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Abstract  

Applications of global uncertainty methods for models with correlated parameters are essential to 

investigate chemical kinetics models. A global sensitivity analysis method is presented that is able to 

handle correlated parameter sets. It is based on the coupling of the Rosenblatt transformation with an 

optimized Random Sampling High Dimensional Model Representation (HDMR) method. The 

accuracy of the computational method was tested on a series of examples where the analytical solution 

was available. The capabilities of the method were also investigated by exploring the effect of the 

uncertainty of rate parameters of a syngasair combustion mechanism on the calculated ignition delay 

times. Most of the parameters have large correlated sensitivity indices and the correlation between the 

parameters has a high influence on the results. It was demonstrated that the values of the calculated 

total correlated and final marginal sensitivity indices are independent of the order of the decorrelation 

steps. The final marginal sensitivity indices are meaningful for the investigation of the chemical 

significance of the reaction steps. The parameters belonging to five elementary reactions only, have 

significant final marginal sensitivity indices. Local sensitivity indices for correlated parameters were 

defined which are the linear equivalents of the global ones. The results of the global sensitivity analysis 

were compared with the corresponding results of local sensitivity analysis for the case of the 

syngasair combustion system. The same set of reactions was indicated to be important by both 

approaches. 
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1. Introduction 

Chemical models based on detailed reaction mechanisms usually have many parameters, the 

quantification of which involves a level of uncertainty. The parameters of these models are intrinsically 

correlated, but most commonly used uncertainty and sensitivity methods are able to handle only 

uncorrelated parameters. An important step of modelling is to investigate the relationship between the 

uncertainty of model parameters and the uncertainty of model results. Frequently, the methods used 

for the determination of the uncertainty of model results are based on one-by-one modifications of the 

parameters. These methods fail if the parameters are correlated since the calculation of the influence 

of a given parameter using fixed values of the other parameters is not sufficient. 

The reason why uncertainty methods that can handle uncorrelated parameters only are widely used 

is that usually the uncertainty of the model input parameters are assessed individually and separately, 

and therefore information about the correlated uncertainty of these parameters is not usually available. 

However, Sheen and Wang [1-3] and Turányi et al. [4-9] recently elaborated chemical kinetic model 

optimization strategies which are able to calculate not only the optimized values of the parameters, but 

also the covariance matrix of the fitted parameters. This matrix carries information about the joint 

uncertainty of the parameters. Investigation of the effect of correlated uncertainties of model 

parameters on the uncertainty of the model results is clearly a necessary next step. 

In this work, global correlated, marginal sensitivity and final marginal indices were calculated to 

investigate the uncertainty of a target model output caused by uncertainties in the system parameters. 

The calculation of these sensitivity indices is based on the Rosenblatt transformation and the Random 

Sampling High Dimensional Model Representation Method (RS-HDMR). The basic outline of this 

algorithm has been published in our previous article [10] but the previous paper focused on the 

application of the method to investigate the effect of wall reactions on hydrogen ignition limits. In this 

work, the details of the methodology are described, and the accuracy of the calculated sensitivity 

indices is tested using several analytical examples. Local sensitivity indices for correlated parameters 

are defined as the linear equivalents of the global ones. Also, a chemical kinetic example related to the 

ignition delay times of a syngasair mixture is investigated, and the results are compared to 

expectations based on reaction kinetics reasoning. The consequence of the correlated uncertainty of 55 

rate parameters was investigated. This is the most complex chemical system to date where such study 

has been carried out. In this practically important system, the order of the convergence of the sensitivity 

indices and the features of the marginal sensitivity indices were investigated. The results of the global 

sensitivity analysis were compared to those of a more widely used local sensitivity analysis method. 
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2. Methods 

