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For any i, j > 0 with i + j = 1, let Bad(i, j) denote the set 
of points (x, y) ∈ R2 such that max{‖qx‖1/i, ‖qy‖1/j} > c/q
for some positive constant c = c(x, y) and all q ∈ N. We 
show that Bad(i, j) ∩ C is winning in the sense of Schmidt 
games for a large class of planar curves C, namely, everywhere 
non-degenerate planar curves and straight lines satisfying 
a natural Diophantine condition. This strengthens recent 
results solving a problem of Davenport from the sixties. 
In short, within the context of Davenport’s problem, the 
winning statement is best possible. Furthermore, we obtain 
the inhomogeneous generalisations of the winning results for 
planar curves and lines and also show that the inhomogeneous 
form of Bad(i, j) is winning for two dimensional Schmidt 
games.
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1. Introduction

A real number x is said to be badly approximable if there exists a positive constant 

c(x) such that

‖qx‖ > c(x) q−1 ∀ q ∈ N .

Here and throughout ‖ · ‖ denotes the distance of a real number to the nearest integer. It 

is well-known that the set Bad of badly approximable numbers is of Lebesgue measure 

zero but of maximal Hausdorff dimension; i.e. dim Bad = 1. In higher dimensions there 

are various natural generalisations of Bad. Restricting our attention to the plane R2, 

given a pair of real numbers i and j such that

0 < i, j < 1 and i + j = 1 , (1.1)

a point (x, y) ∈ R2 is said to be (i, j)-badly approximable if there exists a positive constant 

c(x, y) such that

max{ ‖qx‖ 1
i , ‖qy‖ 1

j } > c(x, y) q−1 ∀ q ∈ N .

Denote by Bad(i, j) the set of (i, j)-badly approximable points in R2. In the case 

i = j = 1/2, the set under consideration is the standard set of simultaneously badly 

approximable points. It easily follows from classical results in the theory of metric Dio-

phantine approximation that Bad(i, j) is of (two-dimensional) Lebesgue measure zero. 

Regarding dimension, it was shown by Schmidt [14] in the vintage year of 1966 that 

dim Bad( 1
2 , 12 ) = 2. In fact, Schmidt proved the significantly stronger statement that 

Bad( 1
2 , 12 ) is winning in the sense of his now famous (α, β)-games – see §2.1. Almost 

forty years later it was proved in [12] that dim Bad(i, j) = 2 and just recently the first 

author in [2] has shown that Bad(i, j) is in fact winning. The latter implies that any 

countable intersection of Bad(i, j) sets is of full dimension and thus provides a clean 

and direct proof of Schmidt’s Conjecture – see also [1,3].

Now let C be a planar curve. Without loss of generality, we assume that C is given as 

a graph

Cf := {(x, f(x)) : x ∈ I}

for some function f defined on an interval I ⊂ R. Throughout we will assume that 

f ∈ C(2)(I), a condition that conveniently allows us to define the curvature. Motivated 

by a problem of Davenport [9, p. 52] from the sixties, the following statement regarding 

the intersection of Bad(i, j) sets with any curve C that is not a straight line segment 

has recently been established [4,5].

Theorem A. Let (it, jt) be a countable number of pairs of real numbers satisfying (1.1)

and suppose that
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lim inf
t→∞

min{it, jt} > 0 . (1.2)

Let C := Cf be a C(2) planar curve that is not a straight line segment. Then

dim
(

∞
⋂

t=1

Bad(it, jt) ∩ C
)

= 1 .

The theorem implies that there are continuum many points on the parabola V2 :=

{(x, x2) : x ∈ R} that are simultaneously badly approximable in the Bad(1
2 , 12 ) sense 

and thus provides a solution to the specific problem raised by Davenport in [9]. It is 

worth mentioning that a consequence of [6, Theorem 1] is that the set Bad(i, j) ∩ C is of 

zero (induced) Lebesgue measure on C. Thus, the fact that it is a set of full dimension 

is not trivial.

The condition imposed on C is natural since the statement is not true for all lines. 

Indeed, let La denote the vertical line parallel to the y-axis passing through the point 

(a, 0) in the (x, y)-plane. Then, it is easily verified, see [3, §1.3] for the details, that 

Bad(i, j) ∩ La = ∅ for any a ∈ R satisfying lim infq→∞ q1/i‖qa‖ = 0. On the other hand, 

if the lim inf is strictly positive then dim(Bad(i, j) ∩ La) = 1. This is much harder to 

prove and is at the heart of the original proof of Schmidt’s Conjecture established in [3]. 

Subsequently, it was shown in [1] that Bad(i, j) ∩La is winning. The following non-trivial 

extension of the full dimensional result to non-vertical lines has recently been established 

in [4].

Theorem B. Let (it, jt) be a countable number of pairs of real numbers satisfying (1.1)

and (1.2). Given a, b ∈ R, let La,b denote the line defined by the equation y = ax + b. 

Suppose there exists ǫ > 0 such that

lim inf
q→∞

q
1
σ

−ǫ‖qa‖ > 0 where σ := sup{min{it, jt} : t ∈ N}. (1.3)

Then

dim
(

∞
⋂

t=1

Bad(it, jt) ∩ La,b

)

= 1 .

Both Theorem A and Theorem B should be true without the lim inf condition (1.2). 

Indeed, as pointed out in Remark 2 of [4, § 1.2], it is very tempting and not at all 

outrageous to assert that Bad(i, j) ∩ C is winning at least on the part of the curve that 

is genuinely curved. If true it would imply Theorem A without assuming (1.2). In short, 

this is precisely what we show in this paper. We also obtain a winning statement for 

non-vertical lines that not only implies Theorem B without assuming (1.2) but replaces 

condition (1.3) by a weaker and essentially optimal Diophantine condition. Furthermore, 

by making use of a simple idea introduced in [7] that provides a natural mechanism for 
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generalising homogenous badly approximable statements to the inhomogeneous setting, 

we establish the inhomogeneous generalisation of our winning results. The same idea is 

also exploited to prove that inhomogeneous Bad(i, j) is winning.

1.1. Inhomogeneous Bad(i, j) and our results

For θ = (γ, δ) ∈ R2, let Badθ(i, j) denote the set of points (x, y) ∈ R2 such that

max{ ‖qx − γ‖ 1
i , ‖qy − δ‖ 1

j } > c(x, y) q−1 ∀ q ∈ N .

It is straight forward to deduce that Badθ(i, j) is of measure zero from the inhomo-

geneous version of Khintchine’s theorem [13, Theorem 1] with varying approximating 

functions in each co-ordinate. Surprisingly, the fact that dim Badθ(i, j) = 2 is very 

much a recent development – see [10] for the symmetric i = j = 1/2 case and [7] for the 

general case.

One of the main goals of this paper is to prove the following full dimension statement 

which not only implies the inhomogeneous analogue of Theorem A but totally removes 

the lim inf condition (1.2).

Theorem 1.1. Let (i, j) be a pair of real numbers satisfying (1.1) and let C := Cf be a 

planar curve such that f ∈ C(2)(I) and that f ′′(x) �= 0 for all x ∈ I. Then, for any 

θ = (γ, δ) ∈ R2 we have that Badθ(i, j) ∩ C is a winning subset of C.

Remark 1. The condition f ′′(x) �= 0 is often referred to as non-degeneracy at x. Note 

that if f ∈ C(2)(I) and f ′′(x) �= 0 for some point x ∈ I, then, by continuity, there exists 

an interval I∗ ⊂ I such that f ′′(x) �= 0 for all x ∈ I∗. In other words, if the curve 

Cf is not a straight line segment then it is always possible to find an arc of Cf that 

is non-degenerate everywhere. Thus, Theorem 1.1 with I = I∗ and θ = (0, 0) implies 

Theorem A without assuming (1.2). Of course this makes use of the well know fact that 

any winning set is of full dimension and that any countable intersection of winning sets 

is again winning.

Remark 2. Given a subset X ⊂ R2, let π(X) denote the projection of X onto the x-axis. 

Regarding Theorem 1.1, we actually prove that π(Badθ(i, j) ∩C) is a 1/2-winning subset 

of I. In other words, for the projected set we prove α-winning with the best possible 

winning constant; i.e. α = 1/2. Now, since the projection map π is bi-Lipschitz on C and 

the image of a winning set under a bi-Lipschitz map is again winning [8, Proposition 5.3], 

it trivially follows that Badθ(i, j) ∩C is an α0-winning subset of C for some α0 ∈ (0, 1/2]. 

The actual value of α0 is dependent on the Lipschitz constant κ associated with (π|C)−1. 

In fact, if we use the maximum norm on R2 it is possible to obtain the winning statement 

with α0 = 1/2. Essentially, if κ > 1 we consider the projection of Badθ(i, j) ∩ C onto the 

y-axis rather than the x-axis.
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For straight lines we prove the following counterpart statement.

Theorem 1.2. Let (i, j) be a pair of real numbers satisfying (1.1) and given a, b ∈ R with 

a �= 0, let La,b denote the line defined by the equation y = ax + b. Suppose there exists 

ǫ > 0 such that

lim inf
q→∞

q
1
σ

−ǫ max{‖qa‖, ‖qb‖} > 0 where σ := min{i, j} . (1.4)

Then, for any θ = (γ, δ) ∈ R2 we have that Badθ(i, j) ∩ La,b is a winning subset of La,b. 

Moreover, if a ∈ Q the statement is true with ǫ = 0 in (1.4).

Remark 3. As with curves, the theorem is actually deduced on showing that the projected 

set π(Badθ(i, j) ∩ La,b) is an 1/2-winning subset of R.

Remark 4. The Diophantine condition (1.4) imposed in the theorem is essentially optimal 

since

Bad(i, j) ∩ La,b = ∅ if lim inf
q→∞

q
1
σ max{‖qa‖, ‖qb‖} = 0. (1.5)

To see that this is the case, assume for the moment that Bad(i, j) ∩ La,b is nonempty. 

Then there exists some point x ∈ R such that (x, ax + b) ∈ Bad(i, j). In terms of the 

equivalent dual form representation of Bad(i, j) – see [3, §1.3], this means that there 

exists a constant c(x) > 0 such that

max{|A| 1
i , |B| 1

j } |Ax + B(ax + b) + C| ≥ c(x) (1.6)

for all A, B, C ∈ Z with (A, B) �= (0, 0). Now, for any given B ∈ N we choose A, C ∈ Z

such that |Ba + A| = ‖Ba‖ and |Bb + C| = ‖Bb‖. Then

|Ax + B(ax + b) + C| = |(Ba + A)x + (Bb + C)| ≤ ‖Ba‖ |x| + ‖Bb‖

≤ (1 + |x|) max{‖Ba‖, ‖Bb‖}

and

max{|A| 1
i , |B| 1

j } ≤ max{(|Ba| + 1)
1
i , |B| 1

j }

≤ max{(1 + |a|) 1
i |B| 1

i , |B| 1
j } ≤ (1 + |a|) 1

i |B| 1
σ .

Thus, on combining these estimates with (1.6), it follows that

|B| 1
σ max{‖Ba‖, ‖Bb‖} ≥ c(x)

(1 + |a|) 1
i (1 + |x|)

∀ B ∈ N
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and so

lim inf
q→∞

q
1
σ max{‖qa‖, ‖qb‖} > 0.

This establishes (1.5). Note than in view of (1.5) and the moreover part of the theorem, 

the Diophantine condition (1.4) with ǫ = 0 is optimal in the case a is rational.

Remark 5. The fact that a = 0 is excluded in the statement of the theorem is natural since 

as in Remark 4, on making use of the equivalent dual form representation of Bad(i, j)

it is easily verified that

Bad(i, j) ∩ L0,b = ∅ if lim inf
q→∞

q
1
j ‖qb‖ = 0.

On the other hand, if the above lim inf is strictly positive then it was shown in [1]

that Bad(i, j) ∩ L0,b is a winning subset of the horizontal line L0,b. By making use of 

the mechanism developed in this paper, it is relatively straightforward to adapt the 

homogeneous proof given in [1] to show that if lim infq→∞ q1/j‖qb‖ > 0, then for any 

θ ∈ R2 the set Badθ(i, j) ∩ L0,b is a winning subset of the horizontal line L0,b.

Remark 6. Observe that when it comes to intersecting countably many (it, jt) pairs the 

Diophantine condition (1.4) imposes the condition that

lim inf
q→∞

q
1
σ

−ǫ max{‖qa‖, ‖qb‖} > 0 where σ := sup{min{it, jt} : t ∈ N}. (1.7)

This is clearly weaker than condition (1.3) imposed in Theorem B and moreover in view 

of Remark 4 it is essentially optimal.

The proofs of Theorem 1.1 and Theorem 1.2 rely on first establishing the homogeneous 

cases and then making use of a natural mechanism that we develop for generalising 

homogenous winning statements to the inhomogeneous setup. This mechanism is further 

exploited to prove that inhomogeneous Bad(i, j) is winning.

Theorem 1.3. Let (i, j) be a pair of real numbers satisfying (1.1). Then, for any θ =

(γ, δ) ∈ R2 we have that Badθ(i, j) is a (30
√

2)−1-winning subset of R2.

Remark 7. It is worth pointing out that the winning constant (30
√

2)−1 is not optimal. 

Indeed, the ideas used to prove the above theorem and the argument given in [11] can 

be combined to show that Badθ(i, j) is hyperplane absolute winning. This is a stronger 

version of winning and implies that Badθ(i, j) is α-winning for any α < 1/2.
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2. The main strategy

In this section we outline the key steps in establishing the homogeneous case (θ =

(0, 0)) of Theorem 1.1. The general inhomogeneous statement is obtained by appropri-

ately adapting the homogeneous argument and is carried out in §5. To begin with observe 

that for any planar curve C := Cf and θ ∈ R2

Bad
f
θ
(i, j) := {x ∈ I : (x, f(x)) ∈ Badθ(i, j)} = π(Badθ(i, j) ∩ C).

Recall, that π : R2 → R is the projection map onto the x-axis. Also, for convenience and 

without loss of generality we will assume that j ≤ i. Thus, the homogeneous case of The-

orem 1.1 is easily deduced from the following statement for Bad
f (i, j) := Bad

f
(0,0)(i, j)

– see Remark 2 above for the justification.

Theorem 2.1. Let (i, j) be a pair of real numbers satisfying 0 < j ≤ i < 1 and i + j = 1. 

Let I ⊂ R be a compact interval and f ∈ C(2)(I) such that f ′′(x) �= 0 for all x ∈ I. Then 

Bad
f (i, j) is a 1/2-winning subset of I.

At this point it is useful to recall the definition of a winning set and the notion of 

rooted trees – a key ‘structural’ ingredient in establishing the above winning statement.

