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Abstract

One of the most versatile and powerful algorithms for the identification of nonlinear dynamical systems is the NARMAX (Non-
linear Auto-regressive Moving Average with eXogenous inputs) approach. The model represents the current output of a system by
a nonlinear regression on past inputs and outputs and can also incorporate a nonlinear noise model in the most general case. In
recent papers, one of the authors introduced a NARX (no noise model) formulation based on Gaussian Process (GP) regression and
derived the corresponding expressions for Higher-order Frequency Response Functions (HFRFs). This paper extends the theory
for the GP-NARX framework by providing a means of converting the GP prediction bounds in the time domain into bounds on the
HFRFs. The approach is demonstrated on the Duffing oscillator.
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1. Introduction

NARMAX (Nonlinear Auto-Regressive Moving Average with eXogenous inputs) models are powerful tools for
nonlinear system identification, which accommodate nonlinear discrete-time processes and noise models [1,2]. If,
however, the noise process is assumed to be Gaussian, the simpler NARX model can be used. NARX models are of
interest in system identification because, through a connection with the Volterra series, they allow the construction
of Higher-order Frequency Response Functions (HFRFs) that allow one to visualise how different frequencies in the
input to a nonlinear system interact in forming the output [3]. The HFRFs are obtained though an algorithm called
harmonic probing - proved to be a simple extension of the long-held algorithm for differential equations [4,5].

NARX models predict the current value of the system output using a nonlinear function F of previous inputs and
outputs, 1.€.
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The function F' can be taken from any number of regression approaches: most commonly it is multinomial regression,
but nonparametric model forms based on machine learning have also been adopted including Multi-Layer Perceptron
(MLP) and Radial Basis Function (RBF) neural networks [6,7]. A recent addition to the literature of the NARX model
was the discussion of the Gaussian Process (GP) NARX model in [8]. This model form allows a number of potential
advantages over the existing common forms on the NARX model, including the generation of natural confidence
intervals for model predictions. In [9], the expressions for the HRFRs for the GP-NARX model were explicitly stated,
based on earlier work in [10].

In this paper the GP-NARX framework is taken a step further: to date, the uncertainty of the GP fit to the training
data was only propagated as far as predictions in the time domain. Here, a Monte Carlo approach is presented which
allows the uncertainty to be expressed on the HFRFs themselves.

2. Gaussian Process NARX models
2.1. Gaussian Processes

The basic premise of GPs is to perform inference over functions directly, as opposed to inference over parameters
of functions. In short, a GP is a distribution over functions, which is conditioned on training data so that the most
probable functions are the best fits to the data. This accounting of uncertainty is exploited in this paper to build a
distribution over NARX models, and subsequently a distribution over HFRFs.

Let X = [x,,x,...x,]" denote a matrix of multivariate training inputs, and y denote the corresponding vector of
training outputs. The input vector for a testing point will be denoted by the column vector x* and the corresponding
(unknown) output by y*. A Gaussian process prior is formed by assuming a (Gaussian) distribution over functions,

F@) ~ GP (m(x), k(x, )) ©)

where m(x) is the mean function and k(x, x) is a positive-definite covariance function.

One of the defining properties of the GP is that the density of a finite number of outputs from the process, both
observed and unobserved, is multivariate normal. This property, combined with standard results for Gaussian distri-
butions, can be used to condition unobserved points on observed training points: this mechanism effectively fits the
GP to the training data.

Following a Bayesian approach, the prior mean is assumed to be zero (see [11] for a discussion). Assuming a
Gaussian noise model with variance o2, the joint distribution for training and testing values is,
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where K(X, X) is a matrix whose i, j element is equal to k(x,, x j). Similarly, K(X, x*) is a column vector whose i
element is equal to k(x;, x*), and K(x", X) is the transpose of the same.

In order to make use of the above, it is necessary to re-arrange the joint distribution p(y,y*) into a conditional
distribution p(y*ly). Using standard results for the conditional properties of a Gaussian reveals [11],

Yo~ N (x7), k" (2", X)) 4)
where,

m*(x*) = K(x", X)[k(X, X) + o1y 5)

is the posterior mean of the GP and,
K, x) = k(x', x) = KO XOIKGX) + 017 K (X x) (6)

is the posterior variance.