2.1 HDMR Global Sensitivity Analysis 

The aim of sensitivity analysis is the determination of the relationship between the uncertainty of 

the model input parameters and that of the target model result. Local sensitivity analysis is frequently 

used to investigate chemical kinetic models. Local methods are based on the calculation of the partial 

derivatives of the model result with respect to the parameters at a fixed point in the parameter space, 

which is identical to the nominal parameter set. Local methods are cheap and easily realizable, but the 

information that these methods provide is relevant only at a given point in the parameter space, and 

does not belong to the full uncertainty domain of the model parameters. Global sensitivity analysis 

provides information about the importance of the model parameters in the full uncertainty domain of 

the parameters and is therefore more relevant where large uncertainties exist in the input parameters, 

or where the model is highly nonlinear. There are many possibilities to define a ranking of the 

importance of parameters using global methods [11]. However, these methods are computationally 

expensive and knowledge about the distribution of the parameters is required. Most global uncertainty 

analysis methods can handle only uncorrelated parameters. New global sensitivity analysis methods 

which can also handle models with correlated parameters were developed in recent years [12-14]. In 

the next section a new sensitivity analysis method will be presented, which calculates global sensitivity 

indices [15] based on the Random-Sampling High Dimensional Model Representation Method 

[12,16,17] and the decorrelation method of Rosenblatt [18].  

First, we denote the parameters of a model by x=(x1, x2, ..., xn) and the simulation result by f(x) (f: 

RnR). The result of the model can be expressed as a hierarchical expansion of the parameters: 
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where the constant f0 represents the mean value of the model output across the input sample, fi(xi):RR 

is the contribution of the i-th input parameter xi to f(x); fij(xi,xj):R2R is the cooperative contribution 

of the i-th and j-th inputs parameters to f(x), etc. The zeroth-order, first-order, second-order, etc. 

component functions are denoted by f0, fi, fij etc., respectively. In the present work, these expansions 

were truncated at second-order terms. If parameters x1, x2, …, xn are independent, then the component 

functions can be determined uniquely and optimally [12] and can be expressed using an orthogonal 

polynomial basis: 
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(2b) 

where Oi and Oij denote the order and Įi, ȕij denote the coefficients of basis functions ĳi and ĳj. These 

coefficients are determined by fitting the RS-HDMR function to a sample of runs from the full model. 

It is important to notice that the determination of the orthogonal basis functions depends on the 

distribution of the input parameters. If optimal basis functions are chosen and the optimal coefficients 

are calculated (e.g. using a least-squares method), then sensitivity indices can be determined as detailed 

below. 

Let V denote the total variance of f(x), Vi the partial variance of f(x) due to xi alone and Vij the 

partial variance of f(x) due to the interactions between xi and xj. Let E and V denote the expected value 

and the variance operators, respectively. We can define the first- and second-order sensitivity indices 

as Si = Vi/V = V(E(f(x)|xi))/V(f(x)) and Sij = Vij/V = V(E(f(x)|xi,xj))/V(f(x)), respectively. If an accurate 

fit is obtained such that Eq. (2) provides a good representation of the expansion in Eq. (1), then the 

sum of these indices should be close to 1. 

The total order effect for parameter xi can be expressed as:  
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(3) 

The total sensitivity index Sitotal measures the contribution of xi to the output variance, including 

all variances caused by its interactions of any order, with any other input parameters. If the input 

parameters are independent, we can determine the optimal orthogonal polynomial expansion of the 

component functions. Using Eq. (1) and Eq. (2), the partial variances can be calculated and the 

sensitivity indices of the parameters can be determined: 
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This methodology is not applicable when the parameters are dependent, because in this case the 

polynomial expansion of the component functions is not unique, and coefficients Įi and ȕij cannot be 

used to calculate sensitivity indices [12]. 

Here we follow the basic idea of Mara and Tarantola [13] to calculate the sensitivity indices of 

models with dependent parameters using decorrelation. A similar approach was also published by 

Zhou et al. [14]. A new methodology is presented here, which uses the RS-HDMR method to get both 

correlated and final marginal sensitivity indices after the decorrelation via the Rosenblatt 

transformation. Unlike in previous articles dealing with the global sensitivity analysis of correlated 

parameters, the methodology is demonstrated not only on simple test cases, but also for a large multi-

parameter chemical kinetic model and the implications of the results are discussed. The method was 

encoded as an extension to the GUI-HDMR program of Ziehn and Tomlin [17,19]. The general 

methodology is applicable for any distribution of model inputs, but since the rate parameters of the 

optimized combustion mechanism are assumed to have multivariate normal distribution, only the case 

of a normal distribution is discussed here. 

