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Abstract: IŶ ƚŚŝƐ ĂƌƚŝĐůĞ͕ ǁĞ ŝŶǀĞƐƚŝŐĂƚĞ ƚŚĞ ŝŵƉĂĐƚ ŽĨ ďŝŐ ĚĂƚĂ͛Ɛ ǀĞůŽĐŝƚǇ ŽŶ ŐƌĞĞŶŝŶŐ IP ŽǀĞƌ WDM ŶĞƚǁŽƌŬƐ͘  WĞ ĐůĂƐƐŝĨǇ ƚŚĞ 
processing velocity of big data into two modes: expedited-data processing mode and relaxed-data processing mode. 

Expedited-data demands higher amount of computational resources to reduce the execution time compared to the relaxed-

ĚĂƚĂ͘ WĞ ĚĞǀĞůŽƉĞĚ Ă MŝǆĞĚ IŶƚĞŐĞƌ LŝŶĞĂƌ PƌŽŐƌĂŵŵŝŶŐ ;MILPͿ ŵŽĚĞů ƚŽ ƉƌŽŐƌĞƐƐŝǀĞůǇ ƉƌŽĐĞƐƐ ďŝŐ ĚĂƚĂ͛Ɛ ƌĂǁ ƚƌĂĨĨŝĐ ŽĨ ďŽƚŚ 
modes at strategic locations, dubbed processing nodes (PNs), built into the network along the path from the data source to 

the destination. During the processing of big data, the extracted information from the raw traffic is smaller in volume 

compared to the original big data traffic each time the data is processed, hence, reducing network power consumption. Our 

results showed that up to 60% network power saving is achieved when nearly 100% of the data in the network required 

relaxed-processing. In contrast, only 15% of network power saving is gained when nearly 100% of the data required 

expedited-processing. We obtained around 33% power saving in the mixed modes (i.e., when approximately 50% of the data 

is processed in the relaxed-mode and 50% of the data is processed in expedited-mode), compared to the classical approach 

where no PNs exist in the network and all the processing is achieved inside the centralized datacenters only. 

1. Introduction 
Velocity is data in motion, which is the speed at which 

data is fluxing in and processed in the data centers [1]. The 
flux rate can grow larger for applications collecting 
information from wide spatial or temporal domains. For 
instance, the Square Kilometre Array [2] telescope combines 
signals with a flow speed of 700TB/second of data received 
from thousands of small antennas spread over a distance of 
more than 3000 km. In another example, five million trade 
events created each day are scrutinized in real time to identify 
potential fraud. Five hundred million daily call detail records 
are analysed in real-time to predict customer churn faster [3]. 

High-speed processing of such immense data volumes 
as produced by plentiful data sources calls for new processing 
and communications methodologies in the big data era. In [4] 

the authors study the minimization of overall cost for Big 
Data placement, processing, and movement across geo-
distributed datacenters. In [5], the authors presented an 
optimization technique to execute a sequence of MapReduce 
jobs in Geo-distributed DCs to minimize the time and 
pecuniary cost. The authors in [6] introduced technique to 
execute MapReduce jobs on multiple IoT nodes to locally 
process as much data as possible the raw data. The authors in 
[7] aimed to minimize the communication cost by satisfying 
as many big data queries as possible over a number of time 
slots. In-network processing is proposed in [8] to achieve 
network-awareness to save more bandwidth using custom 
routing, redundancy elimination and on-path data reduction. 
In [9], the authors developed a Mixed Integer Linear 
programing models for energy efficient cloud computing 
services in IP over WDM core networks. 

We developed in [10] and [11] MILP models to 
investigate the impact of the big data’s volume, variety, and 
veracity on greening big data networks. Our work in [10] and 
[11] considered big data’s volume, variety, and veracity 
respectively, which are three dimensions of big data that are 

not related to the current work. In volume, our work in [10] 
considered the impact of the volume of the big data and in 
particular focused in this context on the following: (i) serving 
a single type of big data application, (ii) evaluating the impact 
of the power efficiency of PNs, (iii) presenting our new 
Energy Efficient Big Data Networks (EEBDN) heuristic and 
its complexity, where EEBDN focuses on greening big data 
considering its volume dimension, (iv) presenting new results 
under different network topologies, (v) introducing a 
software matching problem in big data networks.  

In our work in [10] we also considered big data variety. 
Here we considered serving multiple types of big data 
applications using the same MILP model presented in volume 
dimension to evaluate the impact of variety on EEBDN. 
However, the input data to the model is modified to satisfy 
the distinct features of the variety domain. In the veracity 
dimension, our work in [11] extended the MILP model of 
volume and variety to evaluate the impact of big data 
cleansing and backup operations on the energy efficiency of 
big data networks. Therefore, we added cleansing and backup 
requirements and constrains to the volume and variety MILP 
model. Big data cleansing deals with detecting and removing 
dirty data due to overlaps, errors, duplications, and 
contradictory materials from big data to improve its quality 
and to make it ready for big data analytics. It provides easy 
access to accurate, consistent and consolidated data of 
different data forms. The data backup process specifies the 
optimal location for a backup node to store the cleansed data 
before entering the big data analytics stage.  

This article, however, makes a number of new 
contributions beyond [10] and [11] as follows: Firstly, we 
develop a MILP model to examine the impact of the velocity 
of big data on network power consumption in bypass IP over 
WDM core networks. We consider an expedited-data 
processing mode and a relaxed-data processing mode. In the 
relaxed-data mode, the execution time needed to process an 
application is relatively long as it can tolerate some delay. In 
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the expedited-data mode, the execution time required to 
process a delay sensitive applications is optimized to be as 
short as possible.  

Secondly, we extended the objective of the MILP 
model so that it minimizes the network power consumption 
as well as minimizing the execution time of big data 
applications. The addition of the time dimension is essential 
when considering big data applications where velocity (time 
sensitivity) is an important attribute. Thirdly, we used our 
progressive processing technique to process big data chunks 
and compared the results to the classical approach where 
progressive processing is not allowed. In our approach, the 
processing locations are optimally selected at Source PNs 
(SPNs), at the Intermediate PNs (IPNs) or inside the 
centralized datacenters (DCs). As a result, a significant 
reduction in the network power consumption is achieved each 
time the data is processed along the journey from the source 
to the DCs.  

Note that the main similarities in all the MILP models 
reside in optimizing the processing locations of chunks, 
optimizing the locations of the DCs, ensuring the flow 
conservation of big data traffic, and minimizing the power 
consumption of PNs, DCs, and IP over WDM network. In 
summary, the differences between the different MILP models 
we developed reflect the different requirements and features 
of big data forms / applications where a particular big data V 
may be important.   