2.1. Schmidt games and rooted trees

Wolfgang M. Schmidt introduced the games which now bear his name in [14]. The 

simplified account which we are about to present is sufficient for the purposes of this 

paper. Suppose that 0 < α < 1 and 0 < β < 1. Consider the following game involving the 

two arch rivals Ayesha and Bhupen – often simply referred to as players A and B. First,

B chooses a closed ball B0 ⊂ Rm. Next, A chooses a closed ball A0 contained in B0 of 

diameter α ρ(B0) where ρ( . ) denotes the diameter of the ball under consideration. Then,

B chooses at will a closed ball B1 contained in A0 of diameter β ρ(A0). Alternating in 

this manner between the two players, generates a nested sequence of closed balls in Rm:

B0 ⊃ A0 ⊃ B1 ⊃ A1 ⊃ . . . ⊃ Bn ⊃ An ⊃ . . .

with diameters

ρ(Bn) = (α β)n ρ(B0) and ρ(An) = α ρ(Bn) .

A subset X of Rm is said to be (α, β)-winning if A can play in such a way that the 

unique point of intersection

∞
⋂

n=0

Bn =
∞
⋂

n=0

An
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lies in X, regardless of how B plays. The set X is called α-winning if it is (α, β)-winning 

for all β ∈ (0, 1). Finally, X is simply called winning if it is α-winning for some α. 

Informally, player B tries to stay away from the ‘target’ set X whilst player A tries to 

land on X. As shown by Schmidt [14], the following are two key consequences of winning.

• If X ⊂ Rm is a winning set, then dim X = m.

• The intersection of countably many α-winning sets is α-winning.

In the setting of Theorem 2.1, we have m = 1 and X = Bad
f (i, j). Thus An and Bn are 

compact intervals. Note that more generally, we can replace Rm in the above description 

of Schmidt games by a m-dimensional Riemannian manifold. It is this slightly more 

general form that is implicitly referred to within the context of Theorem 1.1.

We now turn our attention to rooted trees. Recall that a rooted tree is a connected 

graph T without cycles and with a distinguished vertex τ0, called the root of T . We 

identify T with the set of its vertices. Any vertex τ ∈ T is connected to τ0 by a unique 

path. The length of the path is called the height of τ . The set of vertices of height n is 

called the n’th level of T and is denoted by Tn. Thus T0 = {τ0}. Next, given τ, τ ′ ∈ T
we write τ ≺ τ ′ to indicate that the path between τ0 and τ passes through τ ′ and in 

this case we call τ a descendant of τ ′ and τ ′ an ancestor of τ . By definition, every vertex 

is a descendant and an ancestor of itself. For V ⊂ T , we write τ ≺ V if V contains an 

ancestor of τ . If τ ≺ τ ′ and the height of τ is one greater than that of τ ′, then τ is called 

a successor of τ ′ and τ ′ is called the predecessor of τ . Let T (τ) denote the rooted tree 

formed by all descendants of τ . Thus the root of T (τ) is τ and we denote by Tsuc(τ)

the set of all successors of τ . More generally, for V ⊂ T , we let Tsuc(V) :=
⋃

τ∈V Tsuc(τ). 

In this paper, we use the convention that a subtree of T has the same root as T . As a 

consequence, T (τ) is not regarded as a subtree of T unless τ = τ0.

Let N ∈ N. We say that a rooted tree is N-regular if every vertex has exactly N succes-

sors. Note that an N -regular rooted tree is necessarily infinite. The following statement 

appears as Proposition 2.1 in [1].

Proposition 2.2. Let T be an N -regular rooted tree, S ⊂ T be a subtree, and 1 ≤ m ≤ N

be an integer. Suppose that for every m-regular subtree R of T , we have that S ∩ R is 

infinite. Then S contains a (N − m + 1)-regular subtree.

This proposition will be required in establishing Proposition 2.4 below. As shown in 

§2.2.1, the latter is very much at the heart of the proof of Theorem 2.1.

2.2. The winning strategy for Theorem 2.1

Let β ∈ (0, 1). We want to prove that Bad
f (i, j) is (1

2 , β)-winning. In the first round 

of the game, Bhupen chooses a closed interval B0 ⊂ I. Now Ayesha chooses the closed 
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interval A0 ⊂ B0 with diameter ρ(A0) = 1
2ρ(B0) such that A0 has the same centre

as B0. Let κ > 1 be sufficiently large so that for every x ∈ I we have that

|f ′(x)| ≤ κ − 1 (2.1)

and

κ−1 ≤ |f ′′(x)| ≤ κ . (2.2)

Clearly such a κ > 1 exists by the conditions imposed on f and I. Let

R := (2β−1)5 and l := ρ(A0) .

Without loss of generality, we may assume that

3κlR2 < 1. (2.3)

The point is that if this is not the case then Ayesha will choose her intervals An−1 (n ≥ 1)

arbitrarily until the interval Bn chosen by Bhupen with diameter ρ(Bn) = (β/2)nρ(B0)

satisfies 6κρ(Bn)R2 < 1. At this stage Ayesha chooses the closed interval An with the 

same centre as Bn and half its diameter. We now simply relabel An and Bn as A0 and 

B0 respectively.

Choose μ > 0 such that

10κ2l−1R
1
j

− j
6 μ ≤ 1 (2.4)

and define

λ0 := 0 and λk :=
2(1 + i)

j
k + μ for k ≥ 1. (2.5)

In turn, let

c :=
l2

103κ5R4+λ1
(2.6)

and

P :=
{

P =
(p

q
,

r

q

)

:
p

q
∈ I,

∣

∣

∣
f

(p

q

)

− r

q

∣

∣

∣
<

κc

q1+j

}

. (2.7)

Note that R is large while l and c are small. Indeed, we have the inequalities

R > 32, l < 10−3, c < 10−10l

which we will use without further reference. Throughout, when a rational point in R2 is 

expressed as P = (p
q , rq ), we assume that q > 0 and that the integers p, q, r are co-prime. 

Finally, for each P = (p
q , rq ) ∈ Q2 we associate the interval
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Δ(P ) :=
{

x ∈ I :
∣

∣

∣
x − p

q

∣

∣

∣
<

c

q1+i

}

. (2.8)

The following inclusion is a simple consequence of the manner in which the above 

quantities and objects have been defined.

Lemma 2.3. Let A0, P and Δ(P ) be as above. Then

A0 \
⋃

P ∈P

Δ(P ) ⊂ Bad
f (i, j) .

Proof. Let x ∈ A0. Suppose x /∈ Bad
f (i, j). Then there exists P = (p

q , rq ) ∈ Q2 such 

that
∣

∣

∣
x − p

q

∣

∣

∣
<

c

q1+i
,

∣

∣

∣
f(x) − r

q

∣

∣

∣
<

c

q1+j
.

In view of the fact that

∣

∣

∣
x − p

q

∣

∣

∣
<

c

q1+i
≤ c ≤ l

2
,

it follows that p
q ∈ B0 ⊂ I. Hence, using the Mean Value Theorem together with (2.1)

we obtain the following estimate:

∣

∣

∣
f

(p

q

)

− r

q

∣

∣

∣
≤

∣

∣

∣
f

(p

q

)

− f(x)
∣

∣

∣
+

∣

∣

∣
f(x) − r

q

∣

∣

∣

≤ (κ − 1)
∣

∣

∣
x − p

q

∣

∣

∣
+

c

q1+j

<
(κ − 1)c

q1+i
+

c

q1+j
≤ κc

q1+j
.

The upshot is that x ∈ Δ(P ) with P ∈ P. This completes the proof of the lemma. ⊠

Now let T be an [R]-regular rooted tree with root τ0, where [ · ] denotes the integer 

part of a real number. We choose and fix an injective map I from T to the set of closed 

subintervals of A0 satisfying the following conditions:

• For any n ≥ 0 and τ ∈ Tn, ρ(I(τ)) = lR−n. In particular, I(τ0) = A0.

• For τ, τ ′ ∈ T , if τ ≺ τ ′, then I(τ) ⊂ I(τ ′).

• For any τ ∈ T , the interiors of the intervals {I(τ ′) : τ ′ ∈ Tsuc(τ)} are mutually 

disjoint, and 
⋃

τ ′∈Tsuc(τ) I(τ ′) is connected.

Note that for n ≥ 1 and τ ∈ Tn−1, any closed subinterval of I(τ) of length 2lR−n must 

contain an I(τ ′) for some τ ′ ∈ Tsuc(τ). Suppose that P is partitioned into a disjoint 

union
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P =
∞
⋃

n=1

Pn.

We inductively define a subtree S of T as follows. Let S0 = {τ0}. If Sn−1 (n ≥ 1) is 

defined, we let

Sn :=
{

τ ∈ Tsuc(Sn−1) : I(τ) ∩
⋃

P ∈Pn

Δ(P ) = ∅
}

.

Then

S :=
∞
⋃

n=0

Sn

is a subtree of T and by construction

I(τ) ⊂ A0 \
⋃

P ∈Pn

Δ(P ) ∀ n ≥ 1 and τ ∈ Sn. (2.9)

Thus given a partition Pn of P, the intervals {I(τ) : τ ∈ Sn} serve as possible candi-

dates when it comes to Ayesha to turn to make a move. Moreover, we are able to choose 

the partition Pn in such a way that S has the following key feature.

Proposition 2.4. There exists a partition P =
⋃∞

n=1 Pn such that the tree S has an 

([R] − 10)-regular subtree.

Armed with this proposition we are able to describe the winning strategy that Ayesha 

will adopt.

2.2.1. Proof of Theorem 2.1 modulo Proposition 2.4

Let P =
⋃∞

n=1 Pn be a partition such that S has an ([R] −10)-regular subtree, say S ′. 

We inductively prove that for every n ≥ 0,

Ayesha can choose A5n = I(τn) for some τn ∈ S ′
n. (2.10)

Since A0 = I(τ0), we trivially have that (2.10) holds when n = 0. Assume n ≥ 1 and 

that Ayesha has chosen A5(n−1) = I(τn−1), where τn−1 ∈ S ′
n−1. We refer to the intervals 

{I(τ) : τ ∈ Tsuc(τn−1) \S ′
suc(τn−1)} as dangerous intervals – they represent intervals that

Ayesha needs to avoid. We first prove that

For t ∈ {0, 1, 2, 3, 4}, Ayesha can play so that A5(n−1)+t, and hence

B5(n−1)+t+1, contains at most [10 · 2−t] dangerous intervals. (2.11)

If t = 0, there is nothing to prove. Assume 1 ≤ t ≤ 4 and (2.11) holds if t is replaced by 

t −1. Thus B5(n−1)+t contains at most [10 ·2−t+1] dangerous intervals. Divide B5(n−1)+t
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into two closed subintervals of equal length. Then Ayesha can choose A5(n−1)+t to be 

one of the subintervals so that it contains at most 
[

1
2 [10 · 2−t+1]

]

≤ [10 · 2−t] dangerous 

intervals. This proves (2.11). By letting t = 4 in (2.11), we see that Ayesha can play 

so that B5n contains no dangerous intervals. Since B5n has length 2lR−n, it contains 

an I(τn) for some τn ∈ Tsuc(τn−1). It follows that τn ∈ S ′
n. So Ayesha can choose 

A5n = I(τn). This completes the proof of (2.10). In view of (2.10), (2.9) and Lemma 2.3, 

we have

∞
⋂

n=0

An =

∞
⋂

n=1

A5n =

∞
⋂

n=1

I(τn) ⊂
∞
⋂

n=1

A0 \
⋃

P ∈Pn

Δ(P )

= A0 \
⋃

P ∈P

Δ(P ) ⊂ Bad
f (i, j).

This proves the theorem assuming the truth of Proposition 2.4. ⊠

3. Preliminaries for Proposition 2.4

The following simple but important lemma was established in [3].

Lemma 3.1. For any point P = (p
q , rq ) ∈ Q2 there exist coprime integers A, B, C with 

(A, B) �= (0, 0) such that

Ap + Br + Cq = 0,

|A| ≤ qi and |B| ≤ qj .

Proof. Since the proof is only a few lines we reproduce it here. By Minkowski’s theorem 

for systems of linear forms there is (A, B, C) ∈ Z3 \ {0} such that

|Ap + Br + Cq| < 1, |A| ≤ qi and |B| ≤ qj .

Since Ap + Br + Cq is an integer it must be zero. If (A, B) = (0, 0) then qC = 0 and, 

since q �= 0 we also have that C = 0, a contradiction. Hence (A, B) �= (0, 0) and the 

proof is complete. ⊠

In view of Lemma 3.1, to each point P = (p
q , rq ) ∈ P, we can assign a rational line

LP := {(x, y) ∈ R2 : AP x + BP y + CP = 0} (3.1)

passing through P where AP , BP , CP ∈ Z are co-prime with (AP , BP ) �= (0, 0) and such 

that

|AP | ≤ qi and |BP | ≤ qj . (3.2)
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If there is more than one line satisfying the above conditions, we choose any one. Further, 

for P ∈ P we define the function FP : I → R by

FP (x) := AP x + BP f(x) + CP

and the set

Θ(P ) :=
{

x ∈ I : |FP (x)| <
2κc

q

}

. (3.3)

In this section we gather basic information regarding the sets Θ(P ) and associated quan-

tities.

Lemma 3.2. Let P = (p
q , rq ) ∈ P and x ∈ Δ(P ). Then

∣

∣

∣
FP

(p

q

)∣

∣

∣
<

κc

q
and

∣

∣

∣
FP (x) − FP

(p

q

)∣

∣

∣
<

κc

q
.

In particular, we have that Δ(P ) ⊂ Θ(P ). Furthermore, if x ∈ Θ(P ) then

∣

∣

∣
FP (x) − FP

(p

q

)∣

∣

∣
<

3κc

q
.

Proof. On using the fact that P lies on the line LP and (2.7) we obtain the following

∣

∣

∣
FP

(p

q

)∣

∣

∣
=

∣

∣

∣
BP

(

f
(p

q

)

− r

q

)∣

∣

∣
≤ qj

∣

∣

∣
f

(p

q

)

− r

q

∣

∣

∣
<

κc

q
.

For the second inequality, by the Mean Value Theorem there exists a point ξ ∈ I such 

that

∣

∣

∣
FP (x) − FP

(p

q

)∣

∣

∣
= |F ′

P (ξ)|
∣

∣

∣
x − p

q

∣

∣

∣
< (|AP | + (κ − 1)|BP |) c

q1+i
≤ κc

q
.

In particular, it follows that for x ∈ Δ(P ), we have that

|FP (x)| ≤
∣

∣

∣
FP

(p

q

)∣

∣

∣
+

∣

∣

∣
FP (x) − FP

(p

q

)∣

∣

∣
<

2κc

q

and so by definition x ∈ Θ(P ).

Finally, if x ∈ Θ(P ), then

∣

∣

∣
FP (x) − FP

(p

q

)
∣

∣

∣
≤ |FP (x)| +

∣

∣

∣
FP

(p

q

)
∣

∣

∣
<

3κc

q
. ⊠

Our next goal is to describe the structure of Θ(P ), in particular, to estimate its size. 

