number n of the model
sample, and each neuron in this layer corresponds to a model sample. The transfer function of the ith
neuron in the model layer is:

Pi “ exp
”

´pX´ Xiq
T
pX´ Xiq {2σ2

ı

(5)

In Equation (5), X represents the input variable of the network; Xi represents the corresponding
training sample of the ith neuron; and σ represents smoothing parameter. The ith output neuron is the
exponential form of the Euclidean distance square between the input variable X and the corresponding
training sample Xi:

D2
i “ pX´ Xiq

T
pX´ Xiq (6)

The summation layer contains two types of neurons. One type performs the arithmetic summation
of all the output of the model layer, and the connection weight between each neuron and this neuron
in the model layer is 1. The transfer function is:

SA “

n
ÿ

i“1

Pi (7)

The other type performs a weighted summation of all the output of the pattern layer.
The connection weight between the ith neuron in pattern layer and the jth neuron in the summation
layer is the jth element yij of the ith output sample Yi. The transfer function of the neurons in the
summation layer is:

SNj “

n
ÿ

i“1

yijPi j “ 1, 2, ¨ ¨ ¨ , k (8)

The number of neurons in the output layer is equal to the dimension k of the output vector in the
model sample. The output of each neuron is obtained by dividing the two different types of neuron
outputs in the summation layer:

yi “
SNj

SA
j “ 1, 2, ¨ ¨ ¨ , k (9)

Therefore, it can be determined that the structure and weight of the GRNN are fully determined
after the selection of the model sample. As a result, the GRNN is more convenient than the other
neural networks.

3.3. Sequential Minimal Optimization for Support Vector Machines

Sequential minimal optimization for support vector machines, SMO-SVM, is a statistical learning
method based on the statistical theory of the VC dimension (for Vapnik–Chervonenkis dimension)
theory and the structural risk minimization principle. The basic principle of a standard support vector
machine is mapping the n-dimensional sample vector from the original Rn space into the feature space
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F through the nonlinear mapping ψ and constructing the optimal linear decision function using the
structural risk minimization principle:

f pxq “ ωT ¨ ψ pxq ` b (10)

In Equation (10), x P Rn, ω P F, and b represents the threshold. For the standard support vector
machine, the optimization problem is:

min J “
1
2

ωTω` C
S
ÿ

i“1

pξi ` ξ˚i q (11)

The expressions

$

’

&

’

%

yi ´ωTψ pxiq ´ b ď ε` ξi
ωTψ pxiq ` b´ yi ď ε` ξi
ξi, ξ˚i ě 0

define the formula; C represents the penalty

coefficient; ξi, ξ˚i represent the slack variable; and ε represents an insensitive parameter.
A Lagrange function is established as:

Lp “
1
2
‖ W ‖2

´

n
ÿ

i“1

ai

”

ωTψ pxiq ` b` ξi ´ yi

ı

(12)

In Equation (12), ai represents the Lagrange multiplier factor.
The specific steps of the sequential minimal algorithm are as follows:

(1) Select two updated elements a1 and a2, order F “ w ¨ xi ´ yi, and calculate the upper bound H
and lower bound L;

(2) Update the element a2:
anew

2 “ aold
2 ´ y2

´

Fold
1 ´ Fnew

2

¯

{k (13)

In Equation (13), k “ k px1, x1q ` k px2, x2q ´ 2k px1, x2q.
(3) If ∆a2 is less than the threshold, the update fails; otherwise, the update element a1 is as follows:

anew
1 “ aold

1 ` s
´

aold
2 ´ anew

2

¯

(14)

In Equation (14), s “ y2y1.
(4) Update all the Fi:

Fnew
i “ Fold

i `

´

anew
1 ´ aold

1

¯

y1k px1, xiq `
´

anew
2 ´ aold

2

¯

y2k px2, xiq (15)

(5) Calculate the error E of the function output and the target classification:

E “
1
ÿ

i“0

aiyiFi `

1
ÿ

i“0

εi (16)

(6) The algorithm ends, if E is less than the threshold; otherwise, repeat Equations (1)–(5).

