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Abstract: In this article, we investigate the impact of big data’s velocity on greening IP over WDM networks. We classify the
processing velocity of big data into two modes: expedited-data processing mode and relaxed-data processing mode.
Expedited-data demands higher amount of computational resources to reduce the execution time compared to the relaxed-
data. We developed a Mixed Integer Linear Programming (MILP) model to progressively process big data’s raw traffic of both
modes at strategic locations, dubbed processing nodes (PNs), built into the network along the path from the data source to
the destination. During the processing of big data, the extracted information from the raw traffic is smaller in volume

compared to the original big data traffic each time the data is processed, hence, reducing network power consumption. Our
results showed that up to 60% network power saving is achieved when nearly 100% of the data in the network required
relaxed-processing. In contrast, only 15% of network power saving is gained when nearly 100% of the data required
expedited-processing. We obtained around 33% power saving in the mixed modes (i.e., when approximately 50% of the data
is processed in the relaxed-mode and 50% of the data is processed in expedited-mode), compared to the classical approach
where no PNs exist in the network and all the processing is achieved inside the centralized datacenters only.
not related to the current work. In volume, our worlif][

1. Introduction considered the impact of the volume of the big data and in

Velocity is data in motion, which is the speed at which particular focused in this context on the following: (i) serving
data is fluxing in and processed in the data ce@rghe a single type of big data application, (ii) evaluating the impact
flux rate can grow larger for applications collecting of the power efficiency of PNs, (iii) presenting our new
information from wide spatial or temporal domains. For Energy Efficient Big Data Networks (EEBDN) heuristic and
instance, the Square Kilometre Arfgy telescope combines  its complexity, where EEBDN focuses on greening big data
signals with a flow speed of 700TB/second of data receivedconsidering its volume dimension, (iv) presenting new results
from thousands of small antennas spread over a distance afnder different network topologies, (v) introducing a
more than 3000 km. In another example, five million trade software matching problem in big data networks.
events created each day are scrutinized in real time to identify In our work in[fL0] we also considered big data variety.
potential fraud. Five hundred million daily call detail records Here we considered serving multiple types of big data
are analysed in real-time to predict customer churn figter ~ applications using the same MILP model presented in volume

High-speed processing of such immense data volumeglimension to evaluate the impact of variety on EEBDN.
as produced by plentiful data sources calls for new processindflowever, the input data to the model is modified to satisfy
and communications methodologies in the big data e In the distinct features of the variety domain. In the veracity
the authors study the minimization of overall cost for Big dimension, our work ifq[1] extended the MILP model of
Data placement, processing, and movement across geollume and variety to evaluate the impact of big data
distributed datacenters. If5], the authors presented an Ccleéansing and backup operations on the energy efficiency of
optimization technique to execute a sequence of MapReducg|g data networks. Therefore, we added cleansing and backup
jobs in Geo-distributed DCs to minimize the time and requirements and constrains to the volume and variety MILP
pecuniary cost. The authors 6] introduced technique to model. Big data cleansing deals with detecting anq removing
execute MapReduce jobs on multiple I0T nodes to locallydity data due to overlaps, errors, duplications, and
process as much data as possible the raw data. The authors¢Rntradictory materials from big data to improve its quality
aimed to minimize the communication cost by satisfying and to make it ready for blg data analytics. It _prowdes easy
as many big data queries as possible over a number of tim8CC€SS to accurate, consistent and consolidated _(_jata of
slots. In-network processing is proposed to achieve d|ff(_arent data_ forms. The data backup process specifies the
network-awareness to save more bandwidth using custonpPtimal Iocapon for a_backup node_ to store the cleansed data
routing, redundancy elimination and on-path data reduction.Pefore entering the big data analytics stage.

: - This article, however, makes a number of new
In [9], the authors developed a Mixed Integer Linear I ’ ! e
programing models for energy efficient cloud computing contributions beyond1f] and as f(?"OWS' Firstly, we .
services in IP over WDM core networks. develop a MILP model to examine the impact of the velocity

: f big data on network power consumption in bypass IP over
We developed in[l0] and MILP models to  © : :
investigate the impact of the big data’s volume, variety, and WDM core networks. We consider an gxpedned-data
veracity on greening big data networks. Our workig hnd processing mode and a relaxe(_j—dat_a processing mode. In the
considered big data’s volume, variety, and veracity relaxed-data mode, the execution time needed to process an
respectively, which are three diménsions ’of big data that ar@ppllcatlon is relatively long as it can tolerate some delay. In



the expedited-data mode, the execution time required tg
process a delay sensitive applications is optimized to be a
short as possible.