To this end, we introduce the following quantities. Let
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EP := F ′
P

(p

q

)

= AP + BP f ′
(p

q

)

(3.4)

and let

P
∗ :=

{

P =
(p

q
,

r

q

)

∈ P : qE2
P < 9κ2c|BP |

}

. (3.5)

Then we define the height of P by

H(P ) := max{q|EP |, 3κ
√

cq|BP |} =

⎧

⎨

⎩

3κ
√

cq|BP | if P ∈ P∗

q|EP | if P ∈ P \ P∗ .
(3.6)

Lemma 3.3. Let P = (p
q , rq ) ∈ P. Then

|EP | ≤ κqi (3.7)

H(P ) ≤ κq1+i (3.8)

Proof. In view of (2.1) and the fact that j ≤ i, it follows that

|EP | ≤ |AP | + (κ − 1)|BP | ≤ qi + (κ − 1)qj ≤ κqi,

and hence

H(P ) = max{q|EP |, 3κ
√

cq|BP |} ≤ max{κq1+i, 3κc
1
2 q

1+j
2 } = κq1+i. ⊠

In the above, to each P ∈ P we have attached a rational line LP with coefficients 

AP , BP , CP and the function FP and the quantity EP . For ease of notation and clarity, 

we shall drop the subscript P if there is no ambiguity or confusion caused.

Lemma 3.4. If P ∈ P∗ (resp. P ∈ P \ P∗), then Θ(P ) is contained in one (resp. at 

most two) open interval(s) of length at most

42κ3c

H(P )
.

Proof. Case (1). Suppose P ∈ P∗. Then B �= 0. For any x ∈ Θ(P ), it follows from 

Lemma 3.2 and (3.5) that

3κc

q
>

∣

∣

∣
F (x) − F

(p

q

)∣

∣

∣
=

∣

∣

∣
E

(

x − p

q

)

+
F ′′(ξ)

2

(

x − p

q

)2∣

∣

∣

≥ |B|
2κ

∣

∣

∣
x − p

q

∣

∣

∣

2

− 3κ

√

c|B|
q

∣

∣

∣
x − p

q

∣

∣

∣
,
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where ξ ∈ I. This implies that

∣

∣

∣
x − p

q

∣

∣

∣
< 7κ2

√

c

q|B| =
21κ3c

H(P )
.

The upshot of this is that Θ(P ) is contained in an open interval of length 42κ3c/H(P ).

Case (2). Suppose P ∈ P \ P∗. If B = 0, then E = A �= 0 and F (x) = Ex + C. It 

follows that Θ(P ) is an open interval of length

4κc

q|E| =
4κc

H(P )
<

42κ3c

H(P )
.

Now suppose B �= 0. Then, by (3.5), we have that E �= 0. Consider the closed interval

Ω :=
{

x ∈ I :
∣

∣

∣
x − p

q

∣

∣

∣
≤ |E|

κ|B|
}

.

We first prove that Θ(P ) ∩ Ω is contained in an open interval of length 42κ3c/H(P ). If 

x ∈ Θ(P ) ∩ Ω, then it follows from Lemma 3.2 that

3κc

q
>

∣

∣

∣
F (x) − F

(p

q

)∣

∣

∣
=

∣

∣

∣
E

(

x − p

q

)

+
1

2
Bf ′′(ξ)

(

x − p

q

)2∣

∣

∣

≥
(

|E| − κ|B|
2

∣

∣

∣
x − p

q

∣

∣

∣

)∣

∣

∣
x − p

q

∣

∣

∣
≥ |E|

2

∣

∣

∣
x − p

q

∣

∣

∣
.

This implies that

∣

∣

∣
x − p

q

∣

∣

∣
<

6κc

q|E| =
6κc

H(P )
. (3.9)

Hence Θ(P ) ∩ Ω is contained in an open interval of length 12κc/H(P ) < 42κ3c/H(P ). 

In particular, this implies the desired statement if Θ(P ) ⊂ Ω.

Suppose that Θ(P ) �⊂ Ω. Then the following three observations imply that Θ(P ) \ Ω

is a connected interval.

• |F ( p
q )| < κc/q by Lemma 3.2.

• If x0 is an end point of Ω and is contained in the interior of I, then |F (x0)| ≥ 2κc/q. 

To see this, note that the assumption on x0 and (3.5) imply that

∣

∣

∣
x0 − p

q

∣

∣

∣
=

|E|
κ|B| >

6κc

q|E| ,

which together with (3.9) implies that x0 /∈ Θ(P ). Hence the desired inequality 

follows from (3.3).
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• The function F : I → R is either convex or concave.

We next claim that

|F ′(ξ)| ≥ |E|
2κ

for any ξ ∈ Θ(P ) \ Ω. (3.10)

Assuming this claim for the moment, it follows that for any x1, x2 ∈ Θ(P ) \ Ω

4κc

q
> |F (x1) − F (x2)| = |F ′(ξ)| |x1 − x2| ≥ |E|

2κ
|x1 − x2|,

where ξ ∈ Θ(P ) \ Ω. Thus

|x1 − x2| <
8κ2c

q|E| =
8κ2c

H(P )
.

Hence Θ(P ) \ Ω is contained in an open interval of length 8κ2c/H(P ) < 42κ3c/H(P )

and thereby completes the proof of the lemma modulo (3.10).

We now prove (3.10) in the instance that f ′′ > 0 and B > 0. The other cases are 

similar and left to the reader. Let ξ ∈ Θ(P ) \ Ω, and consider the functions G : R → R

and H : R → R given by

G(x) :=
κB

2

(

x − p

q

)2

+ E
(

x − p

q

)

+ F
(p

q

)

and

H(x) :=
B

2κ
(x − ξ)2 + F ′(ξ)(x − ξ) + F (ξ).

It follows that G(p
q ) = F (p

q ), G′(p
q ) = F ′(p

q ), H(ξ) = F (ξ), and H ′(ξ) = F ′(ξ). Moreover, 

if x ∈ I, then

G′′(x) − F ′′(x) = B(κ − f ′′(x)) ≥ 0,

H ′′(x) − F ′′(x) = B(κ−1 − f ′′(x)) ≤ 0.

Thus, for x ∈ I we have that G(x) ≥ F (x) ≥ H(x). It follows that for any x ∈ I,

G(x) ≥ H(x) ≥ −κF ′(ξ)2

2B
+ F (ξ) ≥ −κF ′(ξ)2

2B
− 2κc

q
. (3.11)

Note that F ′′ = Bf ′′ > 0. So the end point of Ω that is contained in the interval with 

end points p
q and ξ is equal to p

q − E
κB . In particular, we have that p

q − E
κB ∈ I. Thus 

(3.11) implies that
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G
(p

q
− E

κB

)

≥ −κF ′(ξ)2

2B
− 2κc

q
.

On the other hand, we have that

G
(p

q
− E

κB

)

= − E2

2κB
+ F

(p

q

)

≤ − E2

2κB
+

κc

q
.

On combining the previous two inequalities, we find that

F ′(ξ)2 ≥ E2

κ2
− 6cB

q
≥ E2

κ2
− 2E2

3κ2
=

E2

3κ2

and (3.10) follows. This completes the proof of Lemma 3.4. ⊠

4. Proof of Proposition 2.4

For n ≥ 1, let

Hn := 42κ3cl−1Rn

and

Pn :=
{

P =
(p

q
,

r

q

)

∈ P : Hn ≤ H(P ) < Hn+1

}

. (4.1)

Note that if P ∈ Pn, then, by (3.8), we have that

κq1+i ≥ Hn. (4.2)

Next let

Pn,0 := Pn ∩ P
∗ (4.3)

and

Pn,k := {P ∈ Pn \ P
∗ : HnRλk−1 ≤ κq1+i ≤ HnRλk } for 1 ≤ k ≤ n , (4.4)

where λk are defined by (2.5).

Lemma 4.1. With Pn and Pn,k as above, we have that

P =
∞
⋃

n=1

Pn and Pn =
n

⋃

k=0

Pn,k .
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Proof. It is easily verified via (2.6) that H(P ) ≥ 3κc
1
2 for any P ∈ P, and that H1 =

42κ3cl−1R ≤ 3κc
1
2 . Hence, P =

⋃∞
n=1 Pn.

Since for P ∈ Pn \ P∗ we have

q =
H(P )2

qE2
≤ H2

n+1

9κ2c
=

H2
nR2

9κ2c
,

it follows from (2.4) that

κq1+i

HnRλn
≤ κ

q2

Hn
R−λn ≤ κ

H3
nR4

81κ4c2
R−λn

=
423

81
κ6cl−3R−( 2(1+i)

j
−3)n+4−μ

≤ (10κ2l−1R2− μ
3 )3 ≤ 1.

This together with (4.2) implies that Pn =
⋃n

k=0 Pn,k. ⊠

We claim that the partition of P given by Lemma 4.1 satisfies the requirement of 

Proposition 2.4. In other words, P gives rise to a tree S as described in §2.2 that contains 

an ([R] − 10)-regular subtree. Recall that S is itself a subtree of an [R]-regular rooted 

tree T . The key towards establishing the claim is the following lemma and its corollary. 

For k ≥ 0, we let

k+ := max{k, 1} .

The following lemma contains a crucial property of the lines LP defined by (3.1).

Lemma 4.2. For any n ≥ 1, 0 ≤ k ≤ n and τ ∈ Sn−k+ , the map P �→ LP is constant on

Pn,k(τ) := {P ∈ Pn,k : I(τ) ∩ Δ(P ) �= ∅}.

We postpone the proof for the moment and continue by stating an important conse-

quence of the lemma.

Corollary 4.3. For any n ≥ 1, 0 ≤ k ≤ n and τ ∈ Sn−k+ , we have

#
{

τ ′ ∈ Tn : I(τ ′) ∩
⋃

P ∈Pn,k(τ)

Δ(P ) �= ∅
}

≤
{

2, if k = 0,

4, if k ≥ 1.

Proof. We may assume that Pn,k(τ) �= ∅. Let P0 = (p0

q0
, r0

q0
) ∈ Pn,k(τ) be such that 

q0 ≤ q for any (p
q , rq ) ∈ Pn,k(τ). By Lemma 4.2, for any P ∈ Pn,k(τ) we have LP = LP0

and so Θ(P ) ⊂ Θ(P0). Thus it follows from Lemma 3.2 that
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⋃

P ∈Pn,k(τ)

Δ(P ) ⊂
⋃

P ∈Pn,k(τ)

Θ(P ) ⊂ Θ(P0).

Hence

{

τ ′ ∈ Tn : I(τ ′) ∩
⋃

P ∈Pn,k(τ)

Δ(P ) �= ∅
}

⊂ {τ ′ ∈ Tn : I(τ ′) ∩ Θ(P0) �= ∅}.

By Lemma 3.4, if k = 0 (resp. k ≥ 1), then Θ(P0) is contained in one (resp. at most 

two) open interval(s) of length at most

42κ3c

H(P0)

(4.1)

≤ 42κ3c

Hn
= lR−n.

Since the intervals {I(τ ′) : τ ′ ∈ Tn} are of length lR−n and have mutually disjoint 

interiors, there can be at most 2 (resp. 4) of them that intersect Θ(P0). This proves the 

corollary. ⊠

We are now in the position to prove Proposition 2.4. In view of Proposition 2.2, it 

suffices to prove that the intersection of S with every 11-regular subtree of T is infinite. 

Let R ⊂ T be an 11-regular subtree and let

R′ := R ∩ S and an := #R′
n (n ≥ 0) ,

where R′
n is the n’th level of the tree R′. Then a0 = 1. We prove that R′ is infinite by 

showing that

an > 3an−1 (n ≥ 1) . (4.5)

We use induction. For n ≥ 1, let

Un :=
{

τ ∈ Tsuc(R′
n−1) : I(τ) ∩

⋃

P ∈Pn

Δ(P ) �= ∅
}

.

Then

R′
n =

{

τ ∈ Rsuc(R′
n−1) : I(τ) ∩

⋃

P ∈Pn

Δ(P ) = ∅
}

= Rsuc(R′
n−1) \ Un.

It follows that

an ≥ 11an−1 − #Un. (4.6)

On the other hand,
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Un =
n

⋃

k=0

{

τ ∈ Tsuc(R′
n−1) : I(τ) ∩

⋃

P ∈Pn,k

Δ(P ) �= ∅
}

⊂
n

⋃

k=0

{

τ ∈ Tn : τ ≺ R′
n−k+ , I(τ) ∩

⋃

P ∈Pn,k

Δ(P ) �= ∅
}

=
n

⋃

k=0

⋃

τ ′∈R′

n−k+

{

τ ∈ Tn : τ ≺ τ ′, I(τ) ∩
⋃

P ∈Pn,k

Δ(P ) �= ∅
}

⊂
n

⋃

k=0

⋃

τ ′∈R′

n−k+

{

τ ∈ Tn : I(τ) ∩
⋃

P ∈Pn,k(τ ′)

Δ(P ) �= ∅
}

.

Thus, Corollary 4.3 implies that

#Un ≤ 2an−1 +
n

∑

k=1

4an−k. (4.7)

On combining (4.6) and (4.7), we obtain that

an ≥ 9an−1 −
n

∑

k=1

4an−k. (4.8)

With n = 1 in (4.8), we find that a1 ≥ 5. Hence, (4.5) holds for n = 1. Now assume 

n ≥ 2 and that (4.5) holds with n replaced by 1, . . . , n − 1. Then for any 1 ≤ k ≤ n, we 

have that

an−k ≤ 3−k+1an−1.

Substituting this into (4.8), gives that

an ≥ 9an−1 − 4an−1

n
∑

k=1

3−k+1 > 3an−1.

This completes the induction step and thus establishes (4.5). In turn this completes the 

proof of Proposition 2.4 modulo the truth of Lemma 4.2. ⊠

4.1. Proof of Lemma 4.2

To begin with we prove the following result.

Lemma 4.4. Let n, k and τ be as in Lemma 4.2, and let P1 := (p1

q1
, r1

q1
), P2 := (p2

q2
, r2

q2
) ∈

Pn,k(τ). Denote As = APs
, Bs = BPs

, Cs = CPs
and Fs = FPs

, s = 1, 2.
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(1) If k = 0 and q1 ≤ q2, then

A2p1 + B2r1 + C2q1 = 0 (4.9)

|A1B2 − A2B1| < q1 . (4.10)

(2) If k = 1, then

A2p1 + B2r1 + C2q1 = 0 = A1p2 + B1r2 + C1q2 . (4.11)

(3) If k ≥ 2, then

∣

∣

∣
A1F2

(p1

q1

)

− A2F1

(p1

q1

)∣

∣

∣
≤ c

2
H

− j
1+i

n , (4.12)

∣

∣

∣
B1F2

(p1

q1

)

− B2F1

(p1

q1

)∣

∣

∣
≤ c

2
H

− i
1+i

n , (4.13)

|A1B2 − A2B1| ≤ 1

3κ
H

1
1+i

n R−k. (4.14)

Proof. We first prove that for any 0 ≤ k ≤ n,

∣

∣

∣

p1

q1
− p2

q2

∣

∣

∣
≤ 2lR−n+k+

, (4.15)

max
{

q2

∣

∣

∣
F2

(p1

q1

)∣

∣

∣
, q1

∣

∣

∣
F1

(p2

q2

)∣

∣

∣

}

≤ 477κ5cR2k++2, (4.16)

|A2p1 + B2r1 + C2q1| ≤ 1

2
R−4−λ1

(q1

q2
R2k++2 +

|B2|
qj

1

)

, (4.17)

|A1p2 + B1r2 + C1q2| ≤ 1

2
R−4−λ1

(q2

q1
R2k++2 +

|B1|
qj

2

)

, (4.18)

|A1B2 − A2B1| ≤ |E1B2| + |E2B1| + 2|B1B2|κlR−n+k+

, (4.19)

where E1 = EP1
and E2 = EP2

.

