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Abstract 

Carbon budgets, which define the total allowable CO2 emissions associated with a 

given global climate target, are a useful way of framing the climate mitigation 

challenge. In this paper, we review the geophysical basis for the idea of a carbon 

budget, showing how this concept emerges from a linear climate response to 

cumulative CO2 emissions. We then discuss the difference between a ǲCO2-only carbon budgetǳ associated with a given level of CO2-induced warming, and an ǲeffective carbon budgetǳ associated with a given level of warming caused by all 
human emissions. We present estimates for the CO2-only and effective carbon 

budgets for 1.5 and 2 °C, based on both model simulations and updated 

observational data. Finally, we discuss the key contributors to uncertainty in carbon 

budget estimates, and suggest some implications of this uncertainty for decision-

making. Based on the analysis presented here, we argue that while the CO2-only 

carbon budget is a robust upper bound on allowable emissions for a given climate 

target, the size of the effective carbon budget is dependent on the how quickly we 

are able to mitigate non-CO2 greenhouse gas and aerosols emissions. This suggests 

that climate mitigation efforts could benefit from being responsive to a changing 

effective carbon budget over time, as well as to potential new information that could 

narrow uncertainty associated with the climate response to CO2 emissions. 
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Introduction 

An important recent development in climate science is the finding that warming 

responds approximately linearly to cumulative CO2 emissions over time (Matthews 

et al. 2009; Allen et al. 2009; Gillett et al. 2013; Collins et al. 2013; Friedlingstein et 

al. 2014). This proportionality between cumulative emissions and global 

temperature change opens new avenues for how we approach climate mitigation 

(Matthews et al. 2012; Zickfeld et al. 2009), as well as our ability to predict the 

regional climate impacts associated with a given emission pathway (Leduc et al. 

2016). Importantly, this allows us to estimate a global carbon budget, which 

represents the total quantity of CO2 that can be emitted if we want to avoid 

exceeding a desired level of global temperature increase (Collins et al. 2013; 

Friedlingstein et al. 2014).  

Setting a finite budget of allowable CO2 emissions is a simple and easily understood 

way of framing the global climate challenge and the national emissions pathways 

that would be consistent with international climate targets (Gignac & Matthews 

2015; Raupach et al. 2014). However, there is a high level of confusion surrounding 

the use and estimates of carbon budgets in the scientific literature, which hampers 

their utility for climate policy development. The confusion stems from inconsistent 

methodologies and definitions among published carbon budget estimates, as well as 

from fundamental scientific uncertainties associated with estimating the climate 

response to a given quantity of emissions (Rogelj et al. 2016). Furthermore, there 

has been virtually no research focussed on estimating carbon budgets for less than 

2 °C of global warming; this is an urgent research gap that needs to be filled to support the Paris climate agreementǯs goal of ǲholding the increase in the global 

average temperature to well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to ͳǤͷ ιCǳ (Article 2 of the Paris Climate 

Agreement, available at: 

https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf).  

https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
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In this paper, we review the scientific basis of carbon budget estimates, focusing on 

how the concept of allowable emissions can be inferred from known (though 

uncertain) geophysical constraints emerging from the climate response to 

cumulative CO2 emissions. We begin by discussing the climate response to CO2 

emissions alone, and the resulting carbon budget estimates associated with a given 

amount of CO2-induced warming. We then show how this CO2-only budget can be 

adjusted to account for the effect of non-CO2 greenhouse gas and aerosol emissions, 

which results in an ǲeffectiveǳ estimate of the total CO2 emissions associated with a 

given climate target. Finally, we discuss the important contributors to uncertainty in 

carbon budget estimates, and the implications of this uncertainty for emissions 

targets. Throughout, we focus on the climate targets of 1.5Ȃ2 °C above pre-industrial, 

as stipulated in the Paris Climate Agreement. 

 

Geophysical basis for a carbon budget 

The climate response to CO2 emissions is well characterized by a linear temperature 

response to cumulative emissions of CO2 over time (Matthews et al. 2009; Allen et al. 

2009; Gillett et al. 2013; Collins et al. 2013; Friedlingstein et al. 2014; MacDougall & 

Friedlingstein 2015; MacDougall 2016). The slope of this relationship Ȃ the 

temperature change per unit emission of CO2 Ȃ has now been defined as the ǲTransient Climate Response to cumulative CO2 Emissionsǡǳ or TCRE (Gillett et al. 