 
1.1. Classical Big Data Networks vs. Green Big 

Data Networks 
Classically, all big data Chunks traffic (CHT) 

generated by the source nodes is forwarded to the DCs to be 
processed there as shown in Figure 1-a. On the other hand, in 
the green big data network, shown in Figure 1-b, the PNs are 
attached to the core nodes of the IP over WDM network. Each 
PN is composed of internal switches and routers, limited 
storage, and limited number of servers depending on the 
available building space and its structure is similar to the 
cloud structure in [9]. DCs, however, are assumed to have 
large enough processing and storage capabilities. PNs are 
capable of processing different number of Chunks to extract 
the corresponding knowledge with small data size from each 
Chunk. We referee to such knowledge as (Info). These Infos’ 
traffic (INF) is forwarded to location optimized DCs. When a 
given SPN is not capable of processing all its own chunks, it 
forwards these chunks to the nearest IPN through energy 
efficient routes to be processed there, hence, the amount of 
big data traffic is reduced significantly during the Chunks 
journey from the source to the DC. 

Typically, the size of Info is very small compared to 
the Chunks [12] in many big data applications such as remote 
patient monitoring to capture only the abnormality in the 
heartbeat from huge amount of measured heartbeat rate time 
services. In equation (1), we introduce the relation between 
the size of Infos and Chunks as a ratio, termed as Processing 
Reduction Ratio (PRR). For instance, Chunk of 100 gigabit 
(Gb) and PRR of 0.001 results in Info of 0.1 Gb.        ܸ݋݂݊ܫ ݂݋ ݁݉ݑ݈݋ ൌ ܴܴܲ ൈ  Ǥ       ሺͳሻ݇݊ݑ݄ܥ ݂݋ ݁݉ݑ݈݋ܸ

 
(a) 

 
(b) 

Figure 1. (a) Classical big data network. (b) Green big data network [13]. 

2. Velocity Impact on Greening Big Data Networks  
The intention of the present section is to analyse both 

time dependent types of big data applications: expedited-data 
processing and relaxed-data processing.  

Relaxed-data processing can tolerate some delay and 
can be processed in a batch processing mode after being 
stored inside DCs, such as digital image processing and 
automated transaction processing. Several benefits can be 
gained in batch processing jobs, such as avoiding the idle 
status of computing resources by shifting the time of job 
processing to the less busy hours, hence, gaining a higher 
overall rate of utilization. Further, batch processing reduces 
the system overhead by running a program one time to 
achieve multiple tasks for the same job rather than running 
that program many times to perform those different tasks.     

On the other hand, in expedited-data processing, it is 
essential to analyse data as fast as possible to maximize its 
value while fluxing into the DCs. For instance, sometimes a 
two minute delay is too much to catch fraud or it could lead 
to a disaster, such as the situation in remote patient 
monitoring that requires the analysis of the abnormality in 
their sensed organ readings almost immediately. An effective 
method to quickly process data is to provide sufficient and 
efficient computational resources to decrease the processing 
latency of such CPU intensive applications. This can be done 
by optimally allocating processing workloads according to 
the data type. If it is expedited-data, then the CPU workload 
will optimally be a large portion of the CPU processing 
capacity, so as to be served quickly. Therefore, increasing the 
CPU frequency will have a positive impact on decreasing the 
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execution time of CPU intensive applications [14]. Equation 
(2) represents the CPU performance relationship [15].   ݊݋݅ݐݑܿ݁ݔܧ ܷܲܥ ܶ݅݉݁ ሺܶܧܥሻݐ݊ݑ݋ܥ ݊݋݅ݐܿݑݎݐݏ݊ܫ ሺܥܫሻ  ൌ  ሺܹܲሻ ݀ܽ݋݈݇ݎ݋ܹ ݃݊݅ݏݏ݁ܿ݋ݎሻሺܲܫܲܥሺ ݊݋݅ݐܿݑݎݐݏ݊ܫ ݎ݁݌ ݏ݈݁ܿݕܥ   

The term CET represents the total duration a CPU 
requires to execute a program with a certain number of 
instructions (IC). Note that the program is used to extract 
useful knowledge from a given Chunk. The term CPI is the 
average number of clock cycles needed to execute each 
instruction of that program. PW represents the CPU cycles 
per second in GHz used to process a given Chunk. Note that 
in [15] PW is referred to as Clock Rate.  

 In our model, Chunks initially request a certain CET, 
called RCET. Based on the RCET, CPI and IC, we can deduce 
the initially requested PW for Chunks, called RPW. However, 
to expedite the process, the model can allocate processing 
workloads for Chunks that exceeds the RPW, called 
Allocated PW (APW).  Based on APW, CPI and IC, the 
model can deduce the optimal CPU execution time to process 
a Chunk, referred to as Allocated CET (ACET). Note that 
ACET can be shorter than RCET for expedited-data 
processing. 

 
2.1.  Velocity MILP Model 

In this section, and for the completeness of our work 
in [10] and [11], we introduce a MILP model for green big 
data networks in the bypass approach of the IP over WDM 
network. We attached capacitated PNs at each core node of 
the NSFNET, as shown in Figure 2, with DCs with large 
enough capacities. The NSFNET network consists of 14 
nodes connected by 21 bidirectional links [16]. The DCs are 
employed to process all incoming big data Chunks from PNs. 
Further, the DCs receive Infos produced by the PNs.  

We performed the MILP optimization using the 
AMPL/CPLEX software running on a PC with 8 GB RAM 
and an i5 CPU. The model execution takes few minutes to 
around two hours to solve the problem in the scenarios 
studied in the paper. However, for faster results and larger 
networks, the current MILP can be applied using a High 
Performance Computer (HPC).  For example, we have used a 
Polaris machine with 16 cores (processors) and 256 GB of 
RAM. Furthermore, a heuristic can be implemented to 
achieve two main purposes. Firstly, as a verification of the 
MILP results and secondly, since the heuristic uses simple 
rules, it runs fast unlike the MILP. Therefore, a heuristic can 
enable network control (which chunk to process where for 
example) and routing, which can both be performed in real 
time through the use of the heuristic. We have not developed 
a heuristic for the veracity dimension, however, we have 
developed the EEBDN heuristic and reported it in [10] to 
verify the volume MILP (some common features with 
veracity MILP) and to show the reduced execution time 
possible through the use of heuristics in our setting. To 
demonstrate the potential of serving both types of time 
dependent data (expedited-data and relaxed-data) and the 
suitability of this approach for greening big data networks, we 
present a CET dimension, i.e., the CPU Execution Time 
required to process big data Chunks. The assigned processing 
resources per Chunk are optimally allocated for PNs in a 
manner that satisfies the Chunk minimum processing 
duration requirements. The MILP parameters for the green 
big data networks are defined in Table 1. 

