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Abstract 

In an attempt to obtain accurate values of the gas permeability of the microporous layer (MPL), 

substrates with negligible MPL penetration and of known gas permeability, i.e. membrane 

filters, have been employed. The values of the MPL permeability obtained using the membrane 

filters were compared with those obtained conventionally using the carbon substrates. Due to 

MPL penetration, the MPL permeability obtained using the carbon substrate were found to 

decrease with carbon loading. On the other, due to negligible penetration, the MPL 

permeability obtained using the membrane filters were found to be almost invariant with the 

carbon loadings. Furthermore, the MPL permeability was found to be sensitive to the substrate 

used: more cracks (and subsequently substantially higher permeability) were shown by the 

MPLs coating the carbon substrates. This implies that the MPLs coating the carbon substrates 

and the MPLs coating the membrane filters are structure-wise different. It subsequently means 

that the MPL permeability obtained using the membrane filters cannot be used to estimate the 

MPL penetration into the carbon substrates. 

 

Keyword:  PEFCs; Microporous layer; Gas permeability; Penetration. 
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1. Introduction 

A polymer electrolyte fuel cells (PEFC) is a promising clean power conversion technology as 

it has some very appealing features: high efficiency, rapid start-up and ease of manufacture [1-

2.]. The gas diffusion layers (GDLs) play a crucial role in PEFCs. They are supposed to: 

distribute the reacting gases to the catalyst layer; remove excess liquid water away from the 

catalyst layer; act as an intermediate layer to transport electrons and heat between the catalyst 

layers and the flow-field plates [2-10]. The GDL is normally treated with a hydrophobic agent 

such as polytetrafluorethylene (PTFE) to enhance its ability to reject liquid water. The surface 

of the GDL facing the catalyst layer is also coated with a thin layer composed of carbon powder 

and PTEF particles to improve the contact with the catalyst layer and assist in removing liquid 

water from the cathode catalyst layer; this thin layer is called the microporous layer (MPL). 

The bare GDL, i.e. the GDL without the MPL, is often called the carbon substrate; the latter 

term will be used in this work. Notably, most of the modelling studies treat the carbon substrate 

and the MPL as a single component that normally has the characteristics of the carbon substrate 

[11, 20, 23, 25-27]. However, the relevant experimental studies have shown that the MPL has 

physical properties that are different to those of the carbon substrate by up to 2-3 orders of 

magnitudes [12]. Therefore, to have more predictive results from the modelled PEFCs, it is 

important to characterise the MPLs. Recognising this importance, there have been 

investigations to estimate, for example, the gas diffusivity [13-14, 16-17] and the thermal 

conductivity [17] of the MPLs. 

For the two-phase modelled PEFCs, it is important to use accurate values for the permeability 

of the various porous layers in the membrane electrode assembly (MEA); the MEA is the heart 

of the fuel cell and typically consists of an electrode and GDL at each side of the fuel cell and 

a single polymeric membrane electrolyte at its centre. The permeability significantly affects 

the capillary diffusivity and consequently the saturation profile within the MEA [17]. The focus 
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of this work is to accurately estimate the gas permeability of the MPL. To achieve this, we need 

accurate estimation of the thickness of the MPL coating the carbon substrate. However, the 

MPL penetration into carbon substrate is significant [19, 22] and therefore the accurate 

estimation of the ‘real’ thickness of the MPL is a challenging task. The investigators normally 

assume that the difference in thicknesses, measured by a micrometer or estimated from cross-

sectional images, before and after MPL coating is the thickness of the MPL [21, 24, 26]. 

Apparently, this approach incurs some inaccuracy in determining the MPL permeability and 

this is due to the MPL penetration mentioned above. To isolate the MPL penetration effects 

and subsequently accurately estimate the MPL permeability, one needs to use an appropriate 

porous substrate that is intolerant to penetration when applying the MPL ink; we have adopted 

this approach in this work. Specifically, the MPL permeability has been first determined 

conventionally using the carbon substrates and then determined using a membrane filter that 

has shown negligible penetration. The results have been then compared and contrasted. 