 

2.2 Decorrelation Using the Rosenblatt Transformation 

Mara and Tarantola [13] suggested the application of the Rosenblatt transformation [18] to create 

an uncorrelated sample from a correlated one. First, a sample must be generated based on the joint 

distribution function of the parameters. The Rosenblatt transformation consists of the following steps. 

Let 
n

n RXXX  ),,( 21 X denote a random vector with an absolutely continuous distribution function 

RRxxxFF n
n  :),,()( 21 x . Let ),,,(),,,( 2121 nn xxxxxx  TTxx   where transformation T is 

given by: 

)()( 11111 xFxXPx   (5a) 

nixxxFxXxXxXxXPx iiiiiiii  2,1),,,|(),,,|( 11112211    (5b) 

 

where RRFFF n :,,, 21   are the marginal distribution functions. The TXX  random vector is 

uniformly distributed, and furthermore 

 
 

.1 ,10 where ,dd

)(d),,|(d,,1,X

10 0

1

11111

|

i

1

nixxxx

xFxxxxFxnixP

i

n

i
in

x x

nnnn

xXX

i

n

ii









 








 



7 

 

Thus, the variables nXXX ,,, 21   are uniformly and independently distributed on the interval 

[0,1]. This transformation can be expressed explicitly if F is a normal distribution with mean vector m 

and covariance matrix C =  ijc . Let pC =   npjicij  1,: , p
ijC be the cofactor of  ijc  in pC and pC be 

the determinant of pC . In this case, the transformed parameters can be calculated using the following 

equations: 
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where  is the standard normal distribution function, which converts a standard normal pdf to a 

standard uniform pdf. This means that without applying the function  at the end of the transformation, 

the transformed parameters obtained are independent with standard normal distribution functions, as 

applied in the present work. We used Hermite polynomials as basis functions in the RS-HDMR method 

according to the standard normal distribution of the transformed model inputs.  

 

 

2.3 Interpretation of the Sensitivity Indices of Transformed Parameters 

The transformed parameters nxxx ,,, 21   are standard normally and independently distributed. The 

RS-HDMR method is then applied using samples of these parameters, and the corresponding simulated 

output distributions and sensitivity indices are calculated. Since the first parameter is only transformed 

and not corrected by the effect of any other parameter, the sensitivity index S1 of the first parameter is 

identical to that of the transformed parameter 
1

S , which is in fact identical to the sensitivity index 

correlated
1S  that reflects all possible parameter correlations. The total contribution of x1 to the variance 

of the output (i.e. including first-, second-order effects etc.) is indicated by the sensitivity index 

correlated total
1

total
1

total

1
SSS  . By performing the transformation for each of the indices i= 1, 2, 3, etc., 

in turn, the sensitivity indices correlated
iS and correlated total

iS  can be calculated for each parameter 

independently of the later transformations that aim to decorrelate the parameters. This total sensitivity 
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index correlated total
iS reflects the contribution that each parameter makes to the total output variance, 

taking into account all its possible correlations. If a parameter dominates the output variance, then we 

would expect this index to be close to 1. However, a large value of correlated total
iS  can occur for a 

parameter which would individually have no effect on the model output, but is strongly correlated with 

one or more parameters that have a large effect on the model output.  

The subsequent transformations aiming to decorrelate the parameters can be performed in any 

chosen order. Hence, having n parameters in total, in the second step we may select any of the 

remaining (n-1) parameters. If we denote the second selected parameter by subscript 2, then
2

S  

represents the contribution of x2 to the output variance, without its correlative contribution with x1. 