4. Spectral Estimation Modelling of Heavy Metals in Mine Reclamation Areas

4.1. Stress Sensitive Band Selection of Heavy Metal Pollution

This study carried out a correlation analysis between the content of heavy metal in soils and
the spectral reflectance obtained after performing a first-order differential transformation, envelope
elimination and inverse logarithmic transformation. Eight maximum correlated bands were selected
as pollution stress sensitive bands for the heavy metals Cd, Cr, Cu, Pb and Zn.
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Compared with the first-order differential transformation and envelope elimination, the
correlation coefficient between the Cd content in the mine reclamation soil and the spectrum obtained
after performing the inverse logarithmic transformation was significantly reduced, and no significant
correlation to the selection of feature bands was found. The selection results of the five heavy metals’
stress sensitive spectral bands are shown in Table 2.

Table 2. Stress sensitive spectral bands of the five pollution heavy metals (nm).

Heavy Metals Stress Sensitive Spectral Bands

Cd 960 1140 1700 1820 2250 2380 2450 2470
Cr 570 670 970 1020 1680 1740 2060 2410
Cu 660 960 1090 1730 1770 1810 2240 2420
Pb 780 960 1090 1280 1680 2160 2380 2480
Zn 490 660 1090 1730 1770 1810 2310 2410

4.2. Establishment of the MLR Estimation Model

According to the results of the stress sensitive band selection, the spectral reflectance values
obtained through the spectral transformation of the sensitive band were defined as a set of independent
variables X1, X2, X3, ¨ ¨ ¨ , Xn, and the heavy metal content in the soil of the mining area was treated as
dependent variable Y to establish the model.

The stress sensitive bands with a significant correlation were selected as related factors. The data
for 6 sample points (12 soil samples, accounting for 60% of the total samples) from the fly-ash and
coal gangue reclamation areas were used as the training data, and the remaining eight soil samples
(accounting for 40% of the total samples) were used as the testing data. The regression coefficients of
the MLR model were calculated, and the stability and forecast accuracy of the model was predicted.
The MLR equations for the contents of the five heavy metals are as follows:

YCd “ ´47.02´ 54.30X1 ´ 293.99X2 ` 49.61X3 ´ 186.84X4 ´ 1.73X5 ´ 67.72X6 ´ 0.51X7 ´ 34.74X8 (17)

YCr “ ´257.11` 90.75X1 ` 85.64X2 ´ 110.08X3 ´ 2222.20X4 ` 216.62X5 ` 820.02X6 ` 129.64X7 ` 29.49X8 (18)

YCu “ 307.60´ 378.73X1 ´ 345.84X2 ` 30336.18X3 ` 248.18X4 ´ 255.29X5 ` 169.65X6 ` 1480.98X7 ´ 1908.58X8 (19)

YPb “ ´2499.12` 494.63X1 ` 31.73X2 ´ 8094.11X3 ` 25556.99X4 ` 1812.74X5 ` 186.18X6 ´ 164.84X7 ` 19.03X8 (20)

YZn “ 430.46´ 21.75X1 ´ 619.75X2 ` 23648.34X3 ´ 162.99X4 ´ 12334.67X5 ` 432.00X6 ` 2615.55X7 ` 2631.48X8 (21)

This paper evaluated the stability of the regression model with the coefficient of determination
(R2) and the accuracy with the root mean square error using the following formulas, respectively:

R2 “ 1´
ř

`

ym ´ yp
˘2
{ pNc ´ k´ 1q

ř

pym ´ yq2 {
`

Np ´ 1
˘

(22)

RMSE “

c

ÿ

`

Ym ´Yp
˘2
{N (23)

In Equations (22) and (23), Ym and Yp represent the measured and predicted values of the heavy
metal content, respectively; Y represents the average of the measured values of the heavy metal
contents; Nc, Np and N represent the number of modeling samples, the number of forecast modeling
samples and the number of total samples, respectively; and k represents the number of the independent
variables in the model.

R2 indicates the stability of the model. The closer the value is to 1, the more stable the model is.
RMSE indicates the accuracy of the model. The smaller the value, the higher the accuracy of the model.
The results for estimating the heavy metal contents in the soil samples of the mining area using the
MLR model are shown in Table 3.
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Table 3. The estimation results of the MLR model.

Elements Cd Cr Cu Pb Zn

R2 0.5683 0.5976 0.5025 0.4851 0.4687
RMSE 0.0438 1.02 1.191 1.997 4.439

As shown in Table 3, the MLR model was used to estimate the heavy metal contents in the soil of
the mining area. Among them, the Cr estimation result is the best, and the value of its R2 reaches 0.5976.
The estimated values of Cu and Cd are the second best, with R2 values more than 0.5. The estimated
values of Pb and Zn are the worst, with their R2 values reaching 0.4851 and 0.4687, respectively.