2013; Collins et al. 2013; Gregory et al. 2009). Analyses of the climate response to 

cumulative emissions have shown that the TCRE remains approximately constant 

for total emissions up to several thousand giga-tonnes of carbon (GtC), and is highly 

path-independent in that the value of the TCRE shows only a small variation across 

a wide range of CO2 emission scenarios (Zickfeld et al. 2012; Matthews & Zickfeld 

2012; Leduc et al. 2015; Tokarska et al. 2016). 

 

Another important feature of the climate and carbon cycle system is the fast climate 

response to CO2 emissions (Ricke & Caldeira 2014; Matthews & Solomon 2013; 
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Zickfeld & Herrington 2015). This response time was recently quantified by Ricke 

and Caldeira (2014) who showed that the peak warming occurs 10 years after a 100 

GtC pulse emission of CO2. Zickfeld and Herrington (2015) further showed that the 

climate response time varies as a function of the size of the emission pulse, such that 

larger pulse sizes as associated with a longer response time. By extension, the 

climate response to small changes in CO2 emissions should be effectively 

instantaneous (Matthews & Solomon 2013).  

 

This fast climate response time to small changes in CO2 emissions supports a third 

important feature of the climate response to CO2 emissions: that the unrealized 

warming associated with past CO2 emissions is small (Matthews & Caldeira 2008). The future warming associated with past emissions is defined as the ǲZero-

Emissions Commitmentǳ (ZEC), which represents the amount of additional warming 

that occurs after CO2 emissions have been set to zero. Analyses of the ZEC across a 

range of different climate models suggest that there is little (if any) unrealized 

warming associated with past CO2 emissions, but rather that global temperature 

remain approximately constant for several centuries after CO2 emissions reach zero 

(Zickfeld et al. 2013; Matthews & Caldeira 2008; Matthews & Zickfeld 2012; 

Solomon et al. 2009; Lowe et al. 2009; Matthews & Weaver 2010; Gillett et al. 2011; 

Nohara et al. 2015). This arises as a result of the near-cancellation of opposing 

inertial effects associated with ocean heat and carbon uptake. In the case of constant 

atmospheric CO2, ocean thermal inertia would lead to continued warming for 

decades to centuries; however, in the context of zero CO2 emissions, the continued 

uptake of CO2 by the ocean leads to declining atmospheric CO2 concentrations which 

largely cancels the effect of ocean thermal inertia and results in near-constant global 

temperature over time (Matthews & Solomon 2013; Matthews & Weaver 2010). 

This relative balance of ocean thermal and carbon cycle inertia does vary among 

models, though while some models show larger amounts of unrealized warming 

(Frölicher & Paynter 2015), the occurrence of substantial continued warming after 

zero emissions is generally restricted to simulations driven by very high (>2000 

GtC) levels of cumulative emissions (Frölicher et al. 2014; Zickfeld & Herrington 
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2015; Leduc et al. 2015; Nohara et al. 2013). This body of literature therefore 

suggests that the quantity of emissions produced to date is consistent with the CO2-

induced warming that has already occurred, with little additional expected future 

warming commitment, and also little recovery from current levels of warming on 

centennial timescales.  

 

The concept of a carbon budget Ȃ the total allowable CO2 emissions consistent with a 

given amount of global temperature increase Ȃ is therefore a robust measure of 

human-climate influence that emerges from these three properties of the climate-

carbon cycle system: (1) that global temperature responds linearly to cumulative 

CO2 emissions, as defined by the TCRE; (2) that the climate response time to CO2 

emission is fast; and (3) that the realized warming associated with total CO2 

emissions to date is approximately the same as the centennial-scale legacy of these 

same emissions. As a consequence, the total amount of CO2 emissions as inferred 

from the TCRE is uniquely associated with remaining below a given level of CO2-

induced warming on timescales of 10 to several hundred years. This quantity has 

been defined as the ǲCO2-only carbon budgetǳ to represent the total allowable CO2 

emissions associated with a given amount of CO2-only warming (Rogelj et al. 2016). 

And in the case of low temperature targets, the CO2-only budget is consistent with 

both meeting and also not exceeding the targeted amount of CO2-induced 

temperature change. That is, there is little difference here between the budgets 

associated with exceeding or avoiding 1.5Ȃ2 °C (i.e. the threshold exceedance or 

threshold avoidance budgets, as defined by Rogelj et al, 2016).   