Notation 122  SS  emphasizes this meaning and represents a marginal sensitivity. In a similar way 

the total effect can be calculated, without the influence of parameter 1, denoted by total
12

total

2  SS . These 

marginal sensitivities are calculated in sequence and in the last step, we obtain n
S = 12)1(  nnS  = 

marginal final
nS which shows the totally uncorrelated contribution of parameter xn to the variance of 

f(x). The marginal sensitivity, total
n

S  = total
12)1(  nnS  = marginal final total

nS is the total sensitivity index of 

parameter n without the influence of correlations with any other parameter [13]. While the intermediate 

sensitivity indices in the middle of the sequence of decorrelation depend on the order of the selection 

of parameters, the final marginal sensitivity indices marginal final
nS  and marginal final total

nS  are independent 

of this order. 

For systems with independent parameters, the importance of a parameter can be determined by a 

single total sensitivity measure. For correlated systems however, the picture is not so simple since both 

the correlated correlated total
iS  and final marginal marginal final total

iS  total sensitivity indices are available, 

as well as marginal sensitivity indices which represent partial correlations. 

However, if the method described above is carried out for a case where the parameters of the 

model are independent, then the calculated correlated, final marginal and marginal sensitivity indices 

would be identical to those that could be obtained using a conventional RS-HDMR method. This is 

evident, since in such a situation the transformation of the parameters would leave them unchanged as 

there is no correlation to remove from the sample. It should be noted that in practical applications, a 

randomly and independently sampled set of parameters is expected to show a small degree of 

correlation between the parameter values, which diminishes with the increasing sample size. 
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Therefore, correlated total
iS  and marginal final total

iS  would be obtained even for a theoretically 

independent set of input parameters. 

If both of these indices are close to zero, then the investigated parameter xi is of low importance. 

If  the correlated index correlated total
iS  is large (e.g. close to 1), this means that parameter xi is important. 

However, if its total final marginal index marginal final total
iS  is small, then its influence on the output 

variance originates from strong correlations with other parameters. Finally, if a parameter has a large 

final marginal index, then it strongly contributes to output variance, without correlated effects with the 

other parameters. 

 

2.4 Local Uncertainty Analysis of Models with Correlated Parameters 

Local sensitivity analysis is widely used [20] in combustion modeling to identify the most 

important parameters for a given set of conditions, although usually the local sensitivity coefficients 

are related only to the nominal parameter set of the model. Usually target model outputs are chosen 

for evaluation in accordance with available experimental data and may include quantities such as 

ignition delay times, species concentrations, burning velocities etc. The purpose of the local sensitivity 

analysis is therefore to explore which of the model parameters are most important for the accurate 

prediction of experimental targets.  

Here we denote the target result of an investigated model to be Y, while the parameters and the 

nominal parameter set are denoted by ),,,( 21 nppp p and ),,,( 21
  nppp p , respectively. Let’s 

assume that RRfpppfY n
n  : ),,,,( 21  , f is continuously differentiable, the parameters are 

normally distributed, ),(~ * Cpp N , where nnR C denotes the covariance matrix of the parameters. 

We denote )(* *pfY   and   RpYs i
loc
i   lnln  as the local sensitivity coefficient at *p , and

nloc R s as the vector which contains these sensitivity coefficients. A linear approximation of the 

model result Y at *p  is denoted by Y
~  and it can be obtained by 




n

i
ii

loc
i ppsYY

1

* )(
~

. It is 

important to note that for linear models the global and the local sensitivity analyses are equivalent, due 

to the independence of the partial derivatives of *p .  

The local uncertainty of the model result is defined [20] as the variance of the approximating 

function Y
~

: 
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Based on the analogy of the sensitivity index used in global sensitivity analysis calculations, it is 

possible to define its local counterpart. The local sensitivity index iS  can be calculated as the ratio of 

the marginal variance of the approximating function Y
~  according to parameter i and the total variance, 

)
~

(V)|
~

(V YpYS ii  . For a model with uncorrelated parameters, the covariance matrix is a diagonal 

matrix and iS can be calculated by the equation 
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Similarly to the global sensitivity indices defined for correlated parameters, we may calculate the 

correlated sensitivity index and the final marginal sensitivity index for the linearized system with 

correlated parameters. 