 
 Figure 2. NSFNET network with PNs. 

 

  Table 1 MILP model parameters definition 
Notation Description ܴܧܥ ௦ܶ௖  Requested CPU execution time of Chunk c generated by 

node s. ܴܲ ௦ܹ௖ Requested processing workload for Chunk c generated by 
node s.  ݏ ܽ݊݀ ݀ Denote source and destination points of regular traffic 
demand between a node pair. ݉ ܽ݊݀ ݊ Denote end points of a physical fibre link in the optical 
layer. ܴ௦ௗ The NSFNET regular traffic demand from node  ݏ  to node 
d (Gbps). ܰ                 Set of IP over WDM nodes. ௜ܰ  The set of neighbour nodes of node i in the optical layer. ܰܵ௣ Number of servers at the PN p. ܹܵܯ          Maximum server workload (GHz). ܯ ௣ܲ Maximum workload node p. ܲܯ ൌ ݌ܵܰ  ή  ௣ Maximum internal switches and router capacity of the PNܴܵܯ ሻǤݖܪܩሺ ܹܵܯ
p (Gbps). ܵܯ௣ Maximum storage of node p (Gb). ܪܥ௦ Number of Chunks per second generated at node s.          ܪܥ ௦ܸ௖  The volume of Chunk c generated at source node s (Gb). ܴܴܲ௦௖ Processing reduction ratio for Chunk c generated by node s 
(unitless). ܹܮ              Number of wavelengths in a fibre. ܤ Wavelength bit rate (Gbps). ܵ Maximum span between neighbouring EDFAs (km). ܴܲ               Power consumption of a router port (W). ܴܲܶ            Power consumption of a transponder (W). ܲ ௜ܱ Power consumption of optical switch installed at node i א 
N (W). ܲܧ Power consumption of EDFA (W). ܴܲܩ Power consumption of a regenerator (W). ܦ௠௡ Distance between node pair (m, n) (km). ܣ௠௡ Number of EDFAs on physical link (m, n). Typically,  ܣ௠௡ ൌ ቔ஽೘೙ௌ െ ͳቕ ൅  ௠௡ Number of regenerators on physical link (m, n). ܷܲܰ Power usage effectiveness of IP over WDM networksܩܴ .[16] ʹ
(unitless). PUN is defined as the ratio of the power drawn 
from the electric source to the power used by the equipment 
(networking in this case). PUN accounts for cooling, 
lighting and related power consumption. ܷܲ Power usage effectiveness of the PNs and DCs (unitless). ܵܲܯ Server maximum power consumption (W). ܵܤܧ PNs’ and DCs’ switch energy per bit (W/Gbps). ܴܤܧ PNs’ and DCs’ router energy per bit (W/Gbps). ܴܵ Internal PNs’ and DCs’ switches redundancy. ܴܴ Internal PNs’ and DCs’ routers redundancy. ܴܵܩ PNs and DCs storage redundancy. ܲܵܩ PNs’ and DCs’ storage power per Gigabit (W/Gb). ߜ Server power per GHz, į = SMP / MSW (W/GHz). GHz is 
used to specify the capability of a processor and the number 
of processors a job needs. ʣ  Required processing weight for Chunks (W/GHz). ܰܥܦ Number of location optimized DCs. 



4 
 

The MILP variables for the green big data networks 
are defined in Table 2. 

Table 2 MILP model variables definition 
Notation Description ܲܣ ௦ܹ௣௖ 

Allocated processing workload of Chunk c that is generated 
by node s and processed at node p.  ܧܥܣ ௦ܶ௣௖ 
Allocated CPU execution time of Chunk c that is generated 
by node s and processed at node p. ܹܲ 
Total processing workload consumed by all the Chunks in 
the network including DCs. 

௣ܶ 
Maximum CPU execution time allocated to process 
Chunks at processing node p, ௣ܶ ൌ ܧܥܣ൫ ݔܽܯ  ௦ܶ௣௖൯. ܶܺܣܯ 
Maximum CPU execution time needed to process all the 
Chunks in the network. ܶ ൌ  ܶܰܫܯ .൫ ௣ܶ൯ݔܽܯ 
Minimum CPU execution time needed to process all the 
Chunks in the network. ܶ ൌ ൫݊݅ܯ  ௣ܶ൯. ܪܥ ௦ܶ௣ 
Big data Chunks traffic generated at SPN s and directed to 
destination node p (p could be SPN, IPN or DC) (Gbps). ܨܰܫ௣ௗ 
Aggregated big data info traffic from PN p to DC d. Node 
p could be SPN or IPN only (Gbps). ܥ௜௝ Number of wavelength channels in the virtual link (i, j). ܴ௜௝௦ௗ

 

Traffic flow of the regular traffic Rsd between node pair (s, 
d) traversing virtual link (i,j). 

௠ܹ௡௜௝
 

Number of wavelength channels in the virtual link (i, j) 
traversing physical link (m, n). ௠ܹ௡ Number of wavelength channels in the physical link (m,n). ܪܥ ௜ܶ௝௦௣

 

Traffic flow of the big data Chunks traffic CHTsp between 
node pair (s, p) traversing virtual link (i, j). ܨܰܫ௜௝௣ௗ

 
Traffic flow of the big data info traffic INFpd between node 
pair (p, d) traversing virtual link (i, j). ܴܣ௜ Number of aggregation ports in router i utilized by regular 
traffic Rsd. ܪܥܣ௜ Number of aggregation ports in router i used in big data 
Chunks traffic CHTsp. ܫܣ௜ Number of aggregation ports in router i utilized by big data 
Info traffic INFpd. ܨ௠௡ Number of fibres in physical link (m, n) . ܲܰ ௣ܹ Total PN p workload (GHz). 

௦ܻ௣௖ 
Yspc = 1 if Chunk c is generated at SPN s and processed in 
PN p, else Yspc = 0. ܵܪܥ௣ Amount of big data Chunks stored in PN p (Gb). ܥܦௗ DCd = 1 if a DC is built at core node d, else DCd = 0. 