Furthermore, one would think that obtaining the accurate value of the MPL permeability will 

allow for the determination of the MPL penetration into the carbon substrate. This idea is 

explored in this work. 

2. Materials and methods 
 

Two commercial carbon black powders were considered in this study, namely Ketjenblack EC-

300J MPL (AkzoNobel, the Netherlands) and Vulcan XC-72R (Cabot Corporation, USA). Table 1 

summarises the physical properties of the carbon blacks as provided by the manufacturers. The 

carbon substrate used in this study was SGL 10BA (SGL Carbon GmbH, Germany). The 

physical properties of the SGL 10BA carbon substrate, as provided by the manufacturers, are 

listed in Table 2. A membrane filter, AAWP02500 (Merck Millipore, US), with a diameter of 

25 mm, a thickness of 140 µm and pore size of 0.8 µm, was selected as a candidate substrate 

that allows negligible MPL penetration.  
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[Insert Table 1 and Table 2] 

Five sets of MPL-coated GDL samples were prepared following the procedures available in 

[18, 22, 29]. In each set, there were 6 samples which share the same carbon loading in the 

MPLs. The carbon loadings considered were 0.5, 1.0, 1.5, 2.0 and 2.5 mg/cm2. The MPL 

composition of all the carbon loadings by weight in the MPL ink has been kept unchanged: 80 

% carbon black and 20 % PTFE. The hydrophobic agent used was 60 wt. % PTFE emulsion 

(Sigma-Aldrich, UK). The calculated amounts of the carbon black and the PTFE dispersion 

were manually mixed until a paste-like material was formed. Isopropyl alcohol was added, as 

a dispersion agent, to the formed mixture and the resulting slurry was sonicated until an ink 

with a good dispersion was formed. In this work, nitrogen gas is used for applying the ink 

slurry on the surfaces of the samples. The samples of the carbon substrates were made circular 

with a 2.50 cm diameter. 

The thickness of the GDL and the membrane filter samples was measured before and after the 

MPL-coating using a micrometre which has an accuracy of 2.5 µm, in order to estimate 

thickness of the MPL. Each sample was measured at 4 equally-spaced positions within it to 

provide a well-estimated average value of the thickness.  To confirm the thicknesses measured 

by the micrometre, SEM cross-section images were taken for some of the MPL-coated samples 

and the thickness of the MPL was visually estimated at as many points as possible and 

subsequently averaged. Further, the SEM cross-section images were used to confirm that there 

is negligible MPL penetration in the case of the membrane filter; see Fig. 1. The SEM images 

were produced using the scanning electron microscope JEOL (JBM-BO10LA). 

[Insert Fig. 1] 

2.1 Gas permeability setup 

The experimental setup used in this work has been previously used in [18] for estimating the 

through-plane permeability of the GDLs; see Fig. 2. As shown in Fig. 2, the setup consists of 
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upper and lower fixtures, with the sample fixed between the two fixtures and nitrogen gas was 

the gas flowing through the sample. The pressure drop across the sample was measured at 8 

equal-interval values of the flow rate. The flow controller used was an HFC-202 (Teledyne 

Hastings, UK) with a range of 0.0 – 0.5 SLPM and the differential pressure sensor used was a 

PX653 (Omega, UK) with a range of ±12.5 Pa. 

[Insert Fig. 2] 

2.2 Data analysis 
 

Sufficiently low flow rates were used to render the inertial losses negligible and consequently 

Darcy’s Law is employed [21]: 

  

                                        
ο୔୐ ൌ  ஜ୩ v                                                      (1) 

 

        v ൌ  ୕஠ୈమȀସ                                                       (2) 

 

where οP  is the pressure drop across the sample, L is the thickness of the sample, ߤ is the 

dynamic viscosity of the nitrogen gas at the test temperature (~20 °C), k is the gas permeability 

of the porous sample, V is the velocity of the flowing gas, Q is the volumetric flow rate and D 

is the diameter of the sample exposed to the flow. Since the carbon substrate and MPL are 

typically layered in the coated GDLs, the pressure drop across the coated sample can be 

consequently expressed as follows [28]: 