 

Estimates of CO2-only carbon budgets 

 

The CO2-only carbon budget can be understood simply as the inverse of the TCRE. 

While the TCRE equals οT/ET (where οTαglobal temperature change and ET = 

cumulative emissions over time), the carbon budget per degree of warming = ETȀοTǤ 
The CO2-only carbon budget for a given climate target (T*) is therefore T*/TCRE. 

This simple relationship between the TCRE and the CO2-only carbon budget is 
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shown in Figure 1. 

 

The TCRE can be estimated from either Earth system models (ESMs) that include a 

dynamic representation of the global carbon cycle, or from the observational record. 

Across the current generation of climate models, as represented by the ESMs 

included in the CMIP5 model ensemble, the TCRE varies from 0.8Ȃ2.4 °C/1000 GtC 

(Gillett et al. 2013), with an median value of 1.6 °C/1000 GtC [calculated from CO2-

only simulations with CO2 concentrations increasing by 1% per year].  

 

Estimating the TCRE from the observational record requires first identifying the 

proportion of observed warming attributable to CO2 alone, and then calculating the 

TCRE as a function of observed CO2-induced warming and historical cumulative CO2 

emissions from fossil fuels and land-use change. Applying this approach, Gillett et al. 

(2013) estimated an observationally-constrained (5-95%) TCRE range of 0.7Ȃ
2.0 °C/1000 GtC, with a best-estimate of 1.35 °C/1000 GtC.  

 

The CO2-only carbon budgets estimates associated with these TCRE values are 

summarized in Table 1. The model-average TCRE of 1.6 °C/1000 GtC suggests a 

global carbon budget of 625 GtC per degree, or 940 Gt C and 1250 Gt C for 1.5 and 

2 °C of CO2-induced warming, respectively. [Note: all carbon budget values are 

rounded to the nearest 5 GtC]. By contrast, the observationally-based TCRE of 

1.35 °C/1000 GtC suggests a larger carbon budget of 740 GtC per degree, or 1110 

GtC and 1480 GtC for 1.5 and 2 °C of CO2-induced warming. It is clear that 

differences in the sensitivity of the climate system to CO2 emission, as illustrated 

here by the difference between model- and observationally-based TCRE estimates, 

can have a large effect on the size of the CO2-only carbon budgets for 1.5Ȃ2 °C.  

 

Influence of non-CO2 greenhouse gases and aerosols 

 

The CO2-only carbon budget is well grounded in the science of the climate system 

response to cumulative CO2 emissions, and can be easily estimated from the TCRE. 
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However, the real climate system is also influenced by non-CO2 greenhouse gas and 

aerosol emissions, as well as changes in surface albedo due to land-use. The effect of 

non-CO2 emissions is complicated by the large number of individual forcing agents, 

which have widely varying atmospheric lifetimes that are in general considerably 

shorter than that of CO2. While the climate response to CO2 is well characterized by 

the TCRE, and similar relationships have been proposed for other long-lived 

greenhouse gases (Smith et al. 2012), there is no simple linear scaling factor that can 

be applied to all non-CO2 emissions. Although scientifically robust, the CO2-only 

carbon budget is not by itself enough to inform efforts to meet climate targets, as it 

does not account for the additional net warming expected from these other 

emissions. It is important therefore to adjust the CO2-only carbon budget to account 

for non-CO2 emissions and related warming. 

 

According to the IPCC forcing estimates, non-CO2 forcing Ȃ including the combined 

effect of all non-CO2 greenhouse gases and aerosols Ȃ currently accounts for 23% of 

the total anthropogenic forcing (Myhre et al. 2013) [here, values from 1750-2011 

from Myhre et al. (2013) were extended to 2015 using observations from the NOAA 

greenhouse gas index (http://www.esrl.noaa.gov/gmd/aggi/aggi.html) and 

adopting RCP6 percentage trends over 2011-2015 for the other anthropogenic 

forcing agents (Meinshausen et al. 2011); from 2011 to 2015 greenhouse gas forcing 

increased by 5% and non-greenhouse forcings changed very little]. Using the 

simplifying assumption that this ratio of forcings approximately represents the ratio 

of contributions to historical warming, we infer that about 77% of the observed 

warming up to the year 2015 can be attributed CO2 forcing, with the remaining 

observed warming attributable to non-CO2 emissions. We can then define an ǲeffective TCREǳ which represents the global temperature response to cumulative 

CO2 emissions, adjusted to implicitly include the effect of non-CO2 forcing. 