To establish (4.15), note that for s = 1, 2 there exists xs ∈ I(τ) ∩ Δ(Ps) �= ∅ and that 

|x1 − x2| ≤ ρ(I(τ)) = lR−n+k+

. Then, it follows from (2.8) that

∣

∣

∣

p1

q1
− p2

q2

∣

∣

∣
≤

∣

∣

∣

p1

q1
− x1

∣

∣

∣
+ |x1 − x2| +

∣

∣

∣
x2 − p2

q2

∣

∣

∣

≤ c

q1+i
1

+ lR−n+k+

+
c

q1+i
2

(4.2)

≤ 2κc

Hn
+ lR−n+k+

=
1

21κ2
lR−n + lR−n+k+ ≤ 2lR−n+k+

.
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Regarding (4.16), we expand F2(p1

q1
) using Taylor’s formula at the point p2

q2
and estimate 

as follows

q2

∣

∣

∣
F2

(p1

q1

)
∣

∣

∣
≤ q2

∣

∣

∣
F2

(p2

q2

)
∣

∣

∣
+ q2|E2|

∣

∣

∣

p1

q1
− p2

q2

∣

∣

∣
+

κq2|B2|
2

∣

∣

∣

p1

q1
− p2

q2

∣

∣

∣

2

≤ κc + H(P2)
∣

∣

∣

p1

q1
− p2

q2

∣

∣

∣
+

H(P2)2

18κc

∣

∣

∣

p1

q1
− p2

q2

∣

∣

∣

2

(4.15)

≤ κc + Hn+1 · 2lR−n+k+

+
H2

n+1

18κc
· 4l2R−2n+2k+

= κc + 84κ3cRk++1 + 392κ5cR2k++2

≤ 477κ5cR2k++2.

The above argument can be trivially modified to show that the same upper bound is 

valid for q1|F1(p2

q2
)|. Turning our attention to (4.17), using (2.7) we estimate as follows

|A2p1 + B2r1 + C2q1| = q1

∣

∣

∣
F2

(p1

q1

)

− B2

(

f
(p1

q1

)

− r1

q1

)
∣

∣

∣

≤ q1

∣

∣

∣
F2

(p1

q1

)
∣

∣

∣
+ q1|B2|

∣

∣

∣
f

(p1

q1

)

− r1

q1

∣

∣

∣

(4.16)

≤ 477κ5c
q1

q2
R2k++2 + |B2|κc

qj
1

≤ 477κ5c
(q1

q2
R2k++2 +

|B2|
qj

1

)

(2.6)

≤ 1

2
R−4−λ1

(q1

q2
R2k++2 +

|B2|
qj

1

)

.

The same argument with obvious modifications yields (4.18). Finally, regarding (4.19), 

using the definition (3.4) for E1 and E2, we have that

|A1B2 − A2B1| =
∣

∣

∣

(

E1 − f ′
(p1

q1

)

B1

)

B2 −
(

E2 − f ′
(p2

q2

)

B2

)

B1

∣

∣

∣

=
∣

∣

∣
E1B2 − E2B1 + B1B2

(

f ′
(p2

q2

)

− f ′
(p1

q1

))∣

∣

∣

≤ |E1B2| + |E2B1| + |B1B2|κ
∣

∣

∣

p1

q1
− p2

q2

∣

∣

∣

(4.15)

≤ |E1B2| + |E2B1| + 2|B1B2|κlR−n+k+

.

Having established (4.15)–(4.19), we are now in the position to prove the lemma.
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Part (1). Suppose k = 0 and q1 ≤ q2. It follows from the definition (4.3) for Pn,0

that

|A2p1 + B2r1 + C2q1|
(4.17)

≤ 1

2
R−4−λ1

(q1

q2
R4 +

|B2|
qj

1

)

≤ 1

2
R−4−λ1

(

R4 +
q2|B2|
q1|B1|

)

=
1

2
R−4−λ1

(

R4 +
H(P2)2

H(P1)2

)

≤ 1

2
R−4−λ1(R4 + R2)

≤ R−λ1 < 1.

Since the left hand side of the above inequality is an integer, it follows that A2p1 +

B2r1 + C2q1 = 0. Regarding (4.10), note that for s = 1, 2

|Es| ≤ H(Ps)2

qsH(Ps)
≤ 9κ2c|Bs|

Hn
≤ lR−n

2κ
|Bs|

and that

|B2|
|B1| ≤ q2|B2|

q1|B1| =
H(P2)2

H(P1)2
≤ H2

n+1

H2
n

= R2.

These inequalities together with (2.3) imply that

|A1B2 − A2B1|
(4.19)

≤ |E1B2| + |E2B1| + 2|B1B2|κlR−n+1

≤ |B1B2|
( lR−n

κ
+ 2κlR−n+1

)

≤ B2
1R2 · 3κl

≤ 3κlR2q2j
1 < q1.

Part (2). Suppose k = 1. It follows from (4.4) that

max
{q1

q2
,

q2

q1

}

≤ R
λ1

1+i < Rλ1 .

This implies that
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|A2p1 + B2r1 + C2q1|
(4.17)

≤ 1

2
R−4−λ1

(q1

q2
R4 +

|B2|
qj

1

)

≤ 1

2
R−λ1

(q1

q2
+

qj
2

qj
1

)

< 1 .

The left hand side is an integer and so must be zero. The same argument involving (4.18)

rather than (4.17) shows that |A1p2 + B1r2 + C1q2| = 0.

Part (3). Suppose k ≥ 2. We first prove that

max
{qi

1

q2
,

qi
2

q1

}

≤ 1

103κ5
H

− j
1+i

n R−2k−2 (4.20)

max
{qj

1

q2
,

qj
2

q1

}

≤ 1

103κ5
H

− i
1+i

n R−2k−2 . (4.21)

It follows from (4.4) that

max{q1, q2} ≤ (κ−1Hn)
1

1+i R
λk
1+i

and

min{q1, q2} ≥ (κ−1Hn)
1

1+i R
λk−1

1+i .

In view of the fact that

jλk − λk−1

1 + i
≤ iλk − λk−1

1 + i
= − j

1 + i
μ +

2

j
− 2k,

it follows from (2.4) that

max
{qi

1

q2
,

qi
2

q1

}

≤ (κ−1Hn)− j
1+i R

iλk−λk−1
1+i

≤ κH
− j

1+i
n R− j

1+i
μ+ 2

j
−2k

≤ 1

103κ5
H

− j
1+i

n R−2k−2

and that

max
{qj

1

q2
,

qj
2

q1

}

≤ (κ−1Hn)− i
1+i R

jλk−λk−1
1+i

≤ κH
− i

1+i
n R− j

1+i
μ+ 2

j
−2k

≤ 1

103κ5
H

− i
1+i

n R−2k−2.
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This establishes (4.20) and (4.21). It now follows that

∣

∣

∣
A1F2

(p1

q1

)

− A2F1

(p1

q1

)
∣

∣

∣
≤ |A1|

∣

∣

∣
F2

(p1

q1

)
∣

∣

∣
+ |A2|

∣

∣

∣
F1

(p1

q1

)
∣

∣

∣

(4.16)

≤ qi
1 · 1

q2
477κ5cR2k+2 + qi

2

κc

q1

(4.20)

≤ 1

103κ5
H

− j
1+i

n R−2k−2(477κ5cR2k+2 + κc)

≤ c

2
H

− j
1+i

n

and

∣

∣

∣
B1F2

(p1

q1

)

− B2F1

(p1

q1

)
∣

∣

∣
≤ |B1|

∣

∣

∣
F2

(p1

q1

)
∣

∣

∣
+ |B2|

∣

∣

∣
F1

(p1

q1

)
∣

∣

∣

(4.16)

≤ qj
1 · 1

q2
477κ5cR2k+2 + qj

2

κc

q1

(4.21)

≤ 1

103κ5
H

− i
1+i

n R−2k−2(477κ5cR2k+2 + κc)

≤ c

2
H

− i
1+i

n .

Finally, since Ps /∈ P∗, we have that qsE2
s ≥ 9κ2c|Bs| and H(Ps) = qs|Es| for s = 1, 2. 

Then

|B2| ≤ H(P2)2

9κ2cq2

and using (3.2) and the fact that Hn+1 = RHn, we get that

|A1B2 − A2B1|
(4.19)

≤ |E1B2| + |E2B1| + 2|B1B2|κlR−n+k

≤ H(P1)

q1
qj

2 +
H(P2)

q2
qj

1 + 2qj
1

H(P2)2

9κ2cq2
κlR−n+k

(4.21)

≤ 1

103κ5
H

− i
1+i

n R−2k−2
(

2Hn+1 +
2H2

n+1

9κ2c
κlR−n+k

)

≤ 1

500κ5
H

1
1+i

n R−2k−2(R + 5κ2Rk+2)

≤ 1

3κ
H

1
1+i

n R−k.

This thereby completes the proof of Part (3) and thus the lemma. ⊠
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We now proceed with the proof of Lemma 4.2. Let P1 = (p1

q1
, r1

q1
) and P2 = (p2

q2
, r2

q2
) be 

distinct points in Pn,k(τ). We need to prove that LP1
= LP2

. We consider three separate 

cases.

Case (1). Suppose k = 0. Without loss of generality, we assume that q1 ≤ q2. Then 

in view of (4.9) we have that A2p1 + B2r1 + C2q1 = 0. Hence LP2
passes through P1. We 

prove that LP1
= LP2

by contradiction. Thus, assume that LP1
�= LP2

. Since the two 

lines intersect at P1, it follows that

p1

q1
=

B1C2 − B2C1

A1B2 − A2B1
and

r1

q1
=

A2C1 − A1C2

A1B2 − A2B1
.

In particular, since p1, q1, r1 are co-prime, the non-zero integer A1B2 − A2B1 is divisible 

by q1. Thus

q1 ≤ |A1B2 − A2B1|
(4.10)

< q1 ,

which is of course impossible.

Case (2). Suppose k = 1. Then in view of (4.11) we have that A2p1 + B2r1 + C2q1 =

0 = A1p2 + B1r2 + C1q2. Hence, LP2
passes through P1 and LP1

passes through P2. By 

definition, LP2
passes through P2 and LP1

passes through P1. The upshot is that both 

lines pass through the points P1 and P2, and so we must have that LP1
= LP2

.

Case (3). Suppose k ≥ 2. We prove that LP1
= LP2

by contradiction. Thus, assume 

that LP1
�= LP2

. We first consider the case where LP1
is parallel to LP2

. Then, it is easily 

verified that

A1F2

(p1

q1

)

− A2F1

(p1

q1

)

= A1C2 − A2C1

and

B1F2

(p1

q1

)

− B2F1

(p1

q1

)

= B1C2 − B2C1 .

Since Hn ≥ c, it follows via (4.12) and (4.13) that

1 ≤ |A1C2 − A2C1| + |B1C2 − B2C1|

≤
∣

∣

∣
A1F2

(p1

q1

)

− A2F1

(p1

q1

)
∣

∣

∣
+

∣

∣

∣
B1F2

(p1

q1

)

− B2F1

(p1

q1

)
∣

∣

∣

≤ c

2
H

− j
1+i

n +
c

2
H

− i
1+i

n

≤ c

2
(c− j

1+i + c− i
1+i )

=
1

2
(c

2i
1+i + c

1
1+i ) < 1

which is of course impossible.
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Now suppose LP1
is not parallel to LP2

. Let P0 = (p0

q0
, r0

q0
) ∈ Q2 be the point of 

intersection of LP1
and LP2

. Then it follows that the non-zero integer A1B2 − A2B1 is 

divisible by q0 and so

q0 ≤ |A1B2 − A2B1|. (4.22)

We first prove that Δ(P1) ⊂ Δ(P0) and that P0 ∈ P. It is easily verified that

(

A1 B1

A2 B2

)

(

p1

q1
− p0

q0

f(p1

q1
) − r0

q0

)

=

(

F1(p1

q1
)

F2(p1

q1
)

)

.

Hence, on using Cramer’s rule, we obtain that

|A1B2 − A2B1|
∣

∣

∣

p1

q1
− p0

q0

∣

∣

∣
=

∣

∣

∣
B1F2

(p1

q1

)

− B2F1

(p1

q1

)∣

∣

∣

(4.13)

≤ c

2
H

− i
1+i

n , (4.23)

and

|A1B2 − A2B1|
∣

∣

∣
f

(p1

q1

)

− r0

q0

∣

∣

∣
=

∣

∣

∣
A1F2

(p1

q1

)

− A2F1

(p1

q1

)∣

∣

∣

(4.12)

≤ c

2
H

− j
1+i

n . (4.24)

If x ∈ Δ(P1), then (4.14) and (4.23) imply that

q1+i
0

∣

∣

∣
x − p0

q0

∣

∣

∣

(4.22)

≤ |A1B2 − A2B1|1+i
∣

∣

∣
x − p1

q1

∣

∣

∣
+ |A1B2 − A2B1|1+i

∣

∣

∣

p1

q1
− p0

q0

∣

∣

∣

≤ Hn

3κ
· c

q1+i
1

+ H
i

1+i
n · c

2
H

− i
1+i

n

(4.2)

≤ c

3
+

c

2
< c.

Thus x ∈ Δ(P0) and the upshot is that Δ(P1) ⊂ Δ(P0). In particular,

∣

∣

∣

p1

q1
− p0

q0

∣

∣

∣
<

c

q1+i
0

. (4.25)

Since A0 ∩ Δ(P1) �= ∅, there exists x ∈ A0 such that |x − p1

q1
| < c/q1+i

1 , and hence it 

follows that

∣

∣

∣
x − p0

q0

∣

∣

∣
≤

∣

∣

∣
x − p1

q1

∣

∣

∣
+

∣

∣

∣

p1

q1
− p0

q0

∣

∣

∣
≤ 2c ≤ l

2
.