Secondly, we extended the objective of the MILP
model so that it minimizes the network power consumption
as well as minimizing the execution time of big data
applications. The addition of the time dimension is essential
when considering big data applications where velocity (time
sensitivity) is an important attribute. Thirdly, we used our
progressive processing technique to process big data chunk
and compared the results to the classical approach where
progressive processing is not allowed. In our approach, the
processing locations are optimally selected at Source PNs
(SPNs), at the Intermediate PNs (IPNs) or inside the ﬂ
centralized datacenters (DCs). As a resaltsignificant
reduction in the network power consumption is achieved each
time the data is processed along the journey from the sourc
to the DCs. w
Note that the main similarities in all the MILP models [H24
reside in optimizing the processing locations of chunks,
optimizing the locations of the DCs, ensuring the flow
conservation of big data traffic, and minimizing the power
consumption of PNs, DCs, and IP over WDM network. In
summary, the differences between the different MILP models
we developed reflect the different requirements and features
of big data forms / applications where a particular big data V

| )
may be important. " i @

Processed - Unprocessed  SourcePN  Intermediate  pgta Center
data data PN

U

~
1

1.1. Classical Big Data Networks vs. Green Big
Data Networks ] o () )
Classically, all big data Chunks traffic (CHT) Figure 1. (a) Classical big data network. (b) Grelgndata networ.
generated by the source nodes is forwarded to the DCs to be
processed there as shown in Figure 1-a. On the other hand, & Velocity Impact on Greening Big Data Networks
the green big data network, shown in Figure 1-b, the PNs are The intention of the present section is to analyse both
attached to the core nodes of the IP over WDM network. Eachime dependent types of big data applications: expedited-data
PN is composed of internal switches and routers, limitedprocessing and relaxed-data processing.
storage, and limited number of servers depending on the Relaxed-data processing can tolerate some delay and
available building space and its structure is similar to thecan be processed in a batch processing mode after being
cloud structure ir[g]. DCs, however, are assumed to have stored inside DCs, such as digital image processing and
large enough processing and storage capabilities. PNs argutomated transaction processing. Several benefits can be
capable of processing different number of Chunks to extractgained in batch processing jobs, such as avoiding the idle
the corresponding knowledge with small data size from eachstatus of computing resources by shifting the time of job
Chunk. We refere® such knowledge as (Info). These Infos’ processing to the less busy hours, hence, gaining a higher
traffic (INF) is forwarded to location optimized DCs. When a overall rate of utilization. Further, batch processing reduces
given SPN is not capable of processing all its own chunks, itthe system overhead by running a program one tine t
forwards these chunks to the nearest IPN through energwchieve multiple tasks for the same job rather than running
efficient routes to be processed there, hence, the amount ghat program many times to perform those different tasks.
big data traffic is reduced significantly during the Chunks On the other hand, in expedited-data processing, it is
journey from the source to the DC. essential to analyse data as fast as possible to maximize its
Typically, the size of Info is very small compared to value while fluxing into the DCs. For instance, sometimes a
the Chunkg12] in many big data applications such as remote two minute delay is too much to catch fraud or it could lead
patient monitoring to capture only the abnormality in the to a disaster, such as the situation in remote patient
heartbeat from huge amount of measured heartbeat rate timgonitoring that requires the analysis of the abnormality in
services. In equation (1), we introduce the relation betweentheir sensed organ readings almost immediately. An effective
the size of Infos and Chunks as a ratio, termed as Processingiethod to quickly process data is to provide sufficient and
Reduction Ratio (PRR). For instance, Chunk of 100 gigabitefficient computational resources to decrease the processing
(Gb) and PRR of 0.001 results in Info of 0.1 Gb. latency of such CPU intensive applications. This can be done
Volume of Info = PRR X Volume of Chunk. (1) by optimally allocating processing workloads according to
the data type. If it is expedited-data, then the CPU workload
will optimally be a large portion of the CPU processing
capacity, so as to be served quickly. Therefore, increasing the
CPU frequency will have a positive impact on decreasing the
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execution time of CPU intensive applicatigig]. Equation
(2) represents the CPU performance relationghip
CPU Execution Time (CET) _ Cycles per Instruction (CPI)
Instruction Count (IC) ~  (Processing Workload (PW)
The term CET represents the total duration a CPU g
requires to execute a program with a certain number of
instructions (IC). Note that the program is used to extract
useful knowledge from a given Chunk. The term CPI is the
average number of clock cycles needed to execute each
instruction of that program. PW represents the CPU cycles
per second in GHz used to process a given Chunk. Note that]
in [15] PW is referred to as Clock Rate.
In our model, Chunks initially request a certain CET,

@
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called RCET. Based on the RCET, CPI and IC, we can deduceFigure 2. NSFNET network with PNs.

the initially requested PW for Chunks, called RPW. However,

to expedite the process, the model can allocate processing Table 1 MILP model parameters definition

Description

workloads for Chunks that exceeds the RPW, called_Notation

Allocated PW (APW). Based on APW, CPI and IC, the R¢FT«

model can deduce the optimal CPU execution time to process gpy;_

a Chunk, referred to as Allocated CET (ACET). Note that

ACET can be shorter than RCET for expedited-data sandd

processing. mandn
2.1. Velocity MILP Model

In this section, and for the completeness of our work
in and [[L], we introduce a MILP model for green big x
data networks in the bypass approach of the IP over WDM Nis
network. We attached capacitated PNs at each core node ofMSI{y
the NSFNET, as shown in Figure 2, with DCs with large Mp,
enough capacities. The NSFNET network consists of 14 MSR,
nodes connected by 21 bidirectional lif&$][ The DCs ae
employed to process all incoming big data Chunks from PNs.
Further, the DCs receive Infos produced by the PNs.