                                                 οP୲୭୲ ൌ οP୑୔୐ ൅ οPୱ୳ୠ            (3) 

where  οP୲୭୲, οP୑୔୐ and  οPୱ୳ୠ are the pressure drops across the coated substrate, the MPL and 

the substrate, respectively. From Equation (1), Equation (3) can be written as follows: 
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ఓ୐౪౥౪୩౪౥౪ v ൌ ఓ୐౉ౌై୩౉ౌై v ൅ ఓ୐౩౫ౘ୩౩౫ౘ v                                   (4) 

 

where L୲୭୲,  L୑୔୐ and Lୱ୳ୠ are the thicknesses of the coated substrate, the MPL and the carbon 

substrate, respectively, and k୲୭୲, k୑୔୐ and kୱ୳ୠ are the gas permeability coefficients for the 

coated substrate, the MPL and the carbon substrate, respectively. Assuming that there is no 

MPL penetration into the substrate (as is typically the case for the membrane filters), one can 

make use of Equation (4) to determine the permeability of the MPL: 

    

   K୑୔୐  =     
୐౉ౌైై౪౥౪ే౪౥౪    ି   

ై౩౫ౘ ే౩౫ౘ                   (5) 

 

As mentioned in the introduction, the MPL penetration into the carbon substrates is significant. 

Assuming that the penetration part of the MPL has the same characteristics as the pure MPL, 

Equation (5) can be slightly modified in order to account for the MPL penetration which is 

represented in the below equation by the symbol Lpen: 

 

   K୑୔୐  =     
୐౉ౌైା ୐౦౛౤ై౪౥౪ే౪౥౪    ି   

ై౩౫ౘ 
ష  ై౦౛౤ ే౩౫ౘ    (6) 

 

Fig. 3 shows a schematic diagram for the cross-section of the MPL-coated GDL in which a 

distinction has been made between the visible thickness of the MPL and the MPL penetration.  

[Insert Fig. 3] 

  



8 

 

3. Results and discussion 
 

The permeability of the MPL has been first estimated assuming that the MPL penetration into 

the carbon substrate is neglected and Equation (5) was used to calculate the permeability of the 

MPL [18]. As mentioned in Section 2, the thickness of the carbon substrate before (Lsub) and 

after (Ltot) MPL-coating were measured using a micrometre. The difference between the two 

thicknesses was assumed to be the thickness of the MPL (LMPL). The permeability of the bare 

(ksub) and MPL-coated carbon substrate (ktot) were estimated using Equation (1). The viscosity 

value used was that of nitrogen at 20 °C, namely 1.76 × 10-5 Pa s. With all the above 

information, one can calculate the gas permeability of the MPL; as an example, Table 3 shows 

the values used to calculate the gas permeability of the MPL for the Ketjenblack carbon black 

and 2.0 mg/cm2 carbon loading. 

Fig. 4 shows the average values for the MPL permeability for all the carbon loadings of the 2 

carbon blacks; the permeability values have been already estimated in a previous work [18]. 

The figure shows that, for both carbon blacks used, there is a general decline in the permeability 

of the MPL as the carbon loading increases. This must not be the case as the composition of 

the MPL was the same for all the carbon loadings investigated, i.e. 80 % carbon black and 20 

% PTFE, and therefore the permeability of the MPL for a given carbon black must remain 

invariant for all the carbon loadings. As pointed out in Section 2, the main culprit for such a 

trend is the MPL penetration into the carbon substrate. 

[Insert Table 3 and Fig. 4] 

Therefore, what is required to more accurately calculate the gas permeability of the MPL is to 

use a porous substrate which reasonably permeates the gas and also allows no MPL penetration; 

the candidate substrate was the membrane filter described in Section 2. As shown in Fig. 1, the 

MPL penetration is almost negligible. Having coated the membrane filter substrate and used 
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Equation (5), the MPL permeability was estimated with the Ketjenblack carbon black as 

2.92±0.02 × 10-13 m2 and with the Vulcan carbon black as 4.30±0.01 × 10-14 m2. The values 

used to estimate the gas permeability of the MPLs of the membrane filters are shown in Table 