This implies that p0

q0
∈ B0 ⊂ I. Also note that by (4.14) and (4.24), we have that
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q1+j
0

∣

∣

∣
f

(p0

q0

)

− r0

q0

∣

∣

∣

(4.22)

≤ q1+j
0

∣

∣

∣
f

(p0

q0

)

− f
(p1

q1

)
∣

∣

∣
+ |A1B2 − A2B1|1+j

∣

∣

∣
f

(p1

q1

)

− r0

q0

∣

∣

∣

≤ q1+i
0 (κ − 1)

∣

∣

∣

p0

q0
− p1

q1

∣

∣

∣
+ H

j
1+i

n · c

2
H

− j
1+i

n

(4.25)

≤ (κ − 1)c +
c

2

< κc.

Thus P0 ∈ P and so there exists a unique integer n0 ≥ 1 such that P0 ∈ Pn0
. Suppose 

for the moment that n0 ≤ n − k. Then there exists τ ′ ∈ Sn0
such that τ ≺ τ ′, and hence

I(τ) ∩ Δ(P1) ⊂ I(τ ′) ∩ Δ(P0) = ∅.

This contradicts the fact that P1 ∈ Pn,k(τ). Thus

n0 ≥ n − k + 1 ,

and so

H(P0) ≥ Hn0
≥ Hn−k+1.

On the other hand, we have that

H(P0) ≤ κq1+i
0

(4.22)

≤ κ|A1B2 − A2B1|1+i
(4.14)

≤ HnR−k = Hn−k .

This contradicts the above lower bound for H(P0) and so completes the proof of Case 

(3) and indeed the lemma. ⊠

5. The inhomogeneous case: establishing Theorem 1.1

Theorem 1.1 is easily deduced from the following statement.

Theorem 5.1. Let (i, j) be a pair of real numbers satisfying 0 < j ≤ i < 1 and i + j = 1. 

Let I ⊂ R be a compact interval and f ∈ C(2)(I) such that f ′′(x) �= 0 for all x ∈ I. 

Then, for any θ = (γ, δ) ∈ R2 we have that Bad
f
θ
(i, j) is a 1/2-winning subset of I.

We have already established the homogeneous case (γ = δ = 0) of Theorem 5.1; 

namely Theorem 2.1. With reference to §2.2, the crux of the ‘homogeneous’ proof in-

volved constructing a partition Pn (n ≥ 1) of P (given by Lemma 4.1) such that the 

subtree S of an [R]-regular rooted tree T has an ([R] − 10)-regular subtree S ′ – the 

substance of Proposition 2.4. To prove Theorem 5.1, the idea is to merge the inhomoge-

neous constraints into the homogeneous construction. More precisely, we show that S ′
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has an ([R] − 12)-regular subtree Q′ that incorporates the inhomogeneous constraints. 

With this in mind, let

c′ :=
1

10
cR−2

where c is defined in (2.6), and let

V :=
{

(p, r, q) ∈ Z2 × N :
p + γ

q
∈ I,

∣

∣

∣
f

(p + γ

q

)

− r + δ

q

∣

∣

∣
<

κc′

q1+j

}

.

Furthermore, for each v = (p, r, q) ∈ Z2 × N, we associate the interval

Δθ(v) :=
{

x ∈ I :
∣

∣

∣
x − p + γ

q

∣

∣

∣
<

c′

q1+i

}

.

Then, with A0 ⊂ B0 as in §2.2, the following is the inhomogeneous analogue of 

Lemma 2.3.

Lemma 5.2. Let A0, V and Δθ(v) be as above. Then

A0 \
⋃

v∈V

Δθ(v) ⊂ Bad
f
θ
(i, j) .

Proof. The proof is similar to the homogeneous proof but is included for completeness. 

Let x ∈ A0. Suppose x /∈ Bad
f
θ
(i, j). Then there exists v = (p, r, q) ∈ Z2 × N such that

∣

∣

∣
x − p + γ

q

∣

∣

∣
<

c′

q1+i
,

∣

∣

∣
f(x) − r + δ

q

∣

∣

∣
<

c′

q1+j
.

In view of the fact that

∣

∣

∣
x − p + γ

q

∣

∣

∣
<

c′

q1+i
≤ c ≤ l

2
,

it follows that p+γ
q ∈ B0 ⊂ I. Hence

∣

∣

∣
f

(p + γ

q

)

− r + δ

q

∣

∣

∣
≤

∣

∣

∣
f

(p + γ

q

)

− f(x)
∣

∣

∣
+

∣

∣

∣
f(x) − r + δ

q

∣

∣

∣

≤ (κ − 1)
∣

∣

∣
x − p + γ

q

∣

∣

∣
+

c′

q1+j

<
(κ − 1)c′

q1+i
+

c′

q1+j
≤ κc′

q1+j
.

Thus x ∈ Δθ(v) and v ∈ V . This completes the proof of the lemma. ⊠
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In view of Lemma 5.2, to prove Theorem 5.1, it suffices to show that Ayesha can 

play the (1
2 , β)-game such that 

⋂∞
n=0 An ⊂ A0 \ ⋃

v∈V
Δθ(v). We do this by proving the 

stronger statement that Ayesha can play such that

∞
⋂

n=0

An ⊂ A0 \
(

⋃

P ∈P

Δ(P ) ∪
⋃

v∈V

Δθ(v)
)

, (5.1)

where P and Δ(P ) are given in (2.7) and (2.8), respectively. Recall that for the 

partition P =
⋃∞

n=1 Pn given by Lemma 4.1, the [R]-regular rooted tree T has an 

([R] − 10)-regular subtree S ′ such that

I(τ) ∩
⋃

P ∈Pn

Δ(P ) = ∅, ∀ n ≥ 1 and τ ∈ S ′
n. (5.2)

In what follows, we work with the tree S ′ and take the inhomogeneous constraints Δθ(v)

into account.

For n ≥ 1, let

H ′
n := 2c′l−1Rn

and

Vn := {(p, r, q) ∈ V : H ′
n ≤ q1+i < H ′

n+1}.

Observe that H ′
1 = 2c′l−1R ≤ 1 and so it follows that V =

⋃∞
n=1 Vn. We inductively 

define a subtree Q of S ′ as follows. Let Q0 = {τ0}. If Qn−1 (n ≥ 1) is defined, we let

Qn :=
{

τ ∈ S ′
suc(Qn−1) : I(τ) ∩

⋃

v∈Vn

Δθ(v) = ∅
}

.

Then

Q :=

∞
⋃

n=0

Qn

is a subtree of S ′ and, by construction, we have that

I(τ) ⊂ A0 \
(

⋃

P ∈Pn

Δ(P ) ∪
⋃

v∈Vn

Δθ(v)
)

∀ n ≥ 1 and τ ∈ Qn.

Armed with the following result, the same arguments as in §2.2.1 with the most 

obvious modifications enables us to prove (5.1), and hence Theorem 5.1. In view of this 

the details of the proof of Theorem 5.1 modulo Proposition 5.3 are omitted.

Proposition 5.3. The tree Q has an ([R] − 12)-regular subtree.
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Since S ′ is ([R] − 10)-regular, in order to establish the proposition, it suffices to prove 

the following statement.

Lemma 5.4. For any n ≥ 1 and τ ∈ Qn−1, there is at most one v ∈ Vn such that 

I(τ) ∩ Δθ(v) �= ∅. Moreover, ρ(Δθ(v)) ≤ lR−n. Therefore,

#
{

τ ′ ∈ S ′
suc(τ) : I(τ ′) ∩

⋃

v∈Vn

Δθ(v) �= ∅
}

≤ 2.

Proof. Suppose vs = (ps, rs, qs) ∈ Vn and I(τ) ∩ Δθ(vs) �= ∅, s = 1, 2. We need to prove 

that v1 = v2. Without loss of generality, assume that q1 ≥ q2. Let xs ∈ I(τ) ∩ Δθ(vs). 

Then

∣

∣

∣
xs − ps + γ

qs

∣

∣

∣
<

c′

q1+i
s

, s = 1, 2

and

|x1 − x2| ≤ ρ(I(τ)) = lR−n+1.

It follows that

|(q1 − q2)x1 − (p1 − p2)| =
∣

∣

∣
q1

(

x1 − p1 + γ

q1

)

− q2

(

x2 − p2 + γ

q2

)

− q2(x1 − x2)
∣

∣

∣

≤ q1

∣

∣

∣
x1 − p1 + γ

q1

∣

∣

∣
+ q2

∣

∣

∣
x2 − p2 + γ

q2

∣

∣

∣
+ q2|x1 − x2|

≤ c′

qi
1

+
c′

qi
2

+ q2lR−n+1

≤ 2c′

qi
2

+ q2lR−n+1. (5.3)

Moreover,

∣

∣

∣
(q1 − q2)f

(p1 + γ

q1

)

− (r1 − r2)
∣

∣

∣

=
∣

∣

∣
q1

(

f
(p1 + γ

q1

)

− r1 + δ

q1

)

− q2

(

f
(p2 + γ

q2

)

− r2 + δ

q2

)

− q2

(

f
(p1 + γ

q1

)

− f
(p2 + γ

q2

))∣

∣

∣

≤ q1

∣

∣

∣
f

(p1 + γ

q1

)

− r1 + δ

q1

∣

∣

∣
+ q2

∣

∣

∣
f

(p2 + γ

q2

)

− r2 + δ

q2

∣

∣

∣

+ q2

∣

∣

∣
f

(p1 + γ

q1

)

− f
(p2 + γ

q2

)∣

∣

∣
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≤ κc′

qj
1

+
κc′

qj
2

+ q2κ
∣

∣

∣

p1 + γ

q1
− p2 + γ

q2

∣

∣

∣

≤ κc′

qj
1

+
κc′

qj
2

+ q2κ
( c′

q1+i
1

+
c′

q1+i
2

+ lR−n+1
)

≤ 4κc′

qj
2

+ q2κlR−n+1. (5.4)

Suppose for the moment that q1 > q2 and let

P0 :=
(p1 − p2

q1 − q2
,

r1 − r2

q1 − q2

)

.

We show that

I(τ) ∩ Δ(P0) �= ∅ (5.5)

and that P0 ∈ P, where P and Δ(P0) are defined by (2.7) and (2.8), respectively. In 

view of (5.3), it follows that

(q1 − q2)1+i
∣

∣

∣
x1 − p1 − p2

q1 − q2

∣

∣

∣
≤ (q1 − q2)i

(2c′

qi
2

+ q2lR−n+1
)

≤ 2c′ qi
1

qi
2

+ q1+i
1 lR−n+1 ≤ 2c′R + 2c′R2 < c.

So x1 ∈ Δ(P0) and (5.5) follows. Also, the above inequality implies that

∣

∣

∣
x1 − p1 − p2

q1 − q2

∣

∣

∣
< c ≤ l

2

and since x1 ∈ A0, it follows that p1−p2

q1−q2
∈ B0 ⊂ I. Moreover, by making use of (5.4) we 

have that

(q1 − q2)1+j
∣

∣

∣
f

(p1 − p2

q1 − q2

)

− r1 − r2

q1 − q2

∣

∣

∣
≤ (q1 − q2)1+j

∣

∣

∣
f

(p1 − p2

q1 − q2

)

− f
(p1 + γ

q1

)∣

∣

∣

+ (q1 − q2)j
∣

∣

∣
(q1 − q2)f

(p1 + γ

q1

)

− (r1 − r2)
∣

∣

∣

≤ (q1 − q2)1+jκ
∣

∣

∣

p1 − p2

q1 − q2
− p1 + γ

q1

∣

∣

∣

+ (q1 − q2)j
(4κc′

qj
2

+ q2κlR−n+1
)

= (q1 − q2)j
(

q2κ
∣

∣

∣

p1 + γ

q1
− p2 + γ

q2

∣

∣

∣
+

4κc′

qj
2

+ q2κlR−n+1
)
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≤ qj
1

(

q2κ
( c′

q1+i
1

+ lR−n+1 +
c′

q1+i
2

)

+
4κc′

qj
2

+ q2κlR−n+1
)

≤ 6κc′ qj
1

qj
2

+ 2q1+j
1 κlR−n+1

≤ 6κc′R + 4κc′R2 < κc.

Thus P0 ∈ P and so there exists a unique integer n0 ≥ 1 such that P0 ∈ Pn0
. Suppose 

for the moment that n0 ≤ n − 1. Then there exists τ ′ ∈ S ′
n0

such that τ ≺ τ ′, and it 

follows from (5.2) that I(τ) ∩ Δ(P0) ⊂ I(τ ′) ∩ Δ(P0) = ∅ contrary to (5.5). Thus, 

n0 ≥ n and so

H(P0) ≥ Hn0
≥ Hn = 42κ3cl−1Rn.

On the other hand, we have that

H(P0) ≤ κ(q1 − q2)1+i ≤ κq1+i
1 ≤ κH ′

n+1 =
1

5
κcl−1Rn−1 .

This contradicts the above lower bound for H(P0) and we conclude that q1 = q2. Since 

q2 ≤ H ′
n+1 ≤ cl−1Rn−1, it now follows from (5.3) and (5.4) that

|p1 − p2| ≤ 2c′

qi
2

+ q2lR−n+1 ≤ 2c′ + c < 1

and

|r1 − r2| ≤ 4κc′

qj
2

+ q2κlR−n+1 ≤ 4κc′ + cκ < 1.

Thus, p1 = p2 and r1 = r2. In other words, v1 = v2 and this proves the main substance 

of the lemma. To prove the ‘moreover’ part, it is easily verified that for any v ∈ Vn we 

have that

ρ(Δθ(v)) =
2c′

q1+i
≤ 2c′

H ′
n

= lR−n.

The ‘therefore’ part of the lemma is a direct consequence of this and the fact that there 

is at most one v ∈ Vn such that I(τ) ∩ Δθ(v) is non-empty. ⊠

As already mentioned, given Proposition 5.3, the proof of Theorem 5.1 follows on 

adapting the arguments of §2.2.1.
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6. The proof of Theorem 1.2

The basic strategy towards establishing the winning result for lines is the same as 

when considering curves. To begin with observe that for any line La,b given by

y = f(x) := ax + b

and θ ∈ R2,

Bad
f
θ
(i, j) := {x ∈ R : (x, f(x)) ∈ Badθ(i, j)} = π(Badθ(i, j) ∩ La,b) .

As in the case of curves, without loss of generality we will assume that j ≤ i. Thus, the 

homogeneous case of Theorem 1.2 is easily deduced from the following statement.

Theorem 6.1. Let (i, j) be a pair of real numbers satisfying 0 < j ≤ i < 1 and i + j = 1. 

Given a, b ∈ R, suppose there exists ǫ > 0 such that

lim inf
q→∞

q
1
j

−ǫ max{‖qa‖, ‖qb‖} > 0 . (6.1)

Then Bad
f (i, j) is a 1/2-winning subset of R. Moreover, if a ∈ Q the statement is true 

with ǫ = 0 in (6.1).