We performed the MILP optimization using the
AMPL/CPLEX software running on a PC with 8 GB RAM
and an i5 CPU. The model execution takes few minutes to
around two hours to solve the problem in the scenarios
studied in the paper. However, for faster results and larger
networks, the current MILP can be applied using a High prg
Performance Computer (HPC). For example, we have used aro;
Polaris machine with 16 cores (processors) and 256 GB of
RAM. Furthermore, a heuristic can be implemented to PRG
achieve two main purposes. Firstly, as a verification of the p
MILP results and secondly, since the heuristic uses simple ...
rules, it runs fast unlike the MILP. Therefore, a heuristic can
enable network control (which chunk to process where for gg,,,
example) and routing, which can both be performed in real PUN
time through the use of the heuristic. We have not developed
a heuristic for the veracity dimension, however, we have
developed the EEBDN heuristic and reported i [to
verify the volume MILP (some common features with
veracity MILP) and to show the reduced execution time
possible through the use of heuristics in our setting. To }ng}
demonstrate the potential of serving both types of time gg
dependent data (expedited-data and relaxed-data) and thegg
suitability of this approach for greening big data networks, we Rrsc
present a CET dimension, i.e., the CPU Execution Time PsG
required to process big data Chunks. The assigned processing®
resources per Chunk are optimally allocated for PNa in
manner that satisfies the Chunk minimum processing ¢
duration requirements. The MILP parameters for the green pcwn

de

PU
SMP

Requested CPU execution time of Chunk c generate:
node s.

Requested processing workload for Chunk c generate
node s

Denote source and destination points of regular ¢re
demand between a node pair.

Denote end points of a physical fibre link in theicgt
layer.

The NSFNET regular traffic demand from nosleto node
d (Gbps).

Set of IP over WDM nodes.

The set of neighbour nodes of node i in the optigadrla
Number of servers at the PN p.

Maximum server workload (GHz).

Maximum workload node.gMP = NSp - MSW (GHz).
Maximum internal switches and router capacity of B
p (Gbps).

Maximum storage of node p (Gb).

Number of Chunks per second generated at node s.
The volume of Chunk c generated at source node s (Gl
Processing reduction ratio for Chunk ¢ generatedoole 1s
(unitless).

Number of wavelengths in a fibre.

Wavelength bit rate (Gbps).

Maximum span between neighbouring EDFAs (km).
Power consumption of a router port (W).

Power consumption of a transponder (W).

Power consumption of optical switch installed at node
N (W).

Power consumption of EDFA (W).

Power consumption of a regenerator (W).

Distance between node pair,(m) (km).

Number of EDFAs on physical link (m). Typically,

Dmn
A = |2 —1]+2.
Number of regenerators on physical link (h

Power usage effectiveness of IP over WDM netwo
(unitless). PUN is defined as the ratio of the podmamwn
from the electric source to the power used by thepegemt
(networking in this case). PUN accounts for coolir
lighting and related power consumption.

Power usage effectiveness of the PNs and DCs (unitles
Server maximum power consumption (W).

PNs’ and DCs’ switch energy per bit (W/Gbps).

PNs’ and DCs’ router energy per bit (W/Gbps).

Internal PNs’ and DCs’ switches redundancy.

Internal PNs’ and DCs’ routers redundancy.

PNs and DCs storage redundancy.

PNs’ and DCs’ storage power per Gigabit (W/Gb).
Server power per GHz, § = SMP / MSW (W/GHz). GHz is
used to specify the capability of a processor anduheer
of processors a job needs.

Required processing weight for Chunks (W/GHz).
Number of location optimized DCs.

big data networks are defined in Table 1.



The MILP variables for the green big data networks traffic INF,q. It computes the total power consumption of the