 

Under the bypass approach, the total IP over WDM network 
power consumption is composed of the following 
components 
1) The power consumption of router ports ෍ ܴܲ ή  ሺܴܣ௜ ൅ ௜ܪܥܣ ൅ ௜ሻܫܣ ൅ ܴܲ ή ෍ ൫ܥ௜௝൯Ǥ௝אேǣ ௜ஷ௝௜אே  

(3) 
2) The power consumption of transponders ෍ ෍ ܴܲܶ ή ௠ܹ௡ Ǥ௡אே೘௠אே  

(4) 
3) The power consumption of regenerators is ෍ ෍ ܩܴܲ ή௡אே೘௠אே  ௠ܹ௡ ή ௠௡ܩܴ Ǥ 

(5) 
4) The power consumption of EDFAs ෍ ෍ ܧܲ ή ௠௡ܣ ή ேאே೘௠א௠௡Ǥ௡ܨ  

(6) 
5) The power consumption of optical switches ෍ ܲ ௜ܱ௜אே Ǥ 

(7) 
Equation (3) evaluates the total power consumption of the 

router ports for all the types of traffic, which are the regular 
traffic Rsd, big data Chunks traffic CHTsp, and big data info 

traffic INFpd. It computes the total power consumption of the 
ports aggregating data traffic and the ports connected to 
optical nodes. Equations (4) and (5) evaluate the power 
consumption of all the transponders and regenerators in the 
optical layer. Equation (6) evaluates the total power 
consumption of the EDFAs in the optical layer. Equation (7) 
evaluates the total power consumption of the optical switches. 

The power consumption of the PNs and DCs is composed 
of the following sections 
1) The power consumption of internal PNs and DCs 

switches and routers ܴܲܵ ൌ ෍ ෍ ܪܥ ௦ܶ௣௦אே ή  ሺܴܵ ή ܤܧܵ ൅ ܴܴ ή ேאሻ௣ܤܧܴ  
൅ ෍ ෍൫ܪܥ ௣ܶௗ ൅ ܰܫ ௣ܶௗ൯ௗאே௣אேή ሺܴܵ ή ܤܧܵ ൅ ܴܴ ή ሻܤܧܴ   ൅ ෍ ෍ ேήאே௣א௣ௗௗܨܰܫ ሺܴܵ ή ܤܧܵ ൅ ܴܴ ή  ሻǤ (8)ܤܧܴ

Equation (8) evaluates the total power consumption of the 
internal switches and routers in the PNs and DCs. This is done 
by multiplying the incoming and outgoing big data traffic by 
the switches’ and routers’ energy per bit. We performed the 
analysis by considering a network architecture where ܴܵ ൌܴܴ ൌ ͳ. 
2) The power consumption of servers ෍ ߜ ή ܲܰ ௣ܹ Ǥ௣אே  

  (9) 
Although the server power consumption is a function of the 
idle power, maximum power and CPU utilization [17], we 
consider only ߜ ൌ ܹܵܯȀܲܯܵ   in equation (9)to calculate 
its power consumption. This yields a close approximation 
(when a large number of servers is considered) even when 
there is idle power in each server. The difference is only in 
the last powered on server. Note that in the PN and DC 
servers, each server in our case is either fully utilized or is off. 
 
3) The power consumption of the storage  ෍ ௣ܪܥܵ ή ܩܴܵ ή ேא௣ܩܵܲ Ǥ 

(10) 
 Equation (10) represents the storage power 
consumption of node p. We performed the analysis by 
considering a network architecture where ܴܵܩ ൌ ͳǤ 
   The model is defined as follows 
Objective: Minimize  
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ܷܲܰ ή ቌ෍ ܴܲ ή  ሺܴܣ௜ ൅ ௜ܪܥܣ ൅ ௜ሻܫܣ ൅ ܴܲ௜אே ή ෍ ൫ܥ௜௝൯௝אேǣ௜ஷ௝൅ ෍ ෍ ܴܲܶ ή ௠ܹ௡௡אே೘௠אே൅ ෍ ෍ ܩܴܲ ή ௠ܹ௡ ή ே൅אே೘௠א௠௡௡ܩܴ ෍ ෍ ܧܲ ή ௠௡ܣ ή ே൅אே೘௠א௠௡௡ܨ ෍ ܧ ௜ܱ௜אே ቍ 

൅  ܷܲ ή ቌ෍ ߜ ή ܲܰ ௣ܹ௣אே ൅ ෍ ෍ ܪܥ ௦ܶ௣௦אே௣אேή  ሺܴܵ ή ܤܧܵ ൅ ܴܴ ή ሻܤܧܴ  ൅ ෍ ෍൫ܪܥ ௣ܶௗ ൅ ܰܫ ௣ܶௗ൯ௗאே௣אேή ሺܴܵ ή ܤܧܵ ൅ ܴܴ ή ሻܤܧܴ   ൅ ෍ ෍ ேήאே௣א௣ௗௗܨܰܫ ሺܴܵ ή ܤܧܵ ൅ ܴܴ ή ሻ൅ܤܧܴ ෍ ௣ܪܥܵ ή ܩܴܵ ή ேא௣ܩܵܲ ቍ 

െʣ ή ෍ ܲܰ ௣ܹ Ǥ௣אே  
(11) 

 
Equation (11) gives the model objective that maximizes the 
CPU workload per node ݌ and minimises the IP over WDM 
network, PNs and DCs power consumptions. ʣ is a weight 
that controls the model emphasis on the Chunks' allocated 
CPU workload in the nodes within the fixed nodes’ 
processing capacity. 

The objective function (equation (11)) minimises 
the network power consumption, minimises the processing 
power consumption and to different extents, through the 
parameter Ɏ, the objective function maximises the amount of 
processing used such that expedited data can be served 
quickly when present. For example, if 100% of the data 
requires expedited-processing, then a high value of Ɏ is used. 
Conversely, when all the data requires relaxed-processing, 
the value of Ɏ that should be used is low and approaches zero. 
In this case, the objective function, equation (11) simply 
minimises the overall power consumption made up of 
network and processing power consumptions. Therefore, 
there is a trade-off between power saving and the proportion 
of big data that requires expedited processing. 
Subject to: 

PNs and DCs Constraints: 
1) Processing counter of big data Chunks constraint  ෍ ௦ܻ௣௖௣אே ൌ ͳ (12) 

ݏ׊ א ܰǡ ܿ׊ א  ௦Ǥܪܥ
Constraint (12) ensures that a Chunk c generated by PN s is 
processed by no more than one PN p. 
2) Big data Chunks traffic constraint  ܪܥ ௦ܶ௣ ൌ ෍ ܪܥ ௦ܸ௖ ή ௦ܻ௣௖௖א஼ுೞ ǡݏ׊  א ݌ ܰǤ (13) 

Constraint (13) calculates the big data Chunks traffic 
generated at source node s and directed to node p. This traffic 
is generated by transmitting Chunksc from node s to node p in 
one second. 
 