Note that in view of Remark 5 after the statement of Theorem 1.2, we do not require 

that a �= 0 in Theorem 6.1 since j ≤ i.

6.1. The winning strategy for Theorem 6.1

Let β ∈ (0, 1). We want to prove that Bad
f (i, j) is (1

2 , β)-winning. In the first round 

of the game, Bhupen chooses a closed interval B0 ⊂ R. Now Ayesha chooses any closed 

interval A0 ⊂ B0 with diameter ρ(A0) = 1
2ρ(B0). Let

R := (2β−1)4 , l := ρ(A0) and c1 := c0 max{|x|max + l, 1}−1

where

|x|max := max{|x| : x ∈ A0} and c0 := inf
q∈N

q
1
j

−ǫ max{‖qa‖, ‖qb‖} > 0 .

The fact that c0 > 0 follows from the Diophantine condition (6.1). Recall, that by 

hypothesis ǫ = 0 if a is rational and ǫ > 0 otherwise. We denote

κ := |a| + 1,

and choose μ ≥ 1 such that
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20κ2R
3
i

−iμ < 1. (6.2)

If a ∈ Q, we also require that

Rμ−1 ≥ κd2 (6.3)

where d ∈ N is the smallest positive integer such that da ∈ Z. Next, if a /∈ Q, so that 

ǫ > 0, we let λ > 0 be such that

Rλj−n ≥ κc−1
1 R

1+i
jǫ

n for n ≥ 1. (6.4)

If a ∈ Q, we simply let λ = 0. In turn, let

λ0 := 0 and λk := λ j−k +
k

i
+ μ for k ≥ 1,

and let

c := min
{ c1

4κ
lR−1, l−i,

1

8κ
R−2−

λ1
1+i

}

. (6.5)

For each rational point P = (p
q , rq ) ∈ R2 we associate the interval

Δ(P ) :=
{

x ∈ R :
∣

∣

∣
x − p

q

∣

∣

∣
<

c

q1+i

}

and we let

P :=
{

P =
(p

q
,

r

q

)

: A0 ∩ Δ(P ) �= ∅,
∣

∣

∣
b +

ap − r

q

∣

∣

∣
<

κc

q1+j

}

.

The following inclusion is a simple consequence of the manner in which the above 

quantities and objects have been defined.

Lemma 6.2. Let A0, P and Δ(P ) be as above. Then

A0 \
⋃

P ∈P

Δ(P ) ⊂ Bad
f (i, j) .

Proof. Let x ∈ A0. Suppose x /∈ Bad
f (i, j). Then there exists P = (p

q , rq ) ∈ Q2 such 

that

∣

∣

∣
x − p

q

∣

∣

∣
<

c

q1+i
,

∣

∣

∣
f(x) − r

q

∣

∣

∣
=

∣

∣

∣
ax + b − r

q

∣

∣

∣
<

c

q1+j
.

It follows that
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∣

∣

∣
b +

ap − r

q

∣

∣

∣
=

∣

∣

∣

(

ax + b − r

q

)

− a
(

x − p

q

)
∣

∣

∣

≤ c

q1+j
+ |a| c

q1+i

≤ κc

q1+j
.

The upshot is that x ∈ Δ(P ) with P ∈ P. This completes the proof of the lemma. ⊠

Next, just as in §2.2, but with A0 and P as above, let

• T be an [R]-regular rooted tree with root τ0,

• I be an injective map from T to the set of closed subintervals of A0,

• S =
⋃∞

n=0 Sn be a subtree of T associated with a partition Pn of P.

The following proposition is the lines analogue of Proposition 2.4. It enables us to de-

duce Theorem 6.1 (and thus the homogeneous case of Theorem 1.2) by adapting the 

arguments of §2.2.1 in the most obvious manner. In view of this the details of the proof 

of Theorem 6.1 modulo Proposition 6.3 are omitted.

Proposition 6.3. There exists a partition P =
⋃∞

n=1 Pn such that the tree S has an 

([R] − 5)-regular subtree.

6.1.1. Proof of Proposition 6.3

As in the ‘curves’ proof, to each point P = (p
q , rq ) ∈ P, we attach a rational line

LP := {(x, y) ∈ R2 : Ax + By + C = 0}

passing through P where A, B, C ∈ Z are co-prime with (A, B) �= (0, 0) and such that

|A| ≤ qi and |B| ≤ qj .

Associated with each point P ∈ P, we also consider the quantity

E := A + Ba .

Then

|E| ≤ qi + |a|qj ≤ κqi . (6.6)

Note that if x ∈ Δ(P ), then

|Ex + Bb + C| =
∣

∣

∣
E

(

x − p

q

)

+ B
(

b +
ap − r

q

)∣

∣

∣
<

2κc

q
. (6.7)
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The following statement enables us to construct the desired partition in Proposi-

tion 6.3.

Lemma 6.4. For any P = (p
q , rq ) ∈ P, we have

q1−jǫ|E| ≥ c1. (6.8)

Proof. If B = 0, then q1−jǫ|E| = q1−jǫ|A| ≥ 1 ≥ c1 and we are done. If B �= 0, then it 

is easily verified that

q1−jǫ max{|E|, |Bb + C|} ≥ |B| 1
j

−ǫ max{|Ba + A|, |Bb + C|} ≥ c0.

If |E| is the maximum in the above then again we are done. So suppose q1−jǫ|Bb +C| ≥ c0. 

Since P ∈ P, there exists x ∈ A0 ∩ Δ(P ) and it follows that

q1−jǫ|Ex| ≥ q1−jǫ|Bb + C| − q1−jǫ|Ex + Bb + C|
(6.7)

≥ c0 − 2κc ≥ c1(|x|max + l) − c1l = c1|x|max.

This proves the lemma. ⊠

A particular consequence of (6.8) is that E �= 0. Thus every line LP intersects at the 

line La,b given by y = f(x) = ax + b at a single point.

For n ≥ 1, let

Hn := 4κcl−1Rn

and

Pn :=
{

P =
(p

q
,

r

q

)

∈ P : Hn ≤ q|E| < Hn+1

}

.

Note that if P ∈ Pn, then

κq1+i
(6.6)

≥ q|E| ≥ Hn . (6.9)

Next let

Pn,k := {P ∈ Pn : HnRλk−1 ≤ κq1+i < HnRλk } for 1 ≤ k ≤ n.

Lemma 6.5. With Pn and Pn,k as above, we have that

P =
∞
⋃

n=1

Pn and Pn =
n

⋃

k=1

Pn,k .
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Proof. Note that by (6.8), for any P ∈ P we have that q|E| ≥ c1 and by definition

H1 = 4κcl−1R ≤ c1. (6.10)

Thus, P =
⋃∞

n=1 Pn.

To prove the second conclusion, we first show that

κq1+i < HnRλn for P ∈ Pn. (6.11)

We consider two separate cases. If a /∈ Q, on combining the fact that q|E| < Hn+1 with 

(6.8) implies that

qjǫ < c−1
1 Hn+1.

It then follows that

κq1+i

HnRλn
<

κ(c−1
1 Hn+1)

1+i
jǫ

HnRλn
=

κc−1
1 (c−1

1 H1Rn)
1+i
jǫ

−1

Rλn−1

(6.10)

≤ κc−1
1 R( 1+i

jǫ
−1)n−λj−n (6.4)

≤ 1.

If a ∈ Q, then |E| ≥ 1/d, and hence the fact q|E| < Hn+1 implies that q < dHn+1. It 

follows that

κq1+i

HnRλn
<

κd2H1+i
n+1

HnR
n
i

+μ

(6.3)

≤ Hi
1Rn(i− 1

i
) < 1.

This proves (6.11). Now (6.11) together with (6.9) implies that Pn =
⋃n

k=1 Pn,k. ⊠

We claim that the partition of P given by Lemma 6.5 satisfies the requirement of 

Proposition 6.3. The key towards establishing the claim is the following lemma. It is the 

lines analogue of Lemma 4.2.

Lemma 6.6. For any n ≥ 1, 1 ≤ k ≤ n and τ ∈ Sn−k, the map P �→ LP is constant on

Pn,k(τ) := {P ∈ Pn,k : I(τ) ∩ Δ(P ) �= ∅}.

Proof. Let P1 = (p1

q1
, r1

q1
) and P2 = (p2

q2
, r2

q2
) be distinct points in Pn,k(τ). We need to 

prove that LP1
= LP2

. We let As, Bs, Cs and Es be the respective quantities associated 

with Ps, s = 1, 2, and consider two separate cases.

Case (1). Suppose k = 1. Then

|A1p2 + B1r2 + C1q2| = q2

∣

∣

∣
A1

(p2

q2
− p1

q1

)

+ B1

(r2

q2
− r1

q1

)∣

∣

∣
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= q2

∣

∣

∣
E1

(p2

q2
− p1

q1

)

+ B1

(ap1 − r1

q1
− ap2 − r2

q2

)
∣

∣

∣

≤ q2|E1|
( c

q1+i
1

+
c

q1+i
2

+ lR−n+1
)

+ q2|B1|
( κc

q1+j
1

+
κc

q1+j
2

)

≤ q2

q1
q1|E1|

(2κc

Hn
+ lR−n+1

)

+ κc
(q2

q1
+

qj
1

qj
2

)

≤ R
λ1

1+i Hn+1 · 2κc(1 + 2R)

Hn
+ 2κcR

λ1
1+i

< 8κcR2+
λ1

1+i ≤ 1.

Since the left hand side of the above inequality is an integer, it follows that A1p2 +

B1r2 + C1q2 = 0. Similarly, we obtain that A2p1 + B2r1 + C2q1 = 0. The upshot is that 

both the lines LP1
and LP2

pass through both the points P1 and P2, and so we must 

have that LP1
= LP2

.

Case (2). Suppose k ≥ 2. We prove that LP1
= LP2

by contradiction. Thus, assume 

that LP1
�= LP2

. We first establish various preliminary estimates. Let

mq := (κ−1HnRλk−1)
1

1+i and Mq := (κ−1HnRλk )
1

1+i .

Then, by definition, for P = (p
q , rq ) ∈ Pn,k we have that mq ≤ q < Mq. Also let

ME := m−1
q Hn+1 and MB := M j

q .

Then |Es| ≤ ME , |Bs| ≤ MB , s = 1, 2. We claim that

M
1+ 1

i

E ≤ M j
BM2+j

E ≤ M1+i
B M1+i

E <
1

5
cl−1Rn−k . (6.12)

First observe that

ME

M
i/j
B

=
Hn+1

mqM i
q

= κR1−
λk−1+iλk

1+i ≤ κR1−μ ≤ 1.

It then follows that

M
1+ 1

i

E

M j
BM2+j

E

=
( ME

M
i/j
B

)

j2

i ≤ 1 and
M j

BM2+j
E

M1+i
B M1+i

E

=
( ME

M
i/j
B

)2j

≤ 1.

This establishes the left and middle inequalities within (6.12). Regarding the right in-

equality, we have that
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M1+i
B M1+i

E =
(Hn+1

M i
q

· Mq

mq

)1+i

=
κiH1+i

n+1

(HnRλk )i
· Rλk−λk−1

= κiHnRjλk−λk−1+1+i = 4κ1+icl−1Rn−k+ 1
i

−iμ+1+i

<
1

5
cl−1Rn−k.

With s = 1 or 2, let (xs, axs + b) denote the intersection point of LPs
with the line La,b. 

Then

Es

(

xs − ps

qs

)

+ Bs

(

b +
aps − rs

qs

)

= 0 ,

and so

∣

∣

∣
xs − ps

qs

∣

∣

∣
=

|Bs|
|Es|

∣

∣

∣
b +

aps − rs

qs

∣

∣

∣
≤ |Bs|

|Es|
κc

q1+j
s

, s = 1, 2.

Hence

|x1 − x2| ≤
∣

∣

∣
x1 − p1

q1

∣

∣

∣
+

∣

∣

∣
x2 − p2

q2

∣

∣

∣
+

∣

∣

∣

p1

q1
− p2

q2

∣

∣

∣

≤ |B1|
|E1|

κc

q1+j
1

+
|B2|
|E2|

κc

q1+j
2

+
( c

q1+i
1

+
c

q1+i
2

+ lR−n+k
)

≤ κc

q1|E1| +
κc

q2|E2| +
( κc

q1|E1| +
κc

q2|E2| + lR−n+k
)

≤ 4κc

Hn
+ lR−n+k = lR−n + lR−n+k

≤ 2lR−n+k . (6.13)

This completes the preliminaries. Recall that we are assuming that LP1
�= LP2

and the 

name of the game is to obtain a contradiction. We first consider the case that LP1
is 

parallel to LP2
. Then there exist (A, B) ∈ Z2 \ {(0, 0)} and nonzero integers t1, t2 such 

that

(A1, B1) = t1(A, B) and (A2, B2) = t2(A, B).

Thus

xs = − Bsb + Cs

Bsa + As
= − 1

Ba + A

(

Bb +
Cs

ts

)

s = 1, 2

and it follows that

|x1 − x2| =
|t1C2 − t2C1|
|t1t2||Ba + A| ≥ 1

|t1t2||Ba + A| =
1

|t1E2| .
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This together with (6.13) implies that

|t1E2| ≥ 1

2
l−1Rn−k. (6.14)

If B1 = 0, then |t1| ≤ |A1| ≤ |A1|1/i = |E1|1/i. So

|t1E2| ≤ M
1+ 1

i

E

(6.12)
<

1

5
cl−1Rn−k

and this contradicts (6.14). If B1 �= 0, then |t1| ≤ |B1| and

|t1E2|1+i ≤ (MBME)1+i
(6.12)

<
1

5
cl−1Rn−k.

This together with (6.14) implies that

(1

2
l−1Rn−k

)1+i

<
1

5
cl−1Rn−k.

However, this contradicts the fact that c ≤ l−i. Hence, if LP1
is parallel to LP2

then we 

must have that LP1
= LP2

.

Now suppose LP1
is not parallel to LP2

. Let P0 = (p0

q0
, r0

q0
) ∈ Q2 be the intersection of 

LP1
and LP2

. Then it follows that A1B2 − A2B1 is a nonzero integer and is divisible by 

q0 and so

q0 ≤ |A1B2 − A2B1| = |E1B2 − E2B1| . (6.15)

We first prove that Δ(P1) ⊂ Δ(P0) and that P0 ∈ P. In view of the fact that

Es

(ps

qs
− p0

q0

)

+ Bs

(rs − aps

qs
− r0 − ap0

q0

)

= 0 s = 1, 2

it is easily verified that

−(E1B2 − E2B1)
(p1

q1
− p0

q0

)

= B1B2

(r1 − ap1

q1
− r2 − ap2

q2

)

+ B1E2

(p1

q1
− p2

q2

)

.