are defined in Table 2. ports aggregating data traffic and the ports connected to
Table 2 MILP model variables definition optical nodes. Equations (4) and (5) evaluate the power
Notation  Description consumption of all the transponders and regenerators in the
APW. Allocated processing workload of Chunk c that is gatest optical layer. Equation (6) evaluates the total power
spc . . . .
P¢ bynode s and processed at node p consumption of the EDFAs in the optical layer. Equation (7)
ACET. Allocated CPU execution time of Chunk ¢ that is gatest evaluates the total power consumption of the optical switches.
spe by node s and processed at node p. : :
: The power consumption of the PNs and DCs is composed
W Total processing V\_/orkload consumed by all the Chunk of the following sections
the network including DCs. . .
: L 1) The power consumption of internal PNs and DCs
T Maximum CPU execution time allocated to proce switches and routers
P Chunks at processing nodeTp,= Max (ACETy,.).
MAXT Maximum CPU execution time needed to process all PSR = Z Z CHT, - (RS -SEB + RR - REB)
Chunks in the networkl = Max( T,). DN SeN
Minimum CPU execution time needed to process all
MINT Chunks in the network: = Min(T,). + Z Z(CHTM + INTPd)
CHT Big data Chunks traffic generated at SPN s and teideio PEN deN
P destination node p (p could be SPN, IPN or DC) (Gbps (RS - SEB + RR - REB)
Aggregated big data info traffic from PN p to DCNbde Z Z INF
INFpa p could be SPN or IPN only (Gbps). + pd
Cij -II\_lunfffl.bef: of WfallhelengthI chfm:f.els ir:)tft‘le virtual(ljinlg')(ii . (Iz;gN.zgegB +RR - REB). @®
RSt d)ra:r;‘\:/er‘;‘i“r’]gVinﬁ;ﬁﬁ#ka{i)jra ic Ribetween node pair (< Equation (8) evaluates the total power consumption of the
W Number of wavelength channels in the virtual linkjJi internal_sw?tches a_nd rou_ters in the PN_s and_ DCs. This is done
mn traversing physical link (ym). by multiplying the incoming and outgoing big data traffic by
Win Number of wavelength channels in the physical link fm the switches’ and routers’ energy per bit. We performed the
CHTS? Traffic flow of the big data Chunks traffic Cibetween analysis by considering a network architecture wiRere-
i node pair (sp) traversing virtual link (ij). RR = 1.
pd Traffic flow of the big data info traffic INFpd beten node .
INF] pair (p d) traversing virtual link (ij). 2) The power consumption of servers
Number of aggregation ports in router i utilized byular S+ PNW.
AR; traffic R b ©)
Number of aggregation ports in router i used in bitac PEN . . .
ACH; Chunks traffic CHT, Although the server power consumption is a function of the
AL Number of aggregation ports in router i utilized fy thata idle power, maximum power and CPU utilizatifti7], we
' Info traffic INFpe. o consider only = SMP/MSW in equation (9)to calculate
Fon Number of fibres in physical link (m, n) . its power consumption. This yields a close approximation
PNW, Total PN p workload (GHz).

) ; (when a large number of servers is considered) even when
Yepe = 1 if Chunk c is generated at SPN s and process . . . . .
Yope PN p, else ¥.= 0. there is idle power in each server. The difference is only in
the last powered on server. Note that in the PN and DC

SCH, Amount of big data Chunks stored in PN p (Gb). . o . ;
pe, DC, = 1if a DC is built at core node d, eBE, = 0. servers, each server in our case is either fully utilized or is off.
Under the bypass approach, the total IP over WDM network3) The power consumption of the storage

power consumption is composed of the following Z SCH, - RSG - PSG.

components pen (10)

1) The power consumption of router ports Equation (10) represents the storage power
ZPR- (AR; + ACH; + AL,) + PR - Z (N} consumption of node e performed the analysis by
ieN JEN:i#] 3 considering a network architecture whereRSG = 1.

2) The power consumption of transponders The model is defined as follows

Z z PTR - W,,,. Objective: Minimize
MEN NENy, (4)

3) The power consumption of regenerators is

Z PRG - Wy, - RGy-
MEN NENy, (5)
4) The power consumption of EDFAs

Z Z PE - Ay * .

MEN NENy, (6)
5) The power consumption of optical switches

Z PO;. -

iEN
Equation (3) evaluates the total power consumption of the
router ports for all the types of traffic, which are the regular
traffic Reg, big data Chunks traffic CHJ and big data info



PUN - Z PR (AR, + ACH, + AI,) + PR

' Z ()

JEN:i#]

+ Z Z PTR - W,,,
MEN NENy,

+Z Z PRG - W,,,, - RGpp
MEN NENy,

+ Z Z PE - Apn - B
MEN NENy,

- (RS - SEB + RR - REB)

+ Z Z(CHTpd + INTpq)

PEN deEN
- (RS - SEB + RR - REB)

- (RS - SEB + RR - REB)

+ Z SCHy, - RSG - PSG
PEN

~0- Z PNW,,.

peN (11)

Vs € N,Vc € CH;.
Constraint (12) ensures that a Chunk c generated by PN s is
processed by no more than one PN p
2) Big data Chunks traffic constraint

CHT,, = Z CHVse * Yope
CECHy
Vs,p €N.
Constraint (13) calculates the big data Chunks traffic
generated at source node s and directed to node p. This traffic
is generated by transmitting Chygilkom node s to node p in
one second.

13)

3) Aggregated processed big data traffic constraint

z INF,, = Z Z CHV;. * Yope - PRRg, (14)

deN SEN c€ECHg
Vp € N.