 

The effective TCRE can be estimated from observations as: TCREeff α οTobs / ET, where οTobs is the observed human-induced global temperature change and ET 

represents the cumulative historical CO2 emissions from fossil fuels and land-use 

http://www.esrl.noaa.gov/gmd/aggi/aggi.html
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change. To represent the human contribution to observed warming, we use the ǲGlobal Warming Indexǳ (GWI) (Otto et al. 2015; Haustein et al. 2016), which allows 

us to remove the effect of particularly warm or cold individual years on the estimate 

of human-induced climate change. When updated to the end of 2015, the GWI gives 

an observed human-induced temperature increase of 0.99°C, relative to the 1861-

1880 average(Haustein et al. 2016). Total historical CO2 emissions between 1870 

and 2015 are 555 GtC (Le Quéré et al. 2015), which gives a TCREeff of 1.78 °C/1000 

GtC (0.99 °C / 555 Gt C).  

 

The effective TCRE is therefore an estimate of the warming caused by a given 

quantity of CO2 emissions, scaled upwards to account for the additional warming 

from non-CO2 emissions. The ratio of TCRE to TCREeff should therefore be equal to 

the ratio of CO2 to total anthropogenic forcing. Using the observationally-based best 

estimate for the TCRE of 1.35 °C/1000 GtC, we can see that the ratio of TCRE to 

TCREeff is 1.35/1.78 = 0.76, which is consistent with the current ratio of CO2 to total 

anthropogenic forcing taken from the IPCC forcing estimates (see Figure 2). Updated 

estimates of year-2015 anthropogenic warming, CO2 emissions and anthropogenic 

forcing therefore support Gillett et al (ʹͲͳ͵Ȍǯs observationally constrained TCRE of 
1.35 °C/1000 GtC, and a corresponding TCREeff of 1.78 °C/1000 GtC. 

 

An alternate method to estimate the TCREeff would be to scale the CMIP5 model-

based TCRE according to the ratio of CO2 to total forcing as simulated by this model 

ensemble, again assuming that temperature response is approximately proportional 

to forcing. As plotted in Figure 2, CO2 makes up about 86% of total anthropogenic 

forcing at the year 2015 in the CMIP5 models; this value is consistent with the 

ensemble-average for RCP scenarios 8.5, 4.5 and 2.6, noting that there is some 

variation in the ratio of CO2 to total forcing among scenarios, and also among 

individual CMIP5 models for a particular RCP scenario (Meinshausen et al. 2011). 

Using the CMIP5 TCRE of 1.6 °C/1000 GtC, this results in a TCREeff of 1.6/0.86 = 

1.86 °C/1000 GtC. This model-based TCREeff suggests an observed warming of 

1.03°C at the end of 2015 (1.86 °C/1000 GtC * 555 GtC) which, while slightly higher 
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than the GWI best estimate of 0.99°C for this date, is well within the 5-95% 

uncertainty range of the GWI (Ȃ0.14 to +0.22 °C) (Haustein et al. 2016). It is worth 

noting that the difference between the model-based and observationally-based 

estimate of the TCREeff (1.86 vs. 1.78 °C/1000 GtC) is smaller than the difference for 

the CO2-only TCRE (1.6 vs. 1.35 °C/1000 GtC). This smaller TCREeff difference is 

explained by a smaller total anthropogenic forcing (about 0.3 W/m2) in the CMIP5 

ensemble compared to the IPCC forcing estimate, which in turn reflects an overall 

larger negative aerosol forcing in the CMIP5 models compared to the IPCC forcing 

data. As a result, the ratio of CO2 to total forcing is larger in the CMIP5 models than 

the IPCC forcing data, as can be seen in Figure 2. This highlights the important role 

of aerosol forcing uncertainty in particular as a constraint on our ability to validate 

TCREeff estimates against the observational record. 