3) Aggregated processed big data traffic constraint  ෍ ேא௣ௗௗܨܰܫ ൌ ෍ ෍ ܪܥ ௦ܸ௖ ή ௦ܻ௣௖ ή ܴܴܲ௦௖௖א஼ுೞ௦אே ݌׊    (14)  א ܰǤ  
Constraint (14) represents the aggregated big data info traffic 
INFpd generated by PN p and destined to DC d. 
4) Number and locations of DCs constraints  ෍ ܰܫ ௣ܶௗ ൒ ேאௗ௣ܥܦ ݀׊  א ܰǡ    (15) 

     ෍ ܰܫ ௣ܶௗ ൑ ܼ ή ேאௗ௣ܥܦ ݀׊  א ܰǡ and 

(16) 

ܰܥܦ ൌ ෍ ௗܥܦ Ǥ      ௗאே  (17) 

Constraints (15) and (16) build a DC in location d if that 
location is selected to store the results of the processed big 
data traffic (i.e., Infos) or selected to process the incoming big 
data Chunks from PNs, where Z is a large enough unitless 
number to ensure that DCd = 1 when σ INF୮ୢ୮஫୒  is greater 
than zero. Constraint (17) limits the total number of built DCs 
to DCN. 
5) PNs and DCs storage constraints  ܵܪܥ௣ ൌ ෍ ෍ ܪܥ ௦ܸ௖ ή ௦ܻ௣௖௖א஼ுೞ௦אே ݌׊ (18)  א ܰ and  ܵܪܥ௣ ൑ ௣ܵܯ ൅ ሺܪ ή ݌׊ ௣ሻ           (19)ܥܦ א ܰǤ  
Constraint (18) represents the size of Chunks in Gb stored in 
PN p. Constraint (19) ensures that the total data stored in PN 
p does not exceed the storage capacity of that PN.  H is a large 
enough unitless number to guarantee that there is no storage 
capacity limitation at the DCs. 
6) PNs and DCs internal switches and routers constraint  ෍ ܪܥ ௦ܶ௣  ൑ ௣ܴܵܯ ൅ ሺܣ ή ேא௣ሻ௦ܥܦ ݌׊ (20)  א ܰǤ  
Constrain (20) ensures that the total amount of big data traffic 
between the PNs will not exceed the maximum switching and 
routing capacity of the internal switches and routers in those 
PNs. On the other hand, the capacity of the DCs’ switches and 
routers is unlimited, where A is a large enough unitless 
number to guarantee that there is no capacity limitation at the 
DCs. To avoid blocking of big data Chunks. 

The IP over WDM Network Constraints: 
1) Flow conservation constraints for the regular traffic 
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෍ ܴ௜௝௦ௗ௝אேǣ ௜ஷ௝ െ ෍ ௝ܴ௜௦ௗ௝אேǣ ௜ஷ௝ ൌ ൝ ܴ௦ௗ        ݅ ൌ ݅        െܴ௦ௗݏ ൌ ݀Ͳ        ݁ݏ݅ݓݎ݄݁ݐ݋ 
ǡݏ׊ (21) ݀ǡ א ݅ ܰǣ ݏ ് ݀Ǥ  

2) Flow conservation constraints for the big data Chunks 
traffic ෍ ܪܥ ௜ܶ௝௦௣௝אேǣ௜ஷ௝ െ ෍ ܪܥ ௝ܶ௜௦௣௝אேǣ ௜ஷ௝ ൌ ൝ ܪܥ ௦ܶ௣     ݅ ൌ ܪܥെݏ ௦ܶ௣  ݅ ൌ        ݁ݏ݅ݓݎ݄݁ݐ݋      Ͳ݌

ǡݏ׊ (22) ǡ݌ א ݅ ܰǣ ݏ ്   Ǥ݌
3) Flow conservation constraints for the big data Info traffic ෍ ேǣ௜ஷ௝א௜௝௣ௗ௝ܨܰܫ െ ෍ ேǣ௜ஷ௝א௝௜௣ௗ௝ܨܰܫ ൌ ൝ ௣ௗܨܰܫ       ݅ ൌ ݅    ௣ௗܨܰܫെ     ݌ ൌ ݀     Ͳ         ݁ݏ݅ݓݎ݄݁ݐ݋  

ǡ݌׊ (23) א ݅ ܰǡ א ݀׊ ܰǣ ݌ ് ݀Ǥ  
Constraints (21-23) represent the flow conservation 
constraints Rsd, CHTsp and INFpd traffic in the IP layer. These 
constraints ensure that the total outgoing traffic should be 
equal to the total incoming traffic, except for the source and 
destination nodes.  
4) Virtual link capacity constraint ቌ෍ ෍ ܴ௜௝௦ௗௗאேǣ ௦ஷௗ௦אே ൅ ෍ ෍ ே൅אேǣ ௦ஷ௣௦א௜௝௦௣௣ ܶܪܥ ෍ ෍ ேאேǣ ௣ஷௗ௣א௜௝௣ௗௗܨܰܫ ቍ ൑ ௜௝ܥ Ǥ  ܤ

ǡ݅׊ (24) א ݆ ܰǣ ݅ ് ݆Ǥ  
Constraint (24) ensures that the summation of all traffic flows 
through a virtual link does not exceed its capacity. 
5) Optical layer flow conservation constraints:  ෍ ௠ܹ௡௜௝௡אே೘ െ ෍ ௠ܹ௡௜௝௡אே೘ ൌ ൝ ௜௝ܥ            ݉ ൌ ݅െܥ௜௝          ݉ ൌ ݆ Ͳ        ݁ݏ݅ݓݎ݄݁ݐ݋ 

ǡ݅׊ (25) ݆ǡ א ݉ ܰǣ ݅ ് ݆Ǥ  
Constraint (25) represents the flow conservation constraints 
in the optical layer. It assumes that the total outgoing 
wavelengths in a virtual link should be equal the total 
incoming wavelengths, except for the source and the 
destination nodes of the virtual link.  
6) Physical link capacity constraints  ෍ ෍ ௠ܹ௡௜௝௝אேǣ ௜ஷ௝௜אே ൑ ܮܹ ή ௠௡ܨ Ǥ 