The distribution of the measured values and the estimated values based on the MLR model is
shown in Figure 3. Compared to the prediction efforts of a single element, the distribution of the five
types of heavy metal elements is closer to the 1:1 line. Cd, Cr and Zn all have different degrees to
which the maximum or minimum values deviate from the 1:1 line. Because the differences between
these extreme values and the majority of the sample are great, there are insufficient training samples to
support the modeling in the corresponding multi-dimensional space. As a result, the generalization
ability of the model is weak, and the model performs unsatisfactorily when the model’s value is
a maximum or minimum.
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Among the five heavy metals, the distribution of Cr is the closest to the 1:1 line, and the trend is
more consistent with the 1:1 line. Relative to Cr, the distributions of Cd and Cu appear to be loose in
the vicinity of the 1:1 line, and the overall trend is consistent with the 1:1 line. The distribution of Pb
and Zn show that the estimation of those two heavy metals are not very impressive using the model.
These results indicate that the best prediction ability of the model is for Cr, followed by Cu and Cd,
while the worst is for Pb and Zn.

4.3. Establishment of the GRNN Estimation Model

A smoothing factor σ has a significant effect on the ability for the forecasting and generalization
of the GRNN. Therefore, the emphasis rests on improving the accuracy of the network forecasting
by selecting and using a suitable smoothing factor as the parameter in this network. The experiment
adopted a cross validation approach to conduct the parameter optimization of smoothing factor σ.
The steps of the parameter optimization are given as follows:

(1) Set an initializing smoothing factor.
(2) Divide the modeling sample into four equal parts, with the first part as the modeling sample and

the rest for establishing the GRNN.
(3) Use the network model established in step (2) to forecast the modeling sample and calculate the

RMSE in this situation.
(4) Use the second, third and fourth parts to repeat steps (2) and (3), and calculate the average of the

RMSE for the smoothing factor.
(5) Progressively increase and change the value of the smoothing factor in the proper order; repeat

step (2–4); compare the RMSE of the network when the smoothing factor takes different values;
and take the value of the smoothing factor when the RMSE has minimum value as the final value
of the smoothing factor of the GRNN.

According to the selection results of the sensitive bands, the spectral reflectance values obtained
through the spectral transformation of the sensitive bands were defined as the independent variables
X1, X2, X3, ¨ ¨ ¨ , Xn, and the heavy metal content in the soil of the mining area is treated as the dependent
variable Y to establish the model.

The stress sensitive bands with a significant correlation were selected as the related factors.
The data of six sample points (12 soil samples, accounting for 60% of the total samples) from the fly-ash
and coal gangue filling sites were considered as the training data, and the remaining eight soil samples
(accounting for 40% of the total samples) were considered as the testing data.

The parameter optimization of the smoothing factor σ for Cr in the GRNN is shown in Figure 4.
When σ is 1.7, the generalization ability of the network is the best and thus the parameter σ participates
in the subsequent process of the regression forecast. The optimization of the other parameters used the
same method.
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The results using the GRNN model for estimating the five types of heavy metal contents in the
reclamation soil of the mining area are shown in Table 4.

Table 4. The estimation results of the GRNN model.

Elements Cd Cr Cu Pb Zn

R2 0.7843 0.7932 0.7163 0.7360 0.6990
RMSE 0.0310 0.9455 0.8991 1.43 3.341

As shown in Table 4, the GRNN model can successfully estimate the heavy metal contents of the
mine reclamation soils. Among them, the estimated values of Cr and Cd are the best, and their R2

values reach 0.7932 and 0.7843, respectively. The estimated values of Pb and Cu are the second best,
with R2 values greater than 0.7. The estimated value of Zn is the worst, but the R2 value reaches 0.6990.

The distribution of the measured and the estimated values based on the GRNN model is shown in
Figure 5, which shows that the position relationship between the scatter point distribution of the five
heavy metals and the 1:1 line is similar to the scatter point distribution of the MLR model. However,
the scatter point distribution of the GRNN model is closer to the 1:1 line.
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4.4. Establishment of SMO-SVM Estimation Model

This experiment selected the Radial Basis Function (RBF) as the kernel function of SMO-SVM.
RBF has the characteristics of a good classification effect and easily adjustable parameters.
The computational formula is as follows:

K
`

xi, xj
˘

“ exp
´

´‖ xi ´ xj ‖ {2σ2
¯

(24)

On selecting the SVM parameters when adopting RBF, the internationally commonly-used method
confines the penalty parameter C and the kernel function parameter g to a certain range of values,
uses cross validation to obtain the optimum parameters C and g, which have the highest accuracy of
modeling and validation, and selects the two parameters to participle in the subsequent SVM model
establishment. Due to the problem of two-parameter selection, there may be a situation in which there
are multiple-unit combinations of C and g that correspond to the highest accuracy of the validation.
Therefore, the strategy of selecting the combination of C and g can reach the highest validation accuracy
when the parameter C is minimized. If g corresponding to the minimum C has several groups, the first
g that was searched for as the optimal parameter is selected.