 

These estimates of the TCREeff can be used to estimate an effective carbon budget, 

which represents the total quantity of CO2 emissions that is consistent with a given 

climate target, while allowing for additional non-CO2 warming. Using the 

observationally-based TCREeff of 1.78 °C/1000 GtC suggests an effective carbon 

budget of 560 GtC per degree, or 845 GtC for 1.5 °C and 1125 GtC for 2 °C. Using the 

model-based TCREeff of 1.86 °C/1000 GtC results in an effective carbon budget of 

540 GtC per degree, or 805 GtC for 1.5 °C and 1075 GtC for 2 °C (see Table 2). 

 

These effective carbon budgets, as derived either from models or from historical 

data, are therefore a first-order estimate of the quantity of CO2 that would be 

consistent with 1.5 or 2 °C of global warming, allowing for a portion of this warming 

to come from additional non-CO2 emissions. This calculation implicitly assumes that 

the ratio of CO2 to total anthropogenic forcing will remain approximately constant 

as we approach these targets. There are important caveats to this assumption, 

however, that limit the utility of this simple TCRE-based derivation of effective 

carbon budgets.  

 

In general, CO2 forcing will continue to increase until the point that global CO2 
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emissions drop below the level of natural sinks; at the point that we reach 1.5 or 

2 °C of global warming, the level of CO2 in the atmosphere will therefore necessarily 

be higher than today. The assumption of a constant ratio of CO2 to total forcing 

would only be consistent with a scenario of a net increase in non-CO2 forcing, at a 

rate comparable to the rate of increase in CO2 forcing. This is a plausible assumption 

for the next decade or two, as expected decreases in global aerosol emissions (and 

associated negative forcing) are likely to result in a near-term increase in net non-

CO2 forcing. However, it is unlikely that non-CO2 forcing will continue to increase, 

given that efforts to curb greenhouse gas emissions are unlikely to be applied only 

to CO2 and not also to other non-CO2 greenhouse gases. We therefore argue that in 

the context of ambitious mitigation scenarios that are consistent with 1.5Ȃ2 °C 

climate targets, it is very likely that by the time we reach 1.5 or 2 °C of climate 

warming, net non-CO2 forcing will be smaller than today, and consequently that the 

ratio of CO2 to total anthropogenic forcing will increase over time (as is the case for 

the RCP2.6 scenario, as shown in Figure 2).  

 

This in turn means that the effective carbon budget for 1.5Ȃ2 °C will likely increase 

over time, becoming larger than the values given in Table 2; for example, if we were 

successful in mitigating non-CO2 emissions rapidly enough such the ratio of CO2 to 

total forcing were to increase to 0.93 (the maximum value in RCP2.6), this would 

imply an effective carbon budget of 580 GtC per degree (870 GtC for 1.5 °C; 1165 

GtC for 2 °C) based on the model-based TCRE of 1.6 °C/1000 GtC and the resulting 

TCREeff of 1.72 °C/1000 GtC at the time that we reach 1.5 or 2 °C. We suggest 

therefore that the TCREeff, and associated effective carbon budget, be treated as 

quantities that will change over time in response to our own climate policy 

decisions regarding non-CO2 mitigation. This time and scenario-dependence of the 

effective carbon budget is plotted in Figure 3, which shows that the range of non-

CO2 mitigation across the RCP scenarios results in an effective carbon budget range 

of 90 GtC per degree, or about 17% of the estimate based on year-2015 forcing 

ratios.  
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Key contributions to carbon budget uncertainty 

 

The values given above represent best estimates of the TCRE and associated TCREeff 

based on currently-available model output and observational data. While the 

observationally-constrained estimates could arguably be considered to be the more 

reliable of the two (Gillett et al. 2013), the model-based estimates are also 

consistent with the range of uncertainty associated with observed temperature 

changes and should therefore be considered to be a similarly plausible 

representation of the climate response to cumulative human CO2 emissions. We 

therefore suggest here that the range of values between the observationally- and 

model-based estimates shown in Table 2 should be taken as a range of best 

estimates of the effective carbon budgets for 1.5Ȃ2 °C. These values are considerably 

larger than most previous carbon budget estimates (IPCC 2014; Friedlingstein et al. 

2014; Rogelj et al. 2016), though are consistent with a recent reassessment of 

CMIP5 model results in light of observed temperature changes (Millar, Fuglestvedt, 

et al. 2016). 