݉׊ (26) א ܰǡ א ݊ ܰ௠Ǥ  
Constraint (26) ensures that the summation of the 
wavelengths in a virtual link traversing a physical link do not 
exceed the capacity of the fibre in the physical link.  
7) Wavelengths capacity constraint ෍ ෍ ௠ܹ௡௜௝௝אேǣ ௜ஷ௝௜אே ൌ ௠ܹ௡ 

݉׊ (27) א ܰǡ א ݊ ܰ௠Ǥ  
Constraint (27) ensures that the summation of the 
wavelengths traversing a physical link do not exceed the total 
number of wavelengths in that link. 
8) Number of aggregation ports utilized by regular traffic 

constraint        ܴܣ௜ ൌ ͳܤ ή ෍ ܴ௜ௗௗאேǣ ௜ஷௗ          
݅׊ (28) א ܰǤ  

9) Number of aggregation ports utilized by CHT traffic 
constraint ܪܥܣ௜ ൌ ͳܤ ή ෍ ܪܥ ௜ܶ௣௣אேǣ ௜ஷ௣ ݅׊ (29)         א ܰǤ  

10) Number of aggregation ports utilized by INF traffic 
constraint ܫܣ௜ ൌ ͳܤ ή ෍ ேǣ ௜ஷ௣א௜ௗௗܨܰܫ           

݅׊ (30) א ܰǤ  
Constraints (28-30) calculate the number of aggregation ports 
for each router that serves the Rsd, the CHTsp and the INFpd 
traffic. 
 
PNs workload constrains: ܲܰ ௣ܹ ൌ ෍ ෍ ܲܣ ௦ܹ௣௖௖א஼ுೞ௦אே ݌׊  א ܰ, 

(31) 

ܹܲ ൌ ෍ ܲܰ ௣ܹ ǡ     ௣אே ܲܣ (32)  ௦ܹ௣௖ ൒ ௦ܻ௣௖      ݏ׊ǡ ݌ א ܰǡ ܿ׊ א ܲܣ ௦ǡ (33)ܪܥ ௦ܹ௣௖ ൑ Ǥܯ ௦ܻ௣௖ ݏ׊ǡ ݌ א ܰǡ ܿ׊ א ܲܣ     ௦ǡ (34)ܪܥ ௦ܹ௣௖ ൑ ǡݏ׊ ܹܵܯ ݌ א ܰǡ ܿ׊ א  ௦ andܪܥ
(35) 

   ෍ ܲܣ ௦ܹ௣௖ ൒ ܴܲ ௦ܹ௖௣אே ݏ׊  א ܰǡ ܿ׊ א  .௦ܪܥ

(36) 

Constraint (31) calculates each PN’s workload by summing 
the CPU workload allocated to each individual Chunk 
processed at that PN. Constraint (32) calculates the total 
Chunks allocated to the processing workload per node. 
Constraints (33) and (34) specify the processing location of 
Chunk c generated by node s and processed at node p, where 
M is a large enough unit-less number to ensure that ௦ܻ௣௖ ൌ  ͳ 
when ܲܣ ௦ܹ௣௖  is greater than zero. Constraint (35) ensures 
that the processing workload allocated for each Chunk does 
not exceed the maximum processing threshold ܹܵܯ . 
Constraint (36) ensures that the allocated processing 
workload for each Chunk satisfies the minimum processing 
workload requested for that Chunk. 

Note that we calculate the ܶܧܥܣ in equation (37) as follows: ܧܥܣ ௦ܶ௣௖ ൌ ܫܲܥ ή ܥܫ ή ௦ܻ௣௖ሺܲܣ ௦ܹ௣௖ Ǥ ௦ܻ௣௖ ൅ ݁ሻ 
(37) 

where e is a very small number to ensure that ܧܥܣ ௦ܶ௣௖ equals 
zero when ܻ௦௣௖ is zero. Note that equation (39) is calculated 
offline after running the model and obtaining ௦ܻ௣௖ and ܲܣ ௦ܹ௣௖. 
 

2.2. Results of Volume Scenarios 
Our MILP model was evaluated using the NSFNET network 
depicted in Figure 2. Note that we used processor cycles in 
GHz as a measure of the total processing capability of a node 
[18]. Table 3 summarizes the input parameters to the model.  
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    Table 3 Input data for velocity model. 

PNs storage capacity (MSp) ݌׊ א ܰ 
10 Pb - 70 Pb 
(random uniform) 

Number of servers per PN (NSp) ݌׊ א ܰ 
5-30 (random 
uniform) 

Server CPU capacity in GHz (MSW)  4 GHz 
Max server power consumption (MSP) 300 W [9] 

Energy per bit of the PNs and DCs switch (SEB) 
11.875 W/Gbps 
[9] 

Energy per bit of the PNs and DCs router (REB) 7.727  W/Gbps [9] 
Storage power consumption (PSG) 0.008 W/Gb [9] 
IP over WDM router power consumption (PR) 825 W [19] 
IP over WDM regenerator power consumption 
(PRG) 

334 W [19] 

IP over WDM transponder power consumption 
(PTR) 

167 W [19] 

IP over WDM optical switch power consumption 
(POi) ݅׊ א ܰ 

85 W [19] 

IP over WDM EFDA power consumption (PE) 55 W [19]   
Wavelength bit rate (B) 40 Gbps 
Span distance between EDFAs (S) 80 km 
Number of wavelengths per fibre (WL) 32 
Number of location optimized DCs (DCN) 2  
IP over WDM power usage effectiveness (PUN) 1.5 [9] 
PNs and DCs power usage effectiveness (PU) 2.5 [9] 

 
Note that each PN has been assigned a random 

uniformly distributed amount of storage ranging between 10 
Pb to 70 Pb. Furthermore, the number of servers per PN is 
random (uniform distribution) and ranges between 5 and 30 
servers. The MILP in this section is used to evaluate the 
proposed big data networks. In addition, the same model can 
be used to evaluate the classical approach by introducing a 
constraint that prevents the processing of big data outside the 
DCs. 
We evaluate the proposed work in several volume scenarios 
as follows:  
 

2.2.1 Deterministic Volume and RCET per Chunk  
In this scenario, we assume that there is only relaxed-data 
Chunks in the network with a PRR per Chunk of 0.01 and a 
volume per Chunk of 50 Gb. Each node generates 100 Chunks 
per second and can process locally a different number of 
Chunks depending on the PN’s resources capacity. The 
instruction count (ܥܫ) per Chunk is assume to be ͳ ܾ݈݈݅݅݊݋ 
instructions. CPUs are used with ܫܲܥ ൌ  ͳ  so that each 
instruction needs only one clock cycle to be executed, these 
values approach the values in [20]. ܴ  is assumed to be ܶܧܥ
one second (i.e., ܴܹܲ ൌ ͳݖܪܩ ). However, Chunks are 
allowed to have ܶܧܥܣ  ൏ ܶܧܥܴ , by optimally 
selecting ܹܲܣ ൐ ܴܹܲ. Table 4 shows the input values used 
in this scenario.  