Constraint (14) represents the aggregated big data info traffic
INF,q generated by PN p and destined to DC d.
4) Number and locations of DCs constraints

SN (15)
vd € N,
Z INT,;, <Z-DC
pd d
v (16)
vd € N, and
DCN = Z DCy. (17)
€

deN
Constraints (15) and (16) build a DC in location d if that
location is selected to store the results of the processed big
data traffic (i.e., Infos) or selected to process the incoming big
data Chunks from PNs, where Z is a large enough unitless
number to ensure that QG 1 whend .y INF4 is greater
than zero. Constraint (17) limits the total number of built DCs
to DCN.
5) PNs and DCs storage constraints

Equation (11) gives the model objective that maximizes the
CPU workload per node and minimises the IP over WDM

SCHp = Z Z CHVg, - Yspc (18)

network, PNs and DCs power consumptiohgs a weight SEN cECHj

that controls the model emphasis on the Chunks' allocated Vp € N and

CPU workload in the nodes within the fixed nodes’ SCH, < MS, + (H - DCy) (19)
processing capacity. Vp € N.

The objective function (equation (11)) minimises Constraint (18) represents the size of Chunks in Gb stored in
the network power consumption, minimises the processingPN p. Constraint (19) ensures that the total data stored in PN
power consumption and to different extents, through thep does not exceed the storage capacity of that PN. His a large
parameter @, the objective function maximises the amount of enough unitless number to guarantee that there is no storage
processing used such that expedited data can be serveshpacity limitation at the DCs.
quickly when present. For example, if 100% of the data6) PNs and DCs internal switches and routers constraint

requires expedite@rocessing, then a high value of @ is used. Z < )
Conversely, when all the data requires relaxed-processing, CHTgp < MSRp + (A DCp) (20)
the value of @ that should be used is low and approaches zero. SEN VpEN

In this case, the objective function, equation (11) simply c,n4rain (20) ensures that the total amount of big data traffic

m|n|m|ies tge overal_l power  consumption mac_ireh upf of between the PNs will not exceed the maximum switching and
network and processing power consumptions. erefor e’routing capacity of the internal switches and routers in those
therg s a trade-off b.etween power saving "?‘”d the pI‘OpOI"[IOI’i)NS. On the other hand, the capacity of the DCs’ switches and
gzg!gecij?té that requires expedited processing. routers is unlimited, where A is a large enough unitless
IJDN O'd DCsC o number to guarantee that there is no capacity limitation at the
sand DCs Constraints: . DCs. To avoid blocking of big data Chunks.
1) Processing counter of big data Chunks constraint ThelP over WDM Network Constraints:

Yope =1 (12) 1) Flow conservation constraints for the regular traffic

PEN



de l =S
Z Rit — R#={-Ry i=d
JEN: %] JEN: i%] 0 otherwise (22)

Vs,d,i € N:s #d.

2) Flow conservation constraints for the big data Chunks

traffic
CHT,, i=s
Z CHT — Z CHT;” ={—CHT;, i=p
JEN:i%j JEN:i%j 0 otherwise (22)

Vs,p,i € N:s #p.
3) Flow conservation constraints for the big data Info traffic

INF,y i=p
Z INFP® — Z INFP® ={-INF,, i=d
JEN:i*j JEN:i%j 0 otherwise (23)
Vp,i EN,Vd € N:p # d.
Constraints (21-23) represent the flow conservation

constraints R, CHTspand INRyq traffic in the IP layer. These

constraints ensure that the total outgoing traffic should be
equal to the total incoming traffic, except for the source and

destination nodes.
4) Virtual link capacity constraint

Z Z R;¢+Z Z CHTf}’

SEN dEN: s#d SEN pEN:s#p

)
PEN dEN: p=d
Vi,j € N:i +#].

<C

INF}* B

(24)

Constraint (24) ensures that the summation of all traffic flows

through a virtual link does not exceed its capacity.
5) Optical layer flow conservation constraints:

3 . Cl] m=1
ZW%%—ZW%F{—CU m=j
NENm NneNm 0 otherwise (25)

Vi,j,m € N:i # j.
Constraint (25) represents the flow conservation constraint
in the optical layer. It assumes that the total outgoin
wavelengths in a virtual link should be equal the total

incoming wavelengths, except for the source and the

destination nodes of the virtual link.
6) Physical link capacity constraints

WY < WL - Epp.

- (26)

iEN JEN: i#]
vm € N,n € N,.

g

9) Number of aggregation ports utilized HT traffic

constraint
1
ACH; = 5 Z CHT,, (29)
PEN: i#p
VieN

10)Number of aggregation ports utilized BWF traffic
constraint

INF;,
deN: i+p
Vi € N.
Constraints (28-30) calculate the number of aggregation ports
for each router that serves the, Rhe CHTp and the INkqg
traffic.

| -

(30)

PNsworkload constrains:

PNW,, = Z Z APWpe

SEN c€CHg (31)
Vp EN,
PW = Z PNW,, (32)
pPEN
APWgpe > Yo (33)
Vs,p € N,Vc € CH;,
APWepe < M. Y (34)
Vs,p € N,Vc € CH,,
APWgpe < MSW (35)
Vs,p € N,Vc € CHg and
Z APWgp,e = RPW;, (36)

PEN

Vs € N,Vc € CH;.
Constraint (31) calculates each PN’s workload by summing
the CPU workload allocated to each individual Chunk
processed at that PN. Constraint (32) calculates the total
Chunks allocated to the processing workload per node.
SConstraints (33) and (34) specify the processing location of
Chunkc generated by node s and processed at node p, where
Mis a large enough unit-less number to ensurerthat= 1
whenAPW,, is greater than zero. Constraint (35) ensures
that the processing workload allocated for each Chunk does
not exceed the maximum processing threshilsiv .
Constraint (36) ensures that the allocated processing
workload for each Chunk satisfies the minimum processing
workload requested for that Chunk.