 

However, in the context of setting emissions targets for a given level of global 

temperature increase, these best estimates are only consistent with a 50% chance of 

remaining below the desired level of global warming. Given the large uncertainty in 

the climate response to emissions, increasing the confidence level associated with 

meeting a climate target (e.g. to a 67% chance) can result in a substantial decrease 

in allowable emissions. For example, if the model-based range of TCRE is assumed 

to represent a Gaussian distribution with 5th and 95th percentiles of 0.8 and 

2.4 °C/1000 GtC, this would mean that the TCRE has a 67% chance of being less than 

1.8 °C/1000 GtC and a 90% chance of being less than 2.2 °C/1000 GtC. The increase 

in confidence from a 50 to 67% chance in remaining below the desired climate 

target requires using a 12.5% higher value for the TCRE, and results in a 

corresponding decrease in the carbon budget for a given climate target (i.e. by 70 

GtC per °C of target). Similarly, increasing the confidence from 50 to 90% decreases 

the carbon budget by about 27% (170 GtC per degree). For comparison, the 
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difference between the model-based CO2-only and effective carbon budgets 

(reflecting the effect of accounting for non-CO2 warming) is 85 Gt C (Table 1 vs. 

Table 2). 

 

This idea of assigning a likelihood of meeting a climate target given some carbon 

budget has been used in most previous assessments of carbon budgets associated 

with different levels of climate change (Friedlingstein et al. 2014; Rogelj et al. 2016). 

However, the method accounts for only one source of quantified uncertainty: the 

uncertainty associated with the climate response to CO2 emissions. This implicitly 

includes the contribution of climate sensitivity (or more precisely, transient climate 

response) uncertainty, as well as the uncertainty associated with the uptake of 

anthropogenic CO2 by land and ocean carbon sinks (which further includes the 

uncertainty associated with climate-carbon feedbacks that govern how carbon sinks 

are affected by CO2 (or non-CO2)-induced warming). It also indirectly accounts for 

uncertainty associated with observed temperature change and the present-day 

strength of non-CO2 forcing, in that a higher TCRE would have to be associated with 

smaller net non-CO2 forcing (e.g. due to stronger negative aerosol forcing) in order 

to remain consistent with the observational record.  

 

These above likelihood values do not, however, account for the uncertainty 

associated with future non-CO2 emission pathways, and therefore do not account for 

the critical question of how strong non-CO2 forcing will be at the time that we are 

approaching 1.5Ȃ2 °C of climate warming. Given that the majority of the non-CO2 

forcing is the result of gases and aerosols with short atmospheric lifetimes Ȃ so-called ǲshort-lived climate forcersǳ or SLCFs Ȃ the strength of non-CO2 forcing is 

primarily determined by the annual rate of emissions, rather than (as is the case for 

CO2) the total accumulated emissions over time (Smith et al. 2012). Consequently, 

the level of non-CO2 emissions several decades from now will have a very large 

influence on the effective carbon budget associated with 1.5Ȃ2 °C of climate 

warming. And unlike the likelihood values associated with the climate response 

uncertainty above, there are no equivalent likelihood values that have been 
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estimated for future non-CO2 emissions pathways. Previous analyses have therefore 

considered the range of non-CO2 forcing strengths across the RCP scenarios as a 

plausible range, and have used these values to estimate a range of effective carbon 

budgets, without assigning any additional likelihood values to this range (Rogelj et 

al. 2016; Friedlingstein et al. 2014)Ǥ This has resulted in a very large range of ǲlikelyǳ 

(i.e. 67% chance of remaining below the target) carbon budgets, which limits their 

usefulness to climate policy.  

 

While there is no immediate solution to the problem of how to apply likelihood 

values to the mitigation decisions that will determine future non-CO2 forcing, we 

here attempt to clarify what these human decisions mean for carbon budget 

estimates. First, for any climate target in the range of 1.5Ȃ2 °C it seems highly 

unlikely that non-CO2 emissions will follow a business-as-usual trajectory, with 

human mitigation effort concentrated solely on decreasing CO2 emissions. This then 

suggests that the lower-end of the RCP non-CO2 forcing range (which makes up 

between 7 and 15% of total forcing during the second half of this century as shown 

in Figure 2) is much more likely than the higher non-CO2 forcing in RCP8.5. This in 

turn implies that effective carbon budgets based on the current strength of non-CO2 

forcing (as in Table 2) should be taken as conservative estimates with a high 

likelihood that the eventual effective carbon budget will be closer to (but lower 

than) the CO2-only carbon budgets listed in Table 1. Second, the implication that 

emerges here for climate mitigation decision making is that while the size of CO2-

only carbon budget is governed entirely by geophysical constraints, the difference 

between CO2-only and effective carbon budgets depends primarily on human 

decisions. If we decide to aggressively mitigate non-CO2 emission such that non-CO2 

forcing at the time we reach 1.5Ȃ2 °C is small, then this will enlarge the effective 

carbon budget, thereby increasing the amount of cumulative CO2 emissions that 

would be consistent with the desired target.  