Thus the GP model provides a posterior distribution for the unknown quantity y*. The mean from equation (4)
can then be used as a ‘best estimate’ for a regression problem, and the variance can also be used to define confidence
intervals. The covariance function used here is the squared-exponential function, and its hyperparameters, along with
the noise parameter o2, can be readily found through maximum likelihood estimation (see [9]). For considerably
more details on GPs than this short paper allows, see [11].
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2.2. GP NARX Models

To apply GPs in the NARX framework, one simply performs a GP regression of the form in Equation (1). After
fitting the GP, one way to make predictions is to compute one step ahead (OSA) predictions, which exclusively use
the training data up to that time, i.e.

Vi = FQicts- vy Yicns Xicts oo o> Xin,) )

This can be compared with predicted outputs. However, a more demanding test is to compute the Model Predicted
Output (MPO), which uses predicted y* values instead of observed y, values. It is defined by,

y;‘:F(y;'k_19-"7y;‘k_ny;xi—l"'"xl’—nit) (8)

and this test can be conducted on testing data as well as training data, which is an important consideration in the more
general context of machine learning.

In [9] it was noted that the confidence intervals provided by the GP when computing the MPO were very small
because they did not accommodate the observed prediction errors. To fully account for the prediction uncertainty,
during a prediction run, at each instant i the prediction y} should be sampled from the distribution specified by the
mean and covariance from the GP for that instant. One such run therefore generates a single realisation of the pre-
diction process. In order to accumulate information about the distribution of predictions with state estimation taken
into account, a Monte Carlo approach can be adopted, such that R runs are executed to build an estimation of the
distribution over GP-NARX predictions.

3. Higher-order FRFs through harmonic probing

As described in [9], the response spectrum of a nonlinear system at an excitation frequency w can be completely
characterised by the Volterra series, such that,

Y(w) = Yi(w) + Y2 (w) + V3(w) + ... )
where,
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where the H; are the Higher-order Frequency Response Functions (HFRFs). The interpretation of these quantities is
well established: a description can be found in [3]. If the equations of motion are known for a system, the method of
harmonic probing can be used in order to compute the HFRFs [4]. In the case of Gaussian process NARX models, the
expressions related to harmonic probing were derived in [9]. Here they are briefly summarised.

The key to deriving these expressions is to state the GP in its parametric form, as an expansion in terms of basis
functions fixed by the covariance kernel and the training data [11]. This gives the predicted output y* corresponding
to a new input x* as,

N

¥ = Dk x) (13)

i=1
where according to equation (5),

a=[kX,X)+ o0y (14)
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and this is fixed by the training data. In [9] it was shown that this parametric form, with some rearrangement, allows
harmonic probing expressions to be derived. For H; this results in,

x —ijA
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where,
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v;j is the i, jth element of the matrix formed by the first n, columns of X, and u;; is the i, jth element of the matrix
formed by the remaining n, + 1 columns, and,
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For H,, the expressions involve similar terms, but are lengthy and will not be stated here; they are given in full detail

in [9].

In the GP-NARX framework to date, the potential of the Gaussian process has not been fully exploited, because
the GP provides a stochastic fit to a set of training data, but so far this stochasticity has only been propagated as far as
the time domain. Ideally one would like to propagate the uncertainty all the way to the end product of the exercise:
the HFRFs.

To achieve this end, a Monte Carlo framework is adopted here. The best estimate of uncertainty in the time domain
is represented by the Monte Carlo predictions in Figure 1. Importantly, each of the lines in this figure represents a
draw from a single underlying Gaussian process, which has a single set of a; and ; coefficients. In order to propagate
the uncertainty to the frequency domain, the approach here is to treat each Monte Carlo draw as a new set of training
data, and fit a new GP-NARX model to each draw. Each new GP-NARX model comes with its own «; and ;, each
of which can be used to generate a draw of the HFRFs. The resulting distributions over HFRFs can be used to build
mean HFRFs and confidence intervals.

Lety',i=1,...,N,r =1,..,R represent the GP prediction at x;, corresponding to the rih

ri’

each of the R Monte Carlo draws, a new GP-NARX model is fitted, such that,

Monte Carlo draw. For

Yir = FOricts oo Vw3 Xiels -+ o5 Xion,) (18)

where y!* represents the GP-NARX prediction corresponding to the " MC draw at x;. Notice that the GP is fitted
using the OSA approach, because the interest is only in obtaining the corresponding «; and §; parameters. To simplify
matters, it is also assumed that the hyperparameters of each GP are all equal to the hyperparameters estimated in the
original GP.