  Table 4 Velocity scenario 2.2.1 parameters. 
Number of Chunks per node per second (CHs) 100 
Volume per Chunk in Gb (Chunksc) 50 
PRRsc per Chunk 0.001 
Instruction count (IC)  ͳͲଽ 
CPI 1 
Requested CPU execution time RCETsc in seconds 1 
Maximum CPU workload allowed for each Chunk in GHz 
MSW 

4 

Required processing weight for Chunks ሺʣሻ 0-1500 

Figure 3-a illustrates the green part of velocity. It 
shows the relationship between increasing the required 
processing weight (Ɏ) and network power consumption. 
Recall that Ɏ represents a measure of the degree to which the 
processing of Chunks is expedited, where larger values of Ɏ 
correspond to Chunks preferring shorterܶܧܥܣ. In classical 

big data networks, the network power consumption remains 
steady when increasing Ɏ as all Chunks directly traverse to 
the DCs before processing. In green big data networks and up 
to Ɏ = 1000, a slight increase in power consumption appears 
in the network (from 2.16 (relaxed-data which is not velocity 
sensitive) to 2.19 MW as indicated in Figure 3-a). This means 
that a considerable number of Chunks are processed locally 
inside the PNs and the type of network traffic at this point is 
mostly INF. This results in a 60% power saving compared to 
the classical approach. At the point where Ɏ = 1100, however, 
the effect of Ɏ becomes evident as the network power 
consumption increases dramatically and the power saving 
decreases to 33%. This means that PNs have allocated higher 
CPU processing workloads per Chunk, which causes fewer 
Chunks to be locally processed, and more Chunks to be 
forwarded to the optimal DC, i.e., a larger amount of CHT 
traffic flows in the network. For the same reason, the effect 
of Ɏ becomes greater when Ɏ = 1200 and above, where it 
causes a maximum level of network power consumption and 
a minimum power saving of 15%. Therefore, the green big 
data networks are always better than the classical approach in 
terms of network power savings even when they serve 
computationally demanding requests. 

We also evaluated the case where IC ൌ ʹbillion and 
kept ܴ ܶܧܥ ൌ ͳ seconds and ܫܲܥ ൌ ͳ, hence requiring the 
system to finish the processing job at the same time interval. 
The results show a reduction in network power saving to 32% 
at Ɏ = 0 & 800, and 15% at Ɏ = 1500.  This is because CPU 
workload is proportional to the IC in this case. This leads to 
higher processing requirements that might exceed PNs 
processing capacity, hence increasing the central processing 
at DCs, thereby increasing network power consumption as 
more CHT will flow in the network. 

To conclude, the ratio between Ɏ and percentage of 
the amount of data requires expedited-processing is 
proportionally-related. For example, if 100% of data require 
expedited-processing, then the value of Ɏ is high, while this 
percentage decreases to almost 0% when the value of Ɏ is 
low, which means nearly all data requires relaxed-processing. 
On the other hand, if a mixed modes are operated in the 
network, (i.e., around 50% of data requires relaxed-
processing and the other 50% of data requires expedited-
processing.), then the value of Ɏ is moderate. 

Figure 3-b illustrates the expediting part of velocity. 
It displays the effect of increasing Ɏ on the CPU execution 
time needed to process all the Chunks in the network. When 
the value of Ɏ is between 0 and 1100, power saving is more 
important, therefore, allocating minimum number of servers, 
hence most of the Chunks are served in longer time at ܶܺܣܯ 
of one second, which is the maximum allowed time. 
Conversely, if these Chunks need to be processed in near real 
time (i.e., large value of Ɏ), allocating high number of servers 
is important to have  ܶܺܣܯ equal to the minimum allowed 
CPU execution time of 0.25 second, hence less edge and 
progressive processing is achieve and more central 
processing, thereby, reducing the network power saving. This 
happens at the point where Ɏ ≥ 1200 in our analysis when all 
Chunks are allocated a shorter ܶܧܥܣ  of 0.25 second 
(݅Ǥ ݁Ǥ ܲܣ ௦ܹ௣௖  ൌ  On the other hand, the request for the .(ܹܵܯ
minimum CPU execution time appears earlier in the DCs at 
small values Ɏ, therefore ܶܰܫܯ ൌ ͲǤʹͷ   for the central 
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processing since there is large enough number of servers 
inside the DCs. 

Figure 3-c shows the relationship between Ɏ and the 
total amount of computational resources (ܹܲ) allocated to all 
Chunks in the network. All Chunks are allocated the 
minimum CPU workload at 0 ≤ Ɏ ≤ 10 (i.e. ܹܲ ൌ ܲܣ ௦ܹ௣௖ ήͳͲͲ ݄ܿ݀݊݋ܿ݁ݏ ݎ݁݌ ݁݀݋݊ ݎ݁݌ ݏ݇݊ݑ ሺܪܥ௦ሻ ή  ͳͶ ݊ݏ݁݀݋ ൌͳͶͲͲ ݖܪܩ). ܲ ܹ increases gradually when increasing Ɏ until 
all Chunks in overall network demand the maximum 
allowable processing value (ܹܵܯ) when Ɏ ≥ 1200. 
  Figure 3-d illustrates that the processing resources 
of all PNs are fully utilized at all values of Ɏ. At low values 
of Ɏ the processing resources of the PNs are fully utilized to 
serve the largest possible number of Chunks to reduce the 
network power consumption. At high values of Ɏ, the PN 
processing resources are also fully utilized by serving a lower 
number of Chunks for a shorter ܶܧܥܣ. As in previous results, 
different PNs have different processing capacities, as 
illustrated in Figure 3-d Chunks that require processing 
resources beyond the ability of the PNs are forwarded to the 
DCs. This is why the processing utilization of the DCs (which 
are selected optimally at nodes 3 and 14) grows progressively 
as Ɏ increases. It is an indication that the DCs are receiving 
gradually more Chunks from the PNs. As a result, the larger 
the value of Ɏ, the smaller the number of locally processed 
Chunks inside the PNs, and the higher the number of 
forwarded Chunks to the DCs. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3 (a). Network power consumption for classical and green big data 
networks vs ɮ when CHs=100, for velocity scenario 2.2.1. (b) Max and Min 
CPU execution time needed to process the Chunks in the network vs Ɏ when 
CHs=100, for velocity scenario 2.2.1. (c) Relation between Ɏ and the total 
amount of computational resources needed when CHs=100, for velocity 
scenario 2.2.1. Normalized utilization of processing in PNs and DCs vs ɮ 
when CHs=100, for velocity scenario 2.2.1. 