 

It is worth commenting briefly on a third source of uncertainty, which is associated 

with the climate response time to emissions. As argued above, there is evidence to 
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suggest that the climate response time to CO2 emissions is small (Ricke & Caldeira 

2014), implying that CO2-induced temperature change remains relatively stable 

once emissions are stopped (Matthews & Weaver 2010). For non-CO2 agents, 

however, global temperature does change after the elimination of emissions, leading 

to non-negligible positive or negative ZECs associated with current emissions of 

different short-lived species. This is well illustrated by the case of aerosols 

emissions, which include a range of individual aerosol types that both warm and 

cool the climate. On balance, aerosols currently produce a net negative forcing, and 

decreased emissions would therefore warm the climate, though this effect would of 

course vary depending on the relative effectiveness of mitigating different aerosol 

types. In the case of short-lived greenhouse gases (such as methane or tropospheric 

ozone), decreased emissions would result in cooling in response to declining forcing. 

Matthews and Zickfeld (2012) estimated the ZEC associated with both CO2 and non-

CO2 emissions, showing that an abrupt elimination of all emissions would lead to a 

warming of a few tenths of a degree over about a decade, followed by a gradual 

cooling that returned global temperatures to close to present-day levels over the 

course of about two centuries. This result implies that complete elimination of 

current non-CO2 emissions would likely cause a small initial warming as aerosol 

forcing abruptly dissipates, and would then gradually reverse in line with eventually 

declining non-CO2 greenhouse gas forcing. Again, however, this potential warming 

response depends primarily on human mitigation decisions, and not on any inherent 

geophysical constraints.  

 

A final source of uncertainty relates to the potential effect of important processes 

that are still missing from, or poorly represented in, the current generation of Earth 

system models. For example, accounting for CO2 release from thawing permafrost 

would decrease the size of the CO2-only carbon budget, though like other carbon 

cycle feedbacks, the effect of permafrost melt does not invalidate the concept of a 

carbon budget and the associated linear relationship between warming and 

cumulative CO2 emissions (MacDougall et al. 2015). Changing fire dynamics could 

also have a important consequences for the carbon cycle (Landry et al. 2015) and 
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therefore for carbon budget estimates. In general however, the uncertainty 

surrounding human decisions has much greater bearing on future warming 

estimates than do these geophysical uncertainties (Hawkins & Sutton 2009; Fyke & 

Matthews 2015). And as outlined above, human decision uncertainty is also an 

important direct contributor to the differences in effective carbon budget estimates, 

which emphasizes the critical importance of effective climate mitigation decision-

making that reflects and accommodates for fundamental geophysical uncertainty. 

 

Conclusions 

 

Despite the large uncertainty range on any estimate of a carbon budget for a given 

climate target, the idea that there is a finite amount of CO2 that is allowed to be 

emitted remains an appealing way of framing the climate mitigation challenge. CO2-

only carbon budgets represent a simple and robust quantity that emerges from a set 

of increasingly well-understood processes that govern the climate response to 

cumulative CO2 emissions. Effective carbon budgets, which define the allowable CO2 

emissions for a given climate target while allowing for additional warming from 

non-CO2 emissions, are less robust because they are less governed by geophysical 

constraints. This means that the eventual size of the effective carbon budget will be 

highly influenced by human decisions and in particular by our ability to mitigate 

emissions of short-lived greenhouse gases and aerosols.  