The correlated sensitivity index shows the effect of the uncertainty of a parameter on the 

uncertainty of  Y
~  considering the correlation of the parameter with all other parameters. The linear 

approximation of the model result is defined by a weighted sum of normally distributed variables. 

Therefore  
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Note, that if the off-diagonal elements of matrix C are zero (i.e. the parameters are not correlated), 

then Eq. (10) is identical to Eq. (8). 

For the calculation of the final marginal sensitivity index, the decorrelation of parameters is needed 

according to Section 2.2. We define an element of matrix D as njissCD loc
j

loc
iijij 1, ,  . This 

is the covariance matrix of normally distributed parameters, ),(~ˆ * Dpp N , where )ˆ,,ˆ,ˆ(ˆ 21 nppp p

. The final marginal sensitivity indices can be calculated as )
~

(V)ˆ|
~

(Vmarginal final YpYS ii  , where ip̂
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denotes the normally distributed parameter which belongs to parameter i, obtained by the elimination 

of the effects of all other parameters. As Eq. 6 shows, the Rosenblatt transformation can be carried out 

in an analytical way for normally distributed parameters. We denote   np:i,jDij
p  1D , where pD  

is its determinant and p
ijD  is the cofactor of  ijD  in pD . To calculate the i-th final marginal 

sensitivity index, matrix D has to be reordered in such a way that the i-th parameter and the 

corresponding covariance values are put in the last (n-th) row of the matrix. In every step of the 

decorrelation, the conditional distributions and sum of normal distributions have to be decorrelated. 

As a result of the last step, the decorrelated i-th parameter has a normal distribution with variance 

n
nnDD , as shown in Eq. (6b). The corresponding determinant values are independent of the order 

of the other n1 parameters in matrix D, since any reordering in the matrix is equivalent to the 

permutation of the rows and columns, and the number of permutations is always even. Therefore, the 

calculated determinant values are invariant of the reordering. The final marginal sensitivity indices are 

then calculated by   YS n
nni

~
Vmarginal final  DD . 

 

3. Results and discussion 

The accuracy and efficiency of the method is demonstrated first on four linear test cases created 

for this study, and a nonlinear model of Jacques et al. [21]. For these five test cases analytical solutions 

are available, which allows the testing of the numerical algorithm and the checking of its convergence. 

The analytical solutions of our four test cases were calculated according to the procedure described in 

the Appendix. The analytical solution of the Jacques model was published in article [21] and is 

reproduced and expanded in this paper. Finally, our method was used to calculate the sensitivity indices 

for predicted ignition delay times in a syngas–air combustion system with respect to 55 Arrhenius 

parameters and third body collision efficiencies related to the rate coefficients of the chemical 

mechanism. 
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3.1 Analytical test cases  

 

3.1.1 The global sensitivity indices 

The first test case was a linear model with output function f(x)=x1+2x2+3x3. The three parameters 

x1, x2, x3 have standard normal distributions and are uncorrelated. Their covariance matrix, denoted by 

C0, is therefore the 3×3 identity matrix. It can be shown analytically that the sensitivity indices are 

 142correlated  totalmarginal final total iSS ii  , where 3 ,2 ,1i . The model is linear and there is no correlation 

between the parameters. Therefore the correlated and final marginal sensitivity indices are equal. As 

Table 1 shows, our code was able to reproduce the analytical results to within an accuracy of 10-3, 

using 10000 samples for all the four tests.  

In test cases 2 to 4 a similar linear model 321)( xxxxf   was investigated. The three parameters 

are also standard normally distributed, but are correlated and their joint distribution is characterized 

by covariance matrix C. Three cases are investigated, using covariance matrices C1, C2 and C3 defined 

below. 