From here, the procedure is straightforward. For the 7" GP fit, the corresponding & ;- and 8 . values can be obtained
using the expressions in (16), via the parameters of the GP. These can then be translated into a draw from the HFRF,
resulting in a total of R samples from the distribution of the HFRF. This easily yields statistics of the distribution, such
as pointwise means, modes and confidence intervals.

4. Case study - an asymmetric Duffing oscillator

In order to illustrate the use of the GP NARX formulation, data simulated from a Duffing oscillator system will be
used. In the asymmetric case when a quadratic stiffness is present, the relevant equation of motion is,

my + ¢y + ky + koy* + kzy® = x() (19)

Data were simulated by integrating the equation of motion using a fourth-order fixed step Runge-Kutta algorithm
[12]. The parameters adopted were m = 1, ¢ = 20, k = 10%, k, = 107 and k3 = 5 x 10°. The excitation used was
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zero mean Gaussian random sequence with a standard deviation of 2.0. The time step used was At = 0.001 seconds
corresponding to a sampling frequency of 1 kHz. Gaussian noise of 1% RMS of the signal was added to the response
time data. The number of lags for the model used here were n, = 3 and n, = 3. The training data consisted of 1000
samples of input and output data.

Figure 1 shows the 50 realisations of the Monte Carlo draws from the GP-NARX model (due to space limitations,
the OSA and MPO prediction plots are not shown here). Since these are OSA predictions for each realisation with a
high density of training data, the GP fits almost perfectly to each data series. Collectively, there is a moderate degree
of uncertainty in fitting the GP-NARX model to the underlying training data, as evidenced by the spread of fits. As
noted in [9], the dominant contribution to uncertainty in the predictions is not the direct component from the parameter
uncertainty, but the indirect component due to state estimation from the uncertain parameters.

Displacement

0 100 200 300 400 500 600 700 800 900 1000
Index

Fig. 1: MC realisations of predictions for GP NARX model of Duffing oscillator data.

In order to propagate the uncertainty in Figure 1 into the frequency domain, a GP-NARX model is fit to each of
the 50 Monte Carlo draws, yielding draws of the HFRF. At each frequency, the mean and standard deviation can be
estimated over the 50 draws. The result is in Figure 2 which plots the mean and 99% confidence intervals. It is evident
that the uncertainty is actually quite narrow in the magnitude plot: although the time domain fits show some scatter,
the underlying frequencies contained within each signal are quite similar. In the phase plot, the uncertainty is also
quite small.

Figure 3(a) shows the mean H2 HFRF over the 50 draws, with the uncertainty (variance) at each point represented
by the colour map. The response is flat at normalised frequencies above about 0.2, and the uncertainty is correspond-
ingly very low. At the lowest frequencies the magnitude increases sharply and the uncertainty is also considerably
higher. This is essentially a reflection of what is already visible in Figure 2, with the additional information that the
interaction between the two frequencies is somewhat negligible. The corresponding phase plot in Figure 3(b) shows a
similar picture: low uncertainty over the large range of frequencies explored, but higher uncertainty in the high-phase
regions at the lowest frequencies.

In order to see the important structure in the HFRFs, it is often sufficient to plot only the leading diagonal i.e.
H>(w, w): see Figure 4. This format also allows simple comparisons between the functions. This gives extra infor-
mation over the H1 plots alone, because the interaction between w; and w; is clearly visible in the second peak of
the plot. The confidence intervals, while wide, reveal that this second peak is not merely due to a spurious fit of the
NARX model, because it is present in some way over all Monte Carlo iterations.
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Fig. 2: H1 plotted with mean values over R = 50 draws from the GP, and 99% confidence intervals.
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Fig. 3: H2 magnitude and phase plotted with mean values over R = 50 draws from the GP; colour map indicating standard deviation.

5. Conclusions

This article has continued and extended previous work relating to GP-NARX models, by fully propagating uncer-
tainty into the frequency domain. Using a simple Monte Carlo approach, the draws of the GP-NARX fit to a set of
training data were converted into draws of the HFRF by fitting a further GP to each set of points. This leads to the
distribution of the HFRF, taking into account the uncertainty in the original GP fit, and can be used to generate mean
or mode estimates, and confidence intervals on HFRFs.
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Fig. 4: H2 magnitude at w; = w,: mean values over R = 50 draws from the GP and 99% confidence intervals.
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