The stress sensitive bands with a significant correlation were selected as the related factors.
The data of six sample points (12 soil samples, accounting for 60% of the total samples) from the fly-ash
and coal gangue filling sites were used as the training data, and the remaining eight soil samples
(accounting for 40% of the total samples) were used as the testing data.

The map of parameter optimization of the SVM network’s parameters C and g for Cr is shown
in Figure 6. When C “ 0.050766 and g “ 51.9842, the generalization ability of the support vector
machines is the best and thus the parameter combination participates in the subsequent process of the
regression forecast. The optimization methods for the rest of the elements are the same.
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Table 5. The estimation results of the SMO-SVM model.

Elements Cd Cr Cu Pb Zn

R2 0.8628 0.8532 0.7988 0.7901 0.7653
RMSE 0.0134 0.7968 0.7570 1.275 2.95

As shown in Table 5, the SMO-SVM model can successfully estimate the heavy metal contents of
the mining area. Among them, the estimated values of Cr and Cd are the best, and their values of R2

reach 0.8628 and 0.8532, respectively. The estimated values of Pb and Cu are the second best, with R2

values greater than 0.79. The estimated values of Zn are the worst, but the value of R2 reaches 0.7653.
The distribution of the measured and the estimated values based on the SMO-SVM model is

shown in Figure 7, which shows that the position relationship between the scatter point distribution of
the five elements and the 1:1 line is similar to the MLR and GRNN models. However, the scatter point
distribution of the SMO-SVM model is closer to the 1:1 line.
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three models are shown in Table 6. The SMO-SVM model provides the best estimation of the heavy
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metal content in the mine reclamation soils, and the stability and accuracy of its estimation results are
higher than those of the GRNN and MLR models. Among the five heavy metals, the estimation for
Cr using the SMO-SVM model is the best, and its R2 value reaches 0.8628. The estimation for Cd is
second best, and its R2 reaches 0.8532. The estimation for Zn is the worst, but its R2 reaches 0.7988.
The results show that the estimations of the Cd and Cr contents in the soil samples are relatively good.

Table 6. Estimation results of the heavy metals in the reclamation soils of the mining area based on the
three different models.

Elements Methods R2 RMSE

Cd
MLR 0.5683 0.0438

GRNN 0.7843 0.031
SMO-SVM 0.8628 0.0134

Cr
MLR 0.5976 1.02

GRNN 0.7932 0.9455
SMO-SVM 0.8532 0.7968

Cu
MLR 0.5025 1.191

GRNN 0.7163 0.8991
SMO-SVM 0.7988 0.757

Pb
MLR 0.4851 1.997

GRNN 0.736 1.43
SMO-SVM 0.7901 1.275

Zn
MLR 0.4687 4.439

GRNN 0.699 3.341
SMO-SVM 0.7653 2.95

5. Demonstration of the Optimization Model Used in Estimating the Content of Cd in Wheat

Mine reclamation, especially mine soil reclamation, has been given high priority in agricultural
production in China. The heavy metal elements in mine reclamation soil can enter the human body
through food crops, therefore, it is significant to study the heavy metal content in crops planted on
mine reclamation soils and to evaluate their food safety implications. To demonstrate the feasibility
of spectral estimation for the heavy metal contents in crops using the SMO-SVM method, Cd in the
wheat planted on mine reclamation soils was selected as the study case.

5.1. Determination of the Content of Cd in Wheat

Wheat samples that were planted on the soil sample points were collected at the same time as the
collection of the soil samples. The stalk of wheat was collected as the research sample, and 10 wheat
samples were collected on each of the three areas. The contents of Cd in the wheat samples are shown
in Table 7 according to a traditional chemical analysis method.

Table 7. Cd concentration of the wheat in three different areas (mg/kg).