Constraint (26) ensures that the summation of the Note that we calculate theCET in equation (37) as follows:

wavelengths in a virtual link traversing a physical link do not
exceed the capacity of the fibre in the physical link.
7) Wavelengths capacity constraint
Woin = Winn
iEN jEN:i#j
vm € N,n € N,.

(27)
Constraint

number of wavelengths in that link.
8) Number of aggregation ports utilized by regular traffic

constraint
1
ARi = E " Z Rid
deN: i#d
Vi € N.

(28)

(27) ensures that the summation of the
wavelengths traversing a physical link do not exceed the total

CPI-IC - Y,
(APWgye. Yope + €) 37)
whereeis a very small number to ensure tH&E T, equals
zero wheryy, is zero. Note that equation (39) is calculated
offine after running the model and obtaining
Yspc @NAAPW,...

ACETp, =

2.2. Results of Volume Scenarios

Our MILP model was evaluated using the NSFNET network
depicted in Figure 2. Note that we used processor cycles in
GHz as a measure of the total processing capability of a node
. Table 3 summarizes the input parameters to the model.



Table 3 Input data for velocity model. big data networks, the network power consumption remains

. 10 Pb - 70 Pb i i i
PN storage capacityl,) vp € N ot unformy steady when increasing (D as all ChunkS. directly traverse to
530 (random the DCs before processing. In green big data networks and up
Number of servers per PN, vp € N uniform) to @ = 1000, a slight increase in power consumption appears
Server CPU capacityy GHz (MSW 4 GHz in the network (from 2.16 (relaxed-data which is not velocity
Max server power consumpti¢hSP) 300 WA sensitive) to 2.19 MW as indicated in Figure 3-a). This means
Energy per bit of the PNs and DCs switch (SE 1E91|-875 WiGbps that a considerable number of Chunks are processed locally
Energy per bit of the PNs and DCs rouRER)  7.727 WIGbp$d] inside the PNs' and the t.ype of network traff!c at this point is
Storage power consumption (PSG) 0.008 W/GH] mostlylI NF. This results in a 60% power saving compared to
IP over WDM router power consumptioRiy 825 W[ the clasical approach. At the point where ® = 1100, however,
'(';ggr WDM regenerator power consumption - 33, ] the effect of @ becomes evident as the network power
IP over WDM transponder power consumption , Wi consumption increases dramatically and the power saving
(PTR) decreases to 33%. This means that PNs have allocated higher
IP over WDM optical switch power consumptio g | CPU processing workloads per Cikuwhich causes fewer
I(E‘g\)/:rlvfl éVM EFDA power consumptioR® 55 W[ Chunks to be locally processed, and more Chunks to be
Wavelength bit rate (B) 40 Gbps forvv_arded to the optimal DC, i.e., a larger amounCéfT
Span distance between EDFAs (S) 80 km traffic flows in the network. For the same reason, the effect
Number of wavelengths per fibréq) 32 of @ becomes greater when @ = 1200 and above, where it
Number of location optimized DCs (DCN) 2 causes a maximum level of network power consumption and
IP over WDM power usage effectiveness (PUN 1.5[[9] L - f 15%. Theref th bi
PNs and DCs power usage effectiven@ds)( 259 a minimum power saving o 6. Therefore, the green big

data networks are always better than the classical approach in
Note that each PN has been assigned a randoni€rms of_ network power savings even when they serve
uniformly distributed amount of storage ranging between 10C0mputationally demanding request -
Pb to 70 Pb. Furthermore, the number of servers per PN is We also evaluated the case whigre= 2billion and
random (uniform distribution) and ranges between 5 and 30KePtRCET = 1 seconds andPl = 1, hence requiring the
servers The MILP in this section is used to evaluate the System to finish the processing job at the same time interval.
proposed big data networks. In addition, the same model car N€ results show a reduction in network power saving to 32%
be used to evaluate the classical approach by introducing &t ® =0 & 800, and 15% at @ = 1500. This is because CPU
constraint that prevents the processing of big data outside th&orkload is proportional to the IC in this case. This leads to

DCs. higher processing requirements that might exceed PNs

We evaluate the proposed work in several volume scenario®r0Cessing capacity, hence increasing the central processing

as follows: at DCs, thereby increasing network power consumption as
more CHT will flow in the network.