It then follows that

q0

∣

∣

∣

p1

q1
− p0

q0

∣

∣

∣

(6.15)

≤ |B1B2|
( κc

q1+j
1

+
κc

q1+j
2

)

+ |B1E2|
( c

q1+i
1

+
c

q1+i
2

+ lR−n+k
)

≤ |B2E1| κc

q1|E1| + |B1E2| κc

q2|E2| + |B1E2|
( κc

q1|E1| +
κc

q2|E2| + lR−n+k
)

≤ MBME

(4κc

Hn
+ lR−n+k

)

≤ 2MBME lR−n+k.
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So if x ∈ Δ(P1), then

q1+i
0

∣

∣

∣
x − p0

q0

∣

∣

∣
≤ q1+i

0

∣

∣

∣
x − p1

q1

∣

∣

∣
+ q1+i

0

∣

∣

∣

p1

q1
− p0

q0

∣

∣

∣

≤ q1+i
0

c

q1+i
1

+ 2qi
0MBMElR−n+k

(6.15)

≤ 4M1+i
B M1+i

E

κc

Hn
+ 4M1+i

B M1+i
E lR−n+k

≤ 5M1+i
B M1+i

E lR−n+k
(6.12)

< c.

Thus x ∈ Δ(P0) and the upshot is that Δ(P1) ⊂ Δ(P0). In turn, since A0 ∩ Δ(P1) �= ∅, 

it follows that A0 ∩ Δ(P0) �= ∅. In view of this, in order to prove that P0 ∈ P we need 

to show that

∣

∣

∣
b +

ap0 − r0

q0

∣

∣

∣
<

κc

q1+j
0

. (6.16)

Since

Es

(

xs − p0

q0

)

+ Bs

(

b +
ap0 − r0

q0

)

= 0 s = 1, 2

we have that

|E1B2 − E2B1|
∣

∣

∣
b +

ap0 − r0

q0

∣

∣

∣
= |E1E2||x1 − x2|

(6.13)

≤ 2M2
ElR−n+k.

Hence

q1+j
0

∣

∣

∣
b +

ap0 − r0

q0

∣

∣

∣

(6.15)

≤ |E1B2 − E2B1|1+j
∣

∣

∣
b +

ap0 − r0

q0

∣

∣

∣

≤ 4M j
BM2+j

E lR−n+k

(6.12)
< κc

and this established (6.16). Thus P0 ∈ P and so there exists a unique integer n0 ≥ 1

such that P0 ∈ Pn0
. Suppose for the moment that n0 ≤ n −k. Then there exists τ ′ ∈ Sn0

such that τ ≺ τ ′, and hence

I(τ) ∩ Δ(P1) ⊂ I(τ ′) ∩ Δ(P0) = ∅.

This contradicts the fact that P1 ∈ Pn,k(τ). Thus
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n0 ≥ n − k + 1 ,

and so

q1+i
0

(6.9)

≥ κ−1Hn0
≥ κ−1Hn−k+1 = 4cl−1Rn−k+1 .

On the other hand, we have that

q1+i
0 ≤ 4(MBME)1+i

(6.12)
< cl−1Rn−k .

This contradicts the above lower bound for q1+i
0 and so completes the proof of Case (2) 

and indeed the lemma. ⊠

An important consequence of Lemma 6.6 is the following analogue of Corollary 4.3.

Corollary 6.7. For any n ≥ 1, 1 ≤ k ≤ n and τ ∈ Sn−k, we have

#
{

τ ′ ∈ Tn : I(τ ′) ∩
⋃

P ∈Pn,k(τ)

Δ(P ) �= ∅
}

≤ 2.

Proof. By Lemma 6.6 and (6.7), there exists (A, B, C) ∈ Z3 with E := A + Ba �= 0 such 

that for any P = (p
q , rq ) ∈ Pn,k(τ) and x ∈ Δ(P ),

|Ex + Bb + C| <
2κc

q
and q|E| ≥ Hn .

Thus

∣

∣

∣
x +

Bb + C

E

∣

∣

∣
<

2κc

q|E| ≤ 2κc

Hn
=

1

2
lR−n.

This implies that 
⋃

P ∈Pn,k(τ) Δ(P ) is contained in the open interval

(

− Bb + C

E
− 1

2
lR−n, −Bb + C

E
+

1

2
lR−n

)

, (6.17)

which has length lR−n. Since the intervals {I(τ ′) : τ ′ ∈ Tn} are of length lR−n and have 

mutually disjoint interiors, there can be at most 2 of them that intersect the interval 

(6.17). This proves the corollary. ⊠

We are now in the position to prove Proposition 6.3. In view of Proposition 2.2, it 

suffices to prove that the intersection of S with every 6-regular subtree of T is infinite. 

Let R ⊂ T be a 6-regular subtree and let

R′ := R ∩ S and an := #R′
n (n ≥ 0) .
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Then a0 = 1. We prove that R′ is infinite by showing that

an > 2an−1 (n ≥ 1) . (6.18)

We use induction. As in §4, for n ≥ 1, let

Un :=
{

τ ∈ Tsuc(R′
n−1) : I(τ) ∩

⋃

P ∈Pn

Δ(P ) �= ∅
}

.

Then

R′
n = Rsuc(R′

n−1) \ Un,

and it follows that

an ≥ 6an−1 − #Un. (6.19)

On the other hand, as in §4, we have that

Un =

n
⋃

k=1

{

τ ∈ Tsuc(R′
n−1) : I(τ) ∩

⋃

P ∈Pn,k

Δ(P ) �= ∅
}

⊂
n

⋃

k=1

⋃

τ ′∈R′

n−k

{

τ ∈ Tn : I(τ) ∩
⋃

P ∈Pn,k(τ ′)

Δ(P ) �= ∅
}

.

Thus, Corollary 6.7 implies that

#Un ≤
n

∑

k=1

2an−k. (6.20)

On combining (6.19) and (6.20), we obtain that

an ≥ 6an−1 −
n

∑

k=1

2an−k. (6.21)

With n = 1 in (6.21), we find that a1 ≥ 4. Hence, (6.18) holds for n = 1. Now assume 

n ≥ 2 and that (6.18) holds with n replaced by 1, . . . , n − 1. Then for any 1 ≤ k ≤ n, we 

have that

an−k ≤ 2−k+1an−1.

Substituting this into (6.21), gives that

an ≥ 6an−1 − 2an−1

n
∑

k=1

2−k+1 > 2an−1.
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This completes the induction step and thus establishes (6.18). In turn this completes the 

proof of Proposition 6.3. ⊠

6.2. The inhomogeneous case: establishing Theorem 1.2

Theorem 1.2 is easily deduced from the following statement.

Theorem 6.8. Let (i, j) be a pair of real numbers satisfying 0 < j ≤ i < 1 and i + j = 1. 

Given a, b ∈ R, suppose there exists ǫ > 0 such that (6.1) is satisfied. Then Bad
f
θ
(i, j) is 

a 1/2-winning subset of R.

We have already established the homogeneous case (γ = δ = 0) of Theorem 6.8; 

namely Theorem 6.1. With reference to §6.1, the crux of the ‘homogeneous’ proof in-

volved constructing a partition Pn (n ≥ 1) of P (given by Lemma 6.5) such that the 

subtree S of an [R]-regular rooted tree T has an ([R] − 5)-regular subtree S ′ – the 

substance of Proposition 6.3. To prove Theorem 6.8, the idea is to merge the inhomo-

geneous constraints into the homogeneous construction as in the case of curves in §5. 

More precisely, we show that S ′ has an ([R] − 7)-regular subtree Q′ that incorporates 

the inhomogeneous constraints. With this in mind, let

c′ :=
1

10
cR−2

and

V :=
{

(p, r, q) ∈ Z2 × N :
∣

∣

∣
f

(p + γ

q

)

− r + δ

q

∣

∣

∣
<

κc′

q1+j

}

.

Furthermore, for each v = (p, r, q) ∈ Z2 × N, we associate the interval

Δθ(v) :=
{

x ∈ R :
∣

∣

∣
x − p + γ

q

∣

∣

∣
<

c′

q1+i

}

.

Then, with A0 ⊂ B0 as in §6.1, the following is the inhomogeneous analogue of 

Lemma 6.2.

Lemma 6.9. Let A0, V and Δθ(v) be as above. Then

A0 \
⋃

v∈V

Δθ(v) ⊂ Bad
f
θ
(i, j) .

Proof. The proof is similar to the homogeneous proof but is included for completeness. 

Let x ∈ A0. Suppose x /∈ Bad
f
θ
(i, j). Then there exists v = (p, r, q) ∈ Z2 × N such that

∣

∣

∣
x − p + γ

q

∣

∣

∣
<

c′

q1+i
,

∣

∣

∣
f(x) − r + δ

q

∣

∣

∣
<

c′

q1+j
.
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It follows that

∣

∣

∣
f

(p + γ

q

)

− r + δ

q

∣

∣

∣
≤

∣

∣

∣
f

(p + γ

q

)

− f(x)
∣

∣

∣
+

∣

∣

∣
f(x) − r + δ

q

∣

∣

∣

< |a| c′

q1+i
+

c′

q1+j
≤ κc′

q1+j
.

Thus x ∈ Δθ(v) and v ∈ V . This completes the proof of the lemma. ⊠

Similar to the proof of Theorem 5.1, we prove Theorem 6.8 by showing that Ayesha 

can play such that

∞
⋂

n=0

An ⊂ A0 \
(

⋃

P ∈P

Δ(P ) ∪
⋃

v∈V

Δθ(v)
)

.

For n ≥ 1, let

H ′
n := 2c′l−1Rn

and

Vn := {(p, r, q) ∈ V : H ′
n ≤ q1+i < H ′

n+1}.

Observe that H ′
1 = 2c′l−1R ≤ 1 and so it follows that V =

⋃∞
n=1 Vn. We inductively 

define a subtree Q of S ′ as follows. Let Q0 = {τ0}. If Qn−1 (n ≥ 1) is defined, we let

Qn :=
{

τ ∈ S ′
suc(Qn−1) : I(τ) ∩

⋃

v∈Vn

Δθ(v) = ∅
}

.

Then

Q :=

∞
⋃

n=0

Qn

is a subtree of S ′ and by construction

I(τ) ⊂ A0 \
(

⋃

P ∈Pn

Δ(P ) ∪
⋃

v∈Vn

Δθ(v)
)

∀ n ≥ 1 and τ ∈ Qn.

Armed with the following result, the same arguments as in §2.2.1 with the most 

obvious modifications enables us to prove Theorem 6.8. In view of this the details of the 

proof of Theorem 6.8 modulo Proposition 6.10 are omitted.

Proposition 6.10. The tree Q has an ([R] − 7)-regular subtree.
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In order to establish the proposition, it suffices to prove the following statement.

Lemma 6.11. For any n ≥ 1 and τ ∈ Qn−1, there is at most one v ∈ Vn such that 

I(τ) ∩ Δθ(v) �= ∅. Moreover, ρ(Δθ(v)) ≤ lR−n. Therefore,

#
{

τ ′ ∈ S ′
suc(τ) : I(τ ′) ∩

⋃

v∈Vn

Δθ(v) �= ∅
}

≤ 2.

Proof. Suppose vs = (ps, rs, qs) ∈ Vn and I(τ) ∩ Δθ(vs) �= ∅, s = 1, 2. We need to prove 

that v1 = v2. Without loss of generality, assume that q1 ≥ q2. Let x1 ∈ I(τ) ∩ Δθ(v1). 

The same arguments as in the proofs of (5.3) and (5.4) show that

|(q1 − q2)x1 − (p1 − p2)| ≤ q2lR−n+1 +
2c′

qi
2

(6.22)

and

∣

∣

∣
(q1 − q2)f

(p1 + γ

q1

)

− (r1 − r2)
∣

∣

∣
≤ q2|a|lR−n+1 +

4κc′

qj
2

. (6.23)

Suppose for the moment that q1 > q2 and let

P0 :=
(p1 − p2

q1 − q2
,

r1 − r2

q1 − q2

)

.

We show that I(τ) ∩ Δ(P0) �= ∅ and that P0 ∈ P. Similar to the proof of Lemma 5.4, 

it follows from (6.22) that

(q1 − q2)1+i
∣

∣

∣
x1 − p1 − p2

q1 − q2

∣

∣

∣
< c.

So x1 ∈ Δ(P0) and it follows that I(τ) ∩ Δ(P0) �= ∅. Moreover, by making use of (6.23)

we have that

(q1 − q2)1+j
∣

∣

∣
f

(p1 − p2

q1 − q2

)

− r1 − r2

q1 − q2

∣

∣

∣
< κc.

Thus P0 ∈ P and so there exists a unique integer n0 ≥ 1 such that P0 ∈ Pn0
. The same 

argument as in the proof of Lemma 5.4 shows that n0 ≥ n, and so

(q1 − q2)|EP0
| ≥ Hn0

≥ Hn = 4κcl−1Rn.

On the other hand, we have that

(q1 − q2)|EP0
| ≤ κ(q1 − q2)1+i ≤ κq1+i

1

≤ κH ′
n+1 =

1

5
κcl−1Rn−1 .
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This contradicts the above lower bound for (q1 − q2)|EP0
| and we conclude that q1 = q2. 

It now follows from (6.22) and (6.23) that

|p1 − p2| < 1 and |r1 − r2| < 1.

Thus, p1 = p2 and r1 = r2. In other words, v1 = v2 and this proves the main sub-

stance of the proposition. The proofs of the remaining parts are the same as those for 

Lemma 5.4. ⊠

As already mentioned, given Proposition 6.10, the proof of Theorem 6.8 follows on 

adapting the arguments of §2.2.1.

7. The proof of Theorem 1.3

We need the notion of regular colourings of rooted trees. Let D ∈ N. A D-colouring

of a rooted tree T is a map γ : T → {1, . . . , D}. For V ⊂ T and 1 ≤ i ≤ D, we 

denote V(i) = V ∩ γ−1(i). Let N ∈ N be an integer multiple of D, and suppose that T
is N -regular. We say that a D-colouring of T is regular if for any τ ∈ T and 1 ≤ i ≤ D, 

we have #Tsuc(τ)(i) = N/D. The following two types of subtrees are of interest to us.

• The subtree S is of type (I) if for any τ ∈ S and 1 ≤ i ≤ D, we have #Ssuc(τ)(i) = 1.

• The subtree S is of type (II) if for any τ ∈ S, there exists 1 ≤ i(τ) ≤ D such that 

Ssuc(τ) = Tsuc(τ)(i(τ)).

Roughly speaking, in the proof of Theorem 1.3, the two types of subtrees correspond 

to strategies of the two players in Schmidt’s game. We will make use of the following 

criterion for the existence of subtree of type (I). It appears as Proposition 2.2 in [2].

Proposition 7.1. Let T be an N -regular rooted tree with a regular D-colouring, and let 

S ⊂ T be a subtree. Suppose that for every subtree R ⊂ T of type (II), S ∩ R is infinite. 

Then S contains a subtree of type (I).

7.1. The winning strategy for Theorem 1.3

Let α0 := (30
√

2)−1, β ∈ (0, 1). We want to prove that Badθ(i, j) is (α0, β)-winning. 