Sample Points Coal Gangue Reclamation Area Fly Ash Reclamation Area Control Area

1 0.245076 0.160367 0.032794
2 0.225840 0.078045 0.034339
3 0.215431 0.152975 0.103025
4 0.253332 0.037446 0.067843
5 0.259086 0.044392 0.030881
6 0.672122 0.115781 0.083343
7 0.503266 0.233244 0.132664
8 0.734710 0.155536 0.039946
9 0.745570 0.220029 0.096775

10 0.228416 0.280000 0.268284
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5.2. Selection of Stress Sensitive Bands of Cd Pollution in Wheat

Because the effect of the spectral inverse logarithmic transformation is relatively unsatisfactory,
the original spectral reflectance of the wheat samples was pre-processed by the first-order differential
transformation and envelope elimination methods. Correlation analysis was carried out between the
content of heavy metal Cd in the wheat samples and the spectral reflectance obtained by performing
the first-order differential transformation and envelope elimination on the corresponding 350–2500 nm
wavelength range in the spectral data of the samples. The curve of the correlation coefficient varying
with wavelength is shown in Figure 8. Figure 8a shows the fluctuation of the relativity between the
content of Cd and the spectral reflectance of the wheat after performing the first-order differential
transformation varying with wavelength. It presents strong negative correlations at 380, 390, 400, 670,
880, 890, 900 and 2200 nm. All of their values are larger than the maximum correlation coefficient
obtained by performing the envelope elimination in Figure 8b. Therefore, the aforementioned eight
wavelengths were selected as the stress sensitive bands for Cd pollution in wheat.
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Figure 8. Correlation coefficients of the Cd concentration in the wheat planted on mine reclamation
soils with transformed spectra. The spectral reflectance were obtained by performing the first-order
differential transformation (a) and envelope elimination (b) on the corresponding 350–2500 nm
wavelength range in the spectral data of the samples.

5.3. Spectral Estimation of the Cd Content in the Wheat Planted in the Reclamation Soil of Mining Areas

The stress sensitive bands of Cd pollution in wheat were selected as the related factors. The data
of six sample points (12 soil samples) from the coal gangue and fly-ash reclamation areas were used
as the training data, and the remaining eight samples were used as the testing data. The model was
established by using the SMO-SVM method. When the penalty parameter C and the kernel function
parameter g are 0.1768 and 2.8284, respectively, through cross validation, the corresponding RMSE
reaches the minimum value of 0.0446. In this case, the generalization of the support vector machines is
the best and thus the parameter combination participates in the subsequent process of the regression
forecast. The result is shown in Figure 9.
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Using the regression model based on the SMO-SVM method to estimate the Cd’s content in the
wheat that were planted in the reclamation soils of the mining area, the correlation coefficient R2

and root mean square error RMSE between the measured and the estimated values were found to
be 0.6683 and 0.0489, respectively, suggesting that it is feasible to use spectral data to estimate the
heavy metal content in the wheat planted in the reclamation soils of mining areas. However, the
estimation compared to the soil is relatively unsatisfactory, which may attribute to the fact that the
spectral reflectance are affected by multiple components in crop samples, i.e., moisture, chlorophyll,
protein and lignin. Further study is needed to develop a more scientific and reasonable method for the
spectral estimation of heavy metals in crops.

6. Conclusions

In this research, the MLR, GRNN and SMO-SVM models were established to estimate the heavy
metal contents in the reclamation soil of mining areas, and the optimal model was found and used
to demonstrate its use in estimating Cd in the wheat planted on mine reclamation soils. The spectral
inversion models for heavy metals in soil established based on the MLR, GRNN and SMO-SVM
perform satisfactory to a certain degree. The R2 values of the MLR model, which provides the worst
estimates, remain above 0.46. This result suggests that the stress sensitive bands of the heavy metal
pollution selected by the treatment method of the spectral data and correlation analysis contain
sufficient effective spectral information. The established model based on the GRNN has an advantage
for modelling small samples in this study. Compared with the MLR model, the GRNN model
estimations are superior for the five types of heavy metals in the reclamation soils of mining areas.
The stability and accuracy of the SMO-SVM model are the best, compared to those of the GRNN and
MLR models. Among the five types of heavy metals, the estimations of Cd and Cr are the best using
the SMO-SVM model. Using the optimal SMO-SVM model to estimate the Cd content in the wheat
planted in the reclamation soils of mining areas, the R2 and RMSE values between the measured and
estimated values are relatively good, suggesting that the method is feasible.
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