To conclude, serving Chunks in relaxed-data mode 
results in a 60% network power saving whereas serving 
Chunks in expedited-data mode results in a 15% network 
power saving. 

2.2.2 Different Volume, PRR and RCET per Chunk 
In this scenario, we assume that each node generates 100 
Chunks per second with random uniform distribution that 
ranges between 10 Gb and 220 Gb per Chunk. To evaluate a 
variety of big data applications in the network, the PRR of the 
Chunks is varied using a random uniform distribution 
between 0.02 and 1. Furthermore, different ܴܶܧܥ  are 
assigned for the Chunks in a random uniform distribution that 
varies between the shortest ܶܧܥof 0.25 seconds to the longest ܶܧܥof 1 second. Chunks with a ܴܶܧܥ ൌ ͲǤʹͷ seconds are 
already within the minimum ܶܧܥܣ allowed in our analysis; 
therefore, changing the value of Ɏ has no impact on the 
processing allocation for those Chunks. Table 5 displays the 
input values for this scenario. 
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      Table 5 Velocity scenario 2.2.2 parameters. 
Number of Chunks per node per second 
 100 (௦ܪܥ)

Volume per Chunk in Gb (Chunksc) 10-220 ( random uniform) 
PRRsc per Chunk 0.02-1 (random uniform) 
Instruction count (IC) ͳͲଽ 
CPI 1 
Requested CPU execution time (RCETsc) 
in seconds 

0.25-1 (random uniform) 

Number of Chunks with RCET = 0.25 
seconds 

450 

Number of Chunks with RCET > 0.25 
seconds 

950 

Maximum CPU usage allowed for a 
Chunk in GHz (MSW) 

4 

Required processing weight for Chunks ሺʣሻ 
0-2700 

  Figure 4-a shows a gradual increase in the network 
power consumption for the green big data networks while it 
remains constant for the classical approach when applying all 
the given values of Ɏ. The interesting point for this trend 
when compared to the results in the velocity scenario 2.2.1 is 
the large escalation in the network power consumption at all 
values of Ɏ even though the network is serving Chunks with 
larger volumes of up to 220 Gb compared to the 50 Gb Chunk 
size in the velocity scenario 2.2.1. This is because the ܴܶܧܥ 
now is different from one Chunk to another, which reflects 
the diversity in the requested processing workloads (ܴܹܲ). 
For instance, there are already 450 Chunks in the network that 
requested the shortest ܶܧܥ  by consuming the maximum 
allowable CPU workloadሺܹܵܯሻ , whereas the ܴܶܧܥ  was 
initially fixed at the longest time of one second for all Chunks 
in scenario 2.2.1, and that initially consumed the lowest ܴܹܲ 
values. Therefore, at 0 ≤ Ɏ ≤ 1000, the maximum power 
saving decreased to 32% compared to the velocity scenario 
2.2.1. The power saving begins to decline gradually until it 
reaches a minimum level of 21% at Ɏ ≥ 2700, where all the 
Chunks are processed now in expedited-data mode. At this 
point, the CHT traffic reaches the highest level since every 
Chunk requests the minimum allowed ܶܧܥ value, whereas 
the allocated CPU workload per Chunk (ܹܲܣ ) reaches a 
maximum level. 
  Figure 4-b explains the effect of Ɏ on the ௣ܶ for each 
PN and DC. It can be seen that nodes 4 and 13 are selected as 
optimal DCs for handling big data Chunks and Infos. 
Moreover, the DCs take the longest ௣ܶ  of one second for 
processing Chunks at the point where 0 ≤ Ɏ ≤ 100. After that 
point, ܶ ௣  is at the shortest period of 0.25 seconds, which 
means that the allocated processing resources for all Chunks 
inside the DCs are at the maximum value.  On the other hand, 
the longest ܶ௣ of one second for all PNs is allocated for most 
of the Chunks when 0 ≤ Ɏ < 1100. After that point, the impact 
of Ɏ on ܶܧܥ will be dictated based on the PN processing 
capacity.  That is, the effect of increasing Ɏ appears and 
begins first within the PNs with higher processing capacities, 
such as PN #12 (30 servers) at Ɏ = 1100, while it affects later 
PN #11 (20 servers) at Ɏ = 1900 and PN #7 (with only 10 
servers) at Ɏ = 2200. This is because the optimal approach to 
minimise network power consumption by decreasing the 
CHT flow is for the PNs with the largest capacity to allocate 
the shortest ܶܧܥܣ for as many Chunks as possible and for the 
PNs with lower processing capacity to allocate longer ݏܶܧܥܣ. 
The ܶ ௣ of all the PNs is at the lowest value when Ɏ > 2600, 
which means that all the PNs’ processing resources are fully 

utilized with the highest ܹܲܣ  values. This leads to fewer 
locally processed Chunks inside the PNs and a greater number 
of processed Chunks inside the DCs. 

 

 

(a) 

 

 

(b) 
Figure 4. (a) Network power consumption for classical and green big data 
networks vs ȁ when CHs=100, for velocity scenario 2.2.2. (b) CPU 
execution time (Tp) allocated to process Chunks at each PN and each DC vs 
ȁ when CHs=100, for scenario 2.2.2.  

3. Conclusions 
This paper introduced a Mixed Integer Linear 

Programming (MILP) model to investigate the impact of the 
velocity of big data on greening big data networks in bypass 
IP over WDM core networks. We used our green big data 
network approach by introducing Processing Nodes (PNs) 
that are attached to the IP over WDM nodes to progressively 
process big data in the edge, intermediate, and central 
networks. We served big data in two modes: expedited-data 
mode and relaxed-data mode. In the first mode, the Chunks 
have to be processed quickly by utilizing a greater number of 
computational resources compared to the second mode. The 
average network power saving was 60% and 15% in the first 
and second mode, respectively. The reason for the reduction 
in power saving for the second mode is that more servers are 
employed to implement less edge and progressive processing, 
hence smaller number of Chunks can be processed locally in 
the source PNs and along the route in the intermediate PNs 
due to the higher CPU workload per Chunk. 
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