 


















15.03.0

5.014.0

3.04.01

1C ;  






















14.03.0

4.012.0

3.02.01

2C ;  





















149.049.0

49.0149.0

49.049.01

3C  

Since the model is linear, the correlated and the respective total correlated indices are equal, and 

the same is true for the final marginal indices. Therefore, we only present the marginal sensitivity 

indices correlated
iS  and the final marginal part marginal final

iS  for the three different sets of correlation 

structures. The results for the four test cases are reported in Table 1. 
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 C0 C1 

 ANALYTICAL NUMERICAL ANALYTICAL NUMERICAL 
 Si

correlated Si
final marginal Si

correlated Si
final marginal Si

correlated Si
final marginal Si

correlated Si
final marginal 

x1 0.071 0.071 0.073 0.070 0.535 0.153 0.544 0.155 
x2 0.286 0.286 0.282 0.288 0.666 0.126 0.661 0.124 
x3 0.643 0.643 0.642 0.647 0.600 0.137 0.602 0.137 
 C2 C3 
 ANALYTICAL NUMERICAL ANALYTICAL NUMERICAL 
 Si

correlated Si
final marginal Si

correlated Si
final marginal Si

correlated Si
final marginal Si

correlated Si
final marginal 

x1 0.504 0.376 0.505 0.382 0.007 0.974 0.007 0.975 
x2 0.067 0.347 0.063 0.350 0.007 0.974 0.006 0.973 
x3 0.338 0.329 0.333 0.330 0.007 0.974 0.006 0.973 

 

Table 1 The calculated analytical and numerical sensitivity indices for the first four test cases 

 

In the second example (related to covariance matrix C1), all parameters are important, and the 

correlation between the parameters has a significant effect as illustrated by the high values of 

correlated
iS . The final marginal sensitivity indices are each higher than 0.1, which suggests that in this 

case, each parameter has a significant individual marginal effect. In the third case (covariance matrix 

C2) parameter 2x has a higher total final marginal sensitivity index than total-correlated index, which 

is caused by the effect of negative correlations (see Appendix). The final marginal sensitivities were 

also significant. In the last example (covariance matrix C3), the same behaviour is expected for all 

parameters based on the symmetry of the model and the identical covariance structure. There is a 

significant gap between the correlated and final marginal sensitivity indices. In this example this is 

caused by the anti-correlation between the parameters which damps their effect on the model result. 

However, the final marginal sensitivity indices show that the parameters have a high individual effect. 

In this final case all  parameters are equally important, which is natural due to the identical covariance 

structures of the parameters. 

The fifth test example is a nonlinear model with six parameters 654321)( xxxxxxf x , where 

the parameters have a standard normal distribution with correlation matrix 
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Here, 3.034   and 8.056   denote the correlation between parameters x3, x4 and x5, x6 respectively. 

This is one of the test cases used by Jacques et al. [21], who also published a method for the calculation 

of the analytical values of the total correlated sensitivity indices. Here we also present the analytical 

calculation of the marginal sensitivity indices. Both analytical calculations are based on the fact that 

the variance of the product of normally distributed parameters can be calculated using the identity: 

 Vሺܻܺሻ ൌ Eሺܺଶܻଶሻ െ Eଶሺܻܺሻ ൌ EሺܺଶሻEሺܻଶሻ ൅ Covሺܺଶǡ ܻଶሻ െ ൫EሺܺሻEሺܻሻ ൅ Covሺܺǡ ܻሻ൯ଶൌ VሺܺሻVሺܻሻ ൅ EଶሺܺሻVሺܻሻ ൅ EଶሺܻሻVሺܺሻ ൅ Covଶሺܺǡ ܻሻ ൅ ʹEሺܺሻEሺܻሻCovሺXǡ YሻǤ 
Based on these equations, the variance of the model result is  

))((V xf )1()1(1)(V 2
56

2
34653321   xxxxxx . 

Since x1 and x2 are not correlated with the other parameters, the total marginal sensitivity indices 

and the final marginal index are equal to the total correlated sensitivity index for these