4. To confirm that the permeability of the MPLs with the same composition does not vary with 

the carbon loading, two carbon loadings (i.e. 0.5 and 1.0 mg/cm2) were used for the membrane 

filter substrates. The initial plan was to estimate the permeability of the MPL for all the carbon 

loadings. Unfortunately, this has not been possible as the coated membrane filters with carbon 

loadings beyond 1.0 mg/cm2 were found to be highly fragile and brittle and therefore easily 

subject to breakage when placing them in the setup. For the considered 2 carbon loadings, the 

MPL gas permeability was found to be almost invariant with carbon loading; see Table 4.  

[Insert Table 4] 

Comparing the values of the MPL permeability obtained from the coated carbon substrates 

(Fig. 4) with those obtained from the coated membrane filters (Table 4), it can be seen that the 

MPL permeability calculated using the carbon substrates is higher than those obtained using 

the membrane filters by up to 2 orders of magnitude. The possible reason behind this is that the 

large pores at the surface of the carbon substrate facilitate a substantial penetration of the MPL 

material into the body of the carbon substrate; consequently, the surface of the carbon substrate 

is not fully covered with the MPL material, especially for relatively low carbon loading cases. 

Fig 5 clearly shows that, for a carbon loading of 0.5 mg/cm2, the surface of the carbon substrate 

used has been hardly covered with the MPL material. The level of MPL coverage enhances as 

the carbon loading increases; this is evident from the relevant surface SEM images (an example 

is given in Fig 6) and also from the decrease in the MPL permeability with increasing carbon 

loading as shown in Fig 4. Apparently, for both carbon blacks, the MPL permeability starts to 

decrease less after the carbon loading 1-1.5 mg/cm2. However, the minimum values of the MPL 

permeability obtained using the carbon substrates remain considerably higher than the 
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corresponding values of the MPL permeability obtained from the membrane filters. Fig. 7 

shows that the surface of the MPL-coated membrane filter features less cracks than those of 

the MPL-coated substrates; this is most likely the reason that the MPL permeability obtained 

from carbon substrate are considerably higher than those obtained from membrane filters. The 

main culprit behind the availability of more cracks in case of carbon substrates is probably their 

superficial morphology which feature uneven surface and presence of large pores; see Fig.8. 

As mentioned in the previous two sections, the initial thoughts were that the absence of the MPL 

penetration when using the membrane filters will allow one to accurately estimate the permeability of 

the MPL and subsequently possibly use it to estimate the MPL penetration into the carbon substrate. 

However, this is apparently not possible: the morphology of the MPL is sensitive to the substrate used 

for the MPL application; the carbon substrates impose more cracks in the MPL than the membrane 

filters. Therefore, we have structurally different MPLs and therefore the MPL permeability obtained 

from the membrane filters cannot be used to estimate the MPL penetration into the carbon substrate 

through using Equation (6) presented in Section 2. 

[Insert Fig. 5-8] 

4. Conclusions 
  

Membrane filters with known gas permeability and negligible MPL penetration were used to 

accurately estimate the MPL permeability. For the purpose of comparison, the MPL 

permeability was also estimated conventionally using the carbon substrates. Two carbon blacks 

were used and various carbon loadings were investigated. The following are the main findings. 

i. The MPL permeability obtained using the carbon substrates was found to decrease with 

carbon loading, though the same composition was used for all the carbon loadings. This 

was attributed to the MPL penetration into the carbon substrates. 
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ii.  The MPL permeability obtained using the membrane filters was found to remain almost 

constant with the two investigated carbon loadings. This was attributed to the absence 

of MPL penetration 

iii.  The MPL permeability obtained using the carbon substrates was shown to be higher 

than that obtained using the membrane filters by up to 2 orders of magnitudes. The 

difference between the MPL values obtained from the two substrates becomes smaller 

as the carbon loading increases. These two observations were attributed to the 

incomplete MPL coverage of the surface of the carbon substrate (mainly for the low 

carbon loadings) and/or the presence of more cracks in the MPLs coating the carbon 

substrates (mainly for the high carbon loadings). 

iv. Due to sensitivity of the MPL to the substrate used, the MPL obtained using the 

membrane filters cannot be used to estimate the MPL penetration into the carbon 

substrates. 
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Figures Captions 

Fig. 1 A SEM cross-sectional image for the MPL coated (a) membrane filter and (b) carbon 

substrate. 