2.2.1 Deterministic Volume and RCET per Chunk To conclude, the ratio between @ and percentage of

In this scenario, we assume that there is only relaxed-datd® amount of data requires expedited-processing is
Chunks in the network with a PRR per Chunk of 0.01 and aProportionally-related. For example, if 100% of data require
volume per Chunk of 50 Gh. Each node generates 100 Chunk@xpedited-processinghen the value of @ is high, while this

per second and can process locally a different number ofercentage decreases to almost 0% when the value of @ is
Chunks depending on the PN’s resources capacity. The low, which means nearly all data requires relaxed-processing.
instruction count IC) per Chunk is assume to beillion On the other handf a mixed modes are operated in the
instructions. CPUs are used witlP] = 1 so that each network, (i.e., around 50% of data requires relaxed-
instruction needs only one clock cycle to be executed, thes®0c€ssing and the other 50% of data requires expedited-
values approach the values[BOJ. RCET is assumed to be ~Processing.), then the value of @ is moderate. _

ore second (i.e.RPW = 1GHz ). However, Chunks are Figure 3-b illustrates the expediting part of velocity.
allowed to have ACET < RCET by optimally It displays the effect of increasing ® on the CPU execution

selectingAPW > RPW. Table 4 shows the input values used time needed to process all the Chunks in the network. When
in this scenario. the value of @ is between 0 and 1100, power saving is more

important, therefore, allocating minimum number of servers,

Table 4 Velocity scenario 2.2.1 parameters. hence most of the Chunks are served in longer tine4a(T
Number of Chunks per node per secoditid 100 of one second, which is the maximum allowed time.
Xgé?;efecrhizﬂnkm Gb (Chusk e Conversely, if these Chunks need to be processed in near real
Instruction countIC) 10° time (i.e., large value of @), allocating high number of servers

CPI 1 is important to haveMAXT equal to the minimum allowed
Requested CPU execution time RGHIT seconds 1 CPU execution time of 0.25 second, hence less edge and
mgc\',mum CPU workload allowed for each Chunkin GHz progressive processing is achieve and more central
Required processing weight for Chur(ks) 0-1500 processing, thereby, reducing the network power saving. This

] ) ) happens at the point where @ > 1200 in our analysis when all
Figure 3-a illustrates the green part of velocity. It chynks are allocated a shortdCET of 0.25 second
shows the relationship between increasing the requwed(i_e_APWSpC = MSW). On the other hand, the request for the

processing weight (@) and network power cons'umpt|on. minimum CPU execution time appears earlier in the DCs at
Recall that @ represents a measure of the degree to which the small values ®@. therefore MINT = 0.25 for the central
processing of Chunks is expeditedere larger values of @ ’ '

correspond to Chunks preferring sho#t€ET. In classical



processing since there is large enough number of server
inside the DCs.

Figure 3-c shows thelationship between ® and the
total amount of computational resourcB#/) allocated to all
Chunks in the network. All Chunks are allocated the
minimum CPU workload at 0 < ® < 10 (i.e. PW = APW,
100 chunks per node per second (CHg) - 14 nodes =
1400 GHz). PW increases gradually when increasing @ until
all Chunks in overall network demand the maximum
allowable processing valu®EW) when @ > 1200.

Figure 3-d illustrates that the processing resources
of all PNs are fully utilized at all values of ®@. At low values
of @ the processing resources of the PNs are fully utilized to
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Requiredprocessing weight (¢)

serve the largest possible number of Chunks to reduce th

network power consnption. At high values of @, the PN

processing resources are also fully utilized by serving a lowe
number of Chunks faaishorterACET. As in previous results,

different PNs have different processing capacities, as
illustrated in Figure 3 Chunks that require processing

resources beyond the ability of the PNs are forwarded to thg
DCs. This is why the processing utilization of the DCs (which
are selected optimally at nodes 3 and 14) grows progressivel
as @ increases. It is an indication that the DCs are receiving

gradually more Chunks from the PNs. As a result, the largef
the value of @, the smaller the number of locally processed
Chunks inside the PNs, and the higher the number of
forwarded Chunks to the DCs.
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Power saving %

[e2]

70%
60%
50%
40%
30%
- 20%
- 10%
H 0%

NPC in MW
o B N W A~ O

ey
) |
Network power saving %

1100 |
1200

1300

1400 §s

1500

Required processing weight ()

y

«@
Figure 3 (a). Network power consumption for classaral green big dg
networks vs ¢ when CHs=100, for velocity scenario 2.2.1. (b) Max and
CPU execution time needed to process th@&s in the network vs @ when
CHs=100, for velocity scenario 2.2.1. @ylation between ® and the total
amount of computational resources needed when CHs$d00glocity
scenario 2.2.1. Normalized utilization of processinghts andDCs vs ¢
when CHs=100for velocity scenario 2.2.1.
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To conclude, serving Chunks in relaxed-data mode
results in a 60% network power saving whereas serving
Chunksin expedited-data mode results in a 15% network
power saving

2.2.2 Different Volume, PRR and RCET per Chunk

In this scenario, we assume that each node generates 100
Chunks per second with random uniform distribution that
ranges between 10 Gb and 220 Gb per Chunk. To evaluate a
variety of big data applications in the network, the PRR of the
Chunks is varied using a random uniform distribution
between 0.02 and 1. Furthermore, differe®@ET are
assigned for the Chunks in a random uniform distribution that
varies between the short€¥iTof 0.25 seconds to the longest
CETof 1 second. Chunks with RCET = 0.25 seconds are
already within the minimurdCET allowed in our analysis;
therefore, changing the value @f has no impact on the
processing allocation for those Chunks. Table 5 displays the
input values for this scenario.