 

This responsiveness of the size of effective carbon budgets to human decisions 

implies the need for climate mitigation strategies that are able to adapt to new 

information about the climate response to emissions (Millar, Allen, et al. 2016), as 

well as to our success or failure at aggressively mitigating emissions of short-lived 

species. It may therefore be less important to precisely estimate the size of the 

effective carbon budget now, as it is to implement strong non-CO2 emission 

mitigation policies that would enlarge the carbon budget, in parallel with efforts to 

mitigate emissions of CO2 themselves. However, it is also crucial that efforts to curb 

non-CO2 emissions do not replace mitigation of CO2, as this would increase both 
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peak and long-term warming (Pierrehumbert 2014). While the CO2-only budget 

represents a firm (if uncertain) upper limit on total allowable emissions, the smaller 

effective carbon budget is a quantity that will become more clear only as we move 

forward with ambitious climate mitigation efforts aimed at limiting climate 

warming to the 1.5Ȃ2 °C range committed to in the Paris Climate Agreement. 
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Table 1: Best-estimates of the TCRE (Transient Climate Response to cumulative CO2 

Emissions) from climate models and observational data, with corresponding 

estimates of the CO2-only carbon budgets associated with a given amount of CO2-

induced global temperature increase. Values in parentheses are in units of CO2 

rather than C, where 1 tonne of C = 3.67 tonnes of CO2, and all carbon budget values 

are rounded to the nearest 5 Gt. 

  
CO2-only Carbon budgets 

 
TCRE per °C 1.5 °C 2 °C 

CMIP5 models 
1.6 °C / 1000 GtC 

 (0.44 °C / 1000 GtCO2) 

625 GtC 

 (2290 GtCO2) 

940 GtC 

 (3445 GtCO2) 

1250 GtC 

 (4585 GtCO2) 

Observations 
1.35 °C / 1000 GtC 

 (0.37 °C / 1000 GtCO2) 

740 GtC 

 (2715 GtCO2) 

1110 GtC 

 (4070 GtCO2) 

1480 GtC 

 (5425 GtCO2) 

 

 

 

Table 2: Best-estimates of the TCREeff (ǲeffective TCREǡǳ representing the climate 
response to cumulative CO2 emissions, scaled upwards to account for additional 

non-CO2 warming) from climate models and observational data, with corresponding 

estimates of the effective carbon budgets associated with a given amount of global 

temperature increase resulting from all human emissions. Values in parentheses are 

in units of CO2 rather than C, where 1 tonne of C = 3.67 tonnes of CO2, and all carbon 

budget values are rounded to the nearest 5 Gt. 

 

  
Effective Carbon budgets 

 
Effective TCRE per °C 1.5 °C 2 °C 

CMIP5 models 
1.86 °C / 1000 GtC 

 (0.51 °C / 1000 GtCO2) 

540 GtC 

 (1980 GtCO2) 

805 GtC 

 (2950 GtCO2) 

1075 GtC 

 (3940 GtCO2) 

Observations 
1.78 °C / 1000 GtC 

 (0.49 °C / 1000 GtCO2) 

560 GtC 

 (2055 GtCO2) 

845 GtC 

 (3100 GtCO2) 

1125 GtC 

 (4125 GtCO2) 
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Figure 1 Relationship between the cumulative CO2 emissions and CO2-induced 

temperature change for two different estimates of the TCRE. CO2-only carbon 

budget ranges for 1.5Ȃ2 °C associated with this range of TCRE values are marked on 

the horizontal axis. The two values of the TCRE illustrated here are the median of 

the ensemble of CMIP5 Earth-system models (1.6 °C/1000 GtC; blue line) and the 

observationally-constrained best estimate (1.35 °C/1000 GtC; red line) (Gillett et al. 

2013). 
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Figure 2: Ratio of CO2 to total anthropogenic forcing from the IPCC forcing estimates 

(dotted line) and the CMIP5 model ensemble (solid lines). IPCC forcing data is 

calculated according to Myhre et al. (2013), updated to the year 2015. CMIP5 forcing 

data is approximated here using forcing data from Meinshausen et al. (2011), which 

gives forcing estimates using the MAGICC model, scaled to match the mean response 

of the CMIP5 model ensemble. 
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Figure 3: Effective carbon budget estimates (per 1 °C), based on a constant CO2-only 

budget scaled using the ratios of CO2 to total anthropogenic forcing shown in Figure 

2. Both model-based (solid lines) and observationally-based (dashed line) estimates 

of the effective carbon budgets are shown, calculated using their respective CO2-

only budget estimates from Table 1 (thin horizontal lines). Values in Table 2 

correspond to the year-2015 values taken from these time-series (where the model-

based estimate for 2015 is consistent with the RCP2.6, RCP4.5 and RCP8.5 scenarios, 

rather than with RCP6 which shows a slightly higher year-2015 effective carbon 

budget). 
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