In the first round of the game, Bhupen chooses a closed disc B0 ⊂ R2. Now Ayesha 

chooses any closed disc A0 ⊂ B0 with diameter ρ(A0) = α0ρ(B0). Let

l := ρ(A0), R := (α0β)−1, m := 15.

By a square we mean a set of the form

Σ = {(x, y) ∈ R2 : x0 ≤ x ≤ x0 + ℓ(Σ), y0 ≤ y ≤ y0 + ℓ(Σ)},
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where ℓ(Σ) > 0 is the side length of Σ. Let Σ0 be the circumscribed square of A0. Then 

ℓ(Σ0) = l. Let T be an m2[R/m]2-regular rooted tree with a regular [R/m]2-colouring. 

We choose and fix an injective map Φ from T to the set of subsquares of Σ0 satisfying 

the following conditions:

• For any n ≥ 0 and τ ∈ Tn, we have ℓ(Φ(τ)) = lR−n. In particular, the root τ0 of T
is mapped to Σ0.

• For τ, τ ′ ∈ T , if τ ≺ τ ′, then Φ(τ) ⊂ Φ(τ ′).

• For any n ≥ 1 and τ ∈ Tn−1, the interiors of the squares {Φ(τ ′) : τ ′ ∈ Tsuc(τ)} are 

mutually disjoint, the union 
⋃

τ ′∈Tsuc(τ) Φ(τ ′) is a square of side length m[R/m]lR−n, 

and for any 1 ≤ i ≤ [R/m]2, the union 
⋃

τ ′∈Tsuc(τ)(i) Φ(τ ′) is a square of side length 

mlR−n.

Let c > 0 be such that

c < min
{1

6
lR−1,

1

16
R−12

}

, (7.1)

and in turn let

c′ :=
1

6
cR−2. (7.2)

For each P = (p
q , rq ) ∈ Q2, we associate the rectangle

Δ(P ) :=
{

(x, y) ∈ R2 :
∣

∣

∣
x − p

q

∣

∣

∣
≤ c

q1+i
,
∣

∣

∣
y − r

q

∣

∣

∣
≤ c

q1+j

}

,

and for v = (p, r, q) ∈ Z2 × N, we associate the rectangle

Δθ(v) :=
{

(x, y) ∈ R2 :
∣

∣

∣
x − p + γ

q

∣

∣

∣
≤ c′

q1+i
,
∣

∣

∣
y − r + δ

q

∣

∣

∣
≤ c′

q1+j

}

.

Then

R2 \
(

⋃

P ∈Q2

Δ(P ) ∪
⋃

v∈Z2×N

Δθ(v)
)

⊂ Bad(i, j) ∩ Badθ(i, j). (7.3)

For n ≥ 1, let

Hn := 6cl−1Rn , H ′
n := 3c′l−1Rn

and define

Pn :=
{

P =
(p

q
,

r

q

)

∈ Q2 : Hn ≤ q max{|AP |, |BP |} < Hn+1

}

(7.4)
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and

Vn := {v = (p, r, q) ∈ Z2 × N : H ′
n ≤ q1+max{i,j} < H ′

n+1}, (7.5)

where AP and BP are as in §3. In view of (7.1), we have that H ′
1 ≤ H1 = 6cl−1R ≤ 1. 

Thus

Q2 =
∞
⋃

n=1

Pn and Z2 × N =
∞
⋃

n=1

Vn .

We inductively define a subtree S of T as follows. Let S0 = {τ0}. If n ≥ 1 and Sn−1 is 

defined, we let

Sn :=
{

τ ∈ Tsuc(Sn−1) : Φ(τ) ∩
(

⋃

P ∈Pn

Δ(P ) ∪
⋃

v∈Vn

Δθ(v)
)

= ∅
}

. (7.6)

Then S =
⋃∞

n=0 Sn is a subtree of T and by construction

Φ(τ) ⊂ R2 \
(

⋃

P ∈Pn

Δ(P ) ∪
⋃

v∈Vn

Δθ(v)
)

∀ n ≥ 1 and τ ∈ Sn. (7.7)

The following proposition is the key to proving Theorem 1.3.

Proposition 7.2. The tree S contains a subtree of type (I).

7.1.1. Proof of Theorem 1.3 modulo Proposition 7.2

This is essentially the same as the proof of Theorem 1.1 in [2]. However for complete-

ness we have included the short argument. Let S ′ be a subtree of S of type (I). We 

inductively prove that for every n ≥ 0,

Ayesha can choose An to be the inscribed closed disc of Φ(τn) for some τn ∈ S ′
n.

(7.8)

If n = 0, there is nothing to prove. Assume n ≥ 1 and Ayesha has chosen An−1 as 

the inscribed closed disc of Φ(τn−1), where τn−1 ∈ S ′
n−1. For any choice Bn ⊂ An−1 of

Bhupen, the inscribed square of Bn has side length

√
2

2
ρ(Bn) =

√
2

2
βρ(An−1) =

√
2

2
βℓ(Φ(τn−1)) =

√
2

2
βlR−n+1 = 2mlR−n.

Thus there exists 1 ≤ i ≤ [R/m]2 such that 
⋃

τ∈Tsuc(τn−1)(i) Φ(τ) ⊂ Bn. Let τn be the 

unique vertex in S ′
suc(τn−1)(i). Then Φ(τn) ⊂ Bn. Note that the diameter of the inscribed 

closed disc of Φ(τn) is equal to

ℓ(Φ(τn)) = R−1ℓ(Φ(τn−1)) = α0βρ(An−1) = α0ρ(Bn).
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So Ayesha can choose An to be the inscribed closed disc of Φ(τn). This proves (7.8).

In view of (7.8), (7.7) and (7.3), we have

∞
⋂

n=0

An ⊂
∞
⋂

n=0

Φ(τn) ⊂
∞
⋂

n=1

R2 \
(

⋃

P ∈Pn

Δ(P ) ∪
⋃

v∈Vn

Δθ(v)
)

= R2 \
(

⋃

P ∈Q2

Δ(P ) ∪
⋃

v∈Z2×N

Δθ(v)
)

⊂ Bad(i, j) ∩ Badθ(i, j).

This proves the theorem assuming the truth of Proposition 7.2. ⊠

7.2. Proof of Proposition 7.2

Let w > 0. By a strip of width w, we mean a subset of R2 of the form

L := {x ∈ R2 : |x · u − a| ≤ w/2},

where the dot denotes the standard inner product, u ∈ R2 is a unit vector, and a ∈ R. 

The following result is proved in [2, Corollary 4.2].

Lemma 7.3. For any n ≥ 1, there exists a partition Pn =
⋃n

k=1 Pn,k such that for 

any 1 ≤ k ≤ n and τ ∈ Sn−k, there is a strip of width 2
3 lR−n which contains all the 

rectangles

{Δ(P ) : P ∈ Pn,k, Φ(τ) ∩ Δ(P ) �= ∅}.

We now prove a corresponding result which takes into consideration the inhomoge-

neous approximation aspect.

Lemma 7.4. For any n ≥ 1 and τ ∈ Sn−1, there is at most one v ∈ Vn such that 

Φ(τ) ∩ Δθ(v) �= ∅. Moreover, Δθ(v) is contained in a strip of width 2
3 lR−n.

Proof. Suppose vs = (ps, rs, qs) ∈ Vn and Φ(τ) ∩ Δθ(vs) �= ∅, s = 1, 2. We need to prove 

that v1 = v2. Without loss of generality, assume that q1 ≥ q2. Since Φ(τ) ∩ Δθ(vs) �= ∅, 

there exists (xs, ys) ∈ Φ(τ) such that

|qsxs − (ps + γ)| ≤ c′

qi
s

, |qsys − (rs + δ)| ≤ c′

qj
s

.

It follows that

|(q1 − q2)x1 − (p1 − p2)| ≤ q2|x1 − x2| + |q1x1 − (p1 + γ)| + |q2x2 − (p2 + γ)|

≤ q2lR−n+1 +
2c′

qi
2

. (7.9)
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Similarly, we have that

|(q1 − q2)y1 − (r1 − r2)| ≤ q2lR−n+1 +
2c′

qj
2

. (7.10)

We first prove that q1 = q2. Suppose this is not the case. Then

∣

∣

∣
x1 − p1 − p2

q1 − q2

∣

∣

∣
≤ 1

q1 − q2

(

q2lR−n+1 +
2c′

qi
2

)

≤ 1

(q1 − q2)1+i

(

qi
1q2lR−n+1 + 2c′ qi

1

qi
2

)

≤ 1

(q1 − q2)1+i
(H ′

n+1lR−n+1 + 2c′R)

=
1

(q1 − q2)1+i

( c

2
+

1

3
cR−1

)

≤ c

(q1 − q2)1+i
.

Similarly,

∣

∣

∣
y1 − r1 − r2

q1 − q2

∣

∣

∣
≤ c

(q1 − q2)1+j
.

Thus, if we let

P0 :=
(p1 − p2

q1 − q2
,

r1 − r2

q1 − q2

)

,

then (x1, y1) ∈ Δ(P0). In particular, Φ(τ) ∩ Δ(P0) �= ∅. Let n0 ≥ 1 be the unique integer 

such that P0 ∈ Pn0
. It is easily verified that

n0 ≥ n. (7.11)

Indeed, if n0 ≤ n − 1, then Sn0
contains an ancestor τ ′ of τ and by (7.6) we have that

Φ(τ) ∩ Δ(P0) ⊂ Φ(τ ′) ∩ Δ(P0) = ∅ .

This is a contradiction since the left hand side is non-empty. Now, in view of (7.4) and 

(7.11), we have that

(q1 − q2)1+max{i,j} ≥ (q1 − q2) max{|AP0
|, |BP0

|} ≥ Hn0
≥ Hn = 6cl−1Rn.

On the other hand, we have that

(q1 − q2)1+max{i,j} ≤ q
1+max{i,j}
1 ≤ H ′

n+1 =
1

2
cl−1Rn−1 .
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This contradicts the above lower bound and so we must have that q1 = q2. It then follows 

via (7.9) and (7.10) that

|p1 − p2| ≤ q2lR−n+1 + 2c′ ≤ c + 2c′ < 1,

|r1 − r2| ≤ q2lR−n+1 + 2c′ ≤ c + 2c′ < 1.

The left hand sides of these inequalities are integers so we must have that p1 = p2 and 

r1 = r2. The upshot of this is that v1 = v2 and so establishes the main substance of 

the lemma. Regarding the moreover part, simply observe that for any v = (p, r, q) ∈ Vn, 

Δθ(v) is contained in a strip of width

min
{ 2c′

q1+i
,

2c′

q1+j

}

=
2c′

q1+max{i,j}
≤ 2c′

H ′
n

=
2

3
lR−n. ⊠

The following result proved in [2, Lemma 4.3] gives an upper bound for the number 

of certain squares which intersect a thin strip.

Lemma 7.5. Let R ⊂ T be a subtree of type (II), let n ≥ 1, and let L be a strip of 

width 2
3 lR−n. Then for any 1 ≤ k ≤ n and τ ∈ Rn−k, we have that

#{τ ′ ∈ R(τ)k : Φ(τ ′) ∩ L �= ∅} ≤ (3m − 2)k.

On combining Lemmas 7.3, 7.4 and 7.5, we obtain the following statement.

Corollary 7.6. Let R ⊂ T be a subtree of type (II) and let n ≥ 1. Then

• For any τ ∈ Sn−1 ∩ Rn−1, we have

#
{

τ ′ ∈ Rsuc(τ) : Φ(τ ′) ∩
(

⋃

P ∈Pn,1

Δ(P ) ∪
⋃

v∈Vn

Δθ(v)
)

�= ∅
}

≤ 2(3m − 2).

• For any 2 ≤ k ≤ n and τ ∈ Sn−k ∩ Rn−k, we have

#
{

τ ′ ∈ R(τ)k : Φ(τ ′) ∩
⋃

P ∈Pn,k

Δ(P ) �= ∅
}

≤ (3m − 2)k.

We are now in the position to prove Proposition 7.2. The proof is essentially the same 

as the proof of Proposition 3.3 in [2]. However for completeness we have included the 

argument. In view of Proposition 7.1, it suffices to prove that the intersection of S with 

every subtree of type (II) is infinite. Let R ⊂ T be a subtree of type (II), and let

R′ := R ∩ S, and an := #R′
n (n ≥ 0) .

Then a0 = 1. We prove that R′ is infinite by showing that
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an > 112an−1 (n ≥ 1) . (7.12)

We use induction. For n ≥ 1, let

Un :=
{

τ ∈ Rsuc(R′
n−1) : Φ(τ) ∩

(

⋃

P ∈Pn

Δ(P ) ∪
⋃

v∈Vn

Δθ(v)
)

�= ∅
}

.

It is easy to see from (7.6) that

R′
n = Rsuc(R′

n−1) \ Un ,

and so it follows that

an = #Rsuc(R′
n−1) − #Un = m2an−1 − #Un. (7.13)

On the other hand, we have that

Un =
{

τ ′ ∈ Rsuc(R′
n−1) : Φ(τ ′) ∩

(

⋃

P ∈Pn,1

Δ(P ) ∪
⋃

v∈Vn

Δθ(v)
)

�= ∅
}

∪
n

⋃

k=2

{

τ ′ ∈ Rsuc(R′
n−1) : Φ(τ ′) ∩

⋃

P ∈Pn,k

Δ(P ) �= ∅
}

⊂
⋃

τ∈R′

n−1

{

τ ′ ∈ Rsuc(τ) : Φ(τ ′) ∩
(

⋃

P ∈Pn,1

Δ(P ) ∪
⋃

v∈Vn

Δθ(v)
)

�= ∅
}

∪
n

⋃

k=2

⋃

τ∈R′

n−k

{

τ ′ ∈ R(τ)k : Φ(τ ′) ∩
⋃

P ∈Pn,k

Δ(P ) �= ∅
}

.

Thus, Corollary 7.6 implies that

#Un ≤ 2(3m − 2)an−1 +
n

∑

k=2

(3m − 2)kan−k. (7.14)

On combining (7.13) and (7.14), we obtain that

an ≥ (m2 − 3m + 2)an−1 −
n

∑

k=1

(3m − 2)kan−k = 182an−1 −
n

∑

k=1

43kan−k. (7.15)

With n = 1 in (7.15), we find that a1 ≥ 139. Hence, (7.12) holds for n = 1. Now assume 

n ≥ 2 and that (7.12) holds with n replaced by 1, . . . , n − 1. Then for any 1 ≤ k ≤ n, we 

have that

an−k ≤ 112−k+1an−1.
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Substituting this into (7.15), gives that

an ≥
(

182 − 112
n

∑

k=1

(43/112)k
)

an−1 > 112an−1.

This completes the induction step and thus establishes (7.12). In turn this completes the 

proof of Proposition 7.2. ⊠
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