Table5 Velocity scenario 2.2.2 parameters. utilized with the highesdPW values. This leads to fewer
Number of Chunks per node per seco 100 locally processed Chunks inside the PNs and a greater number

(CHy) . _ of processed Chunks inside the DCs.
Volume per Chunk in Gb (Chugk 10-220 ( random uniform)
PRR. per Chunk 0.02-1 (random uniform) =3 Green big data network
Instruction count (IC) 10° mmmmm Classical big data network
CPI 1 e N etwork power saving%
_Requested CPU execution time (RGET 0.25-1 (random uniform)
in seconds
Number of Chunks with RCET = 0.2

450
seconds
Number of Chunks with RCET > 0.2

950
seconds
Maximum CPU usage allowed for 4
Chunk in GHz (MSW)
Required processing weight for Chun 0-2700

(@)

35%

30%

25%

20%

15%

Network power saving %

10%

Network power consumption in MW

5%

Figure 4-a shows a gradual increase in the network %
power consumption for the green big data networks while it
remains constant for the classical approach when applying all
the given values of @. The interesting point for this trend
when compared to the results in the velocity scenario 2.2.1 is
the large escalation in the network power consumption at all
values of @ even though the network is serving Chunks with
larger volumes of up to 220 Gb compared to the 50 Gb Chunk
size in the velocity scenario 2.2.1. This is becaus® ¢

now is different from one Chunk to another, which reflects
the diversity in the requested processing worklo@&/A().

For instance, there are already 450 Chunks in the network that
requested the shorte6ET by consuming the maximum
allowable CPU workloa@SW), whereas th&kCET was
initially fixed at the longest time of one second for all Chunks
in scenario 2.2.1, and that initially consumed the lo\R&
values. Therefore, at 0 < @ < 1000, the maximum power
saving decreased to 32% compared to the velocity scenario -
2.2.1. The power saving begins to decline gradually until it | =, -
reaches a minimum level of 21% at ®@ > 2700, where all the -
Chunks are processed now in expedited-data mode. At this 5
point, theCHT traffic reaches the highest level since every %
Chunk requests the minimum allowédT value, whereas L e

the allocated CPU workload per ChunkPW) reaches a ®)
maximum level. Figure 4. (a) Network power consumption for classical and green big data

Figure 4b explains the effect of ® on the T,, for each networks vs ¢ when CHs=100, for velocity scenario 2.2.2. (b) CPU
cxecution time (T}) allocated to process Chunks at each PN and each DC vs

PN and DC. It can be seen that nodes 4 and 13 are selected ag .., crs=100, for scenario 2.2.2.
optimal DCs for handling big data Chunks and Infos

Moreover, the DCs take the longd$tof one second for 3 conclusions

processing Chunke the point where 0 < ® < 100. After that This paper introduced a Mixed Integer Linear
point, T, is at the shortest period of 0.25 seconds, WhiCh p,oamming (MILP) model to investigate the impact of the
means that the allocated processing resources for all ChU”K?elocity of big data on greening big data networks in bypass
inside the DCs are at the maximum value. On the other handp oyer WDM core networks. We used our green big data
the longest, of one second for all PNs is allocated for most petwork approach by introducing Processing Nodes (PNs)
of the Chunksvhen 0 < ® < 1100. After that point, the impact  that are attached to the IP over WDM nodes to progressively
of @ on CET will be dictated based on the PN processing process big data in the edge, intermediate, and central
capacity. That is, the effect of increasing @ appears and networks. We served big data in two modes: expedited-data
begins first within the PNs with higher processing capacities,mode and relaxed-data mode. In the first mode, the Chunks
such as PN #12 (30 servers) at ® = 1100, while it affects later  have to be processed quickly by utilizing a greater number of
PN #11 (20 servers) at @ = 1900 and PN #7 (with only 10 computational resources compared to the second mode. The
servers) at @ = 2200. This is because the optimal approach to average network power saving was 60% and 15% in the first
minimise network power consumption by decreasing theand second mode, respectively. The reason for the reduction
CHT flow is for the PNs with the largest capacity to allocate in power saving for the second mode is that more servers are
the shortesdCET for as many Chunks as possible and for the employed to implement less edge and progressive processing,
PNs with lower processing capacity to allocate lonf@ETs.  hence smaller number of Chunks can be processed locally in
TheT,, of all the PNs is at the lowest value when ® > 2600, the source PNs and along the route in the intermediate PNs
which means that all the PNs’ processing resources are fully due to the higher CPU workload per Chunk.
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