Fig. 2 A schematic diagram of the experimental setup. Reprinted from Ref. [18] with the 

permission of Elsevier. 

Fig. 3 A schematic diagram for the cross-section of the MPL-coated GDL. 

Fig. 4 The values of the through-plane gas permeability of the MPLs for different carbon 

loadings. Reprinted from Ref. [17] with the permission of Elsevier. 

Fig. 5 A surface SEM images for an MPL-coated carbon substrate with 0.5 mg/cm2 

Ketjenblack carbon loading. Reprinted from [17] with permission from Elsevier. 

Fig. 6 A surface SEM images for an MPL-coated carbon substrate with 2.0 mg/cm2 

Ketjenblack carbon loading. Reprinted from [17] with permission from Elsevier. 

Fig. 7 A surface SEM image for an MPL-coated membrane filter with 0.5 mg/cm2 

Ketjenblack carbon loading. 

Fig. 8 A typical surface SEM image for 10 BA carbon substrate. 
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Fig. 3     
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Fig. 4     
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Fig. 5     
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Fig. 6     
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Fig. 7     
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Fig. 8     
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Table 1 Manufacturer’s physical properties of the carbon blacks used. 

 

 

 

   

 

 

 

 

 

  

Properties Ketjenblack EC-300J Vulcan XC-72R 

Pore volume (ml/100 g) 310-345 178 

Apparent bulk density (kg/m3) 125-145 20-380 

Surface area (m2/g) 950 254 

Particle diameter (nm) 30 30 

pH 9.0-10.5 2-11 

Volatile (by weight % max.) 1.0  2-8 
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Table 2 Manufacturer’s physical properties of the SGL 10BA carbon paper substrate. 

 

 

 

 

   

 

 

 

 

 

  

Physical parameter Carbon substrate 

Material SGL 10BA 

Thickness  ሺɊm) 380 ± 70 

Porosity 0.88 

PTFE loading (% by weight) 5  
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Table 3 - The values of the parameters used to calculate the permeability of the MPL coating 
the carbon substrate with a Ketjenblack carbon loading of 2.0 mg/cm2. 

 

 

 

 

 

 

 

  

Sample 
Number 

L tot × 10-4 

(m) 
k tot ×10-12 

(m2) 
L sub × 10-4 

(m) 
ksub×10-11 

(m2) 
LMPL×10-4 

(m2) 
KMPL  ×10-13 

(m2) 

1 4.75 2.34 3.60 1.84 1.15 6.27 

2 4.70 2.15 3.60 1.98 1.10 5.49 

3 4.85 1.78 3.25 2.09 1.16 6.23 

4 4.44 2.54 3.43 1.88 1.30 6.45 

5 4.55 1.98 3.25 1.69 1.30 6.17 

6 4.23 2.50 3.24 2.69 1.10 6.81 
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Table 4 - The values of the parameters used to calculate the permeability of the MPL coating 
the membrane filter. Note that single values were used for the permeability (3.72 × 10-13 m2) and 

the thickness (1.40 × 10-4 m) of the membrane filter. 

 

 

 

 

 

 

 

 

 

 

 

 

Carbon 
black 

Carbon loading 
(mg cm-2) 

L tot × 10-4 

(m) 
K tot                     
(m2) 

LMPL                
(m) 

KMPL                

(m2) 

Ketjenblack 
0.5 1.60  3.60 × 10-13 2.00 × 10-5 2.94 × 10-13 

1.0 1.80 3.50 × 10-13 4.00 × 10-5 2.90 × 10-13 

Vulcan 
0.5 1.46 2.83 × 10-13 6.0 × 10-6  4.29 × 10-14 

1.0 1.52    2.32 ×10-13 1.20 × 10-5 4.30 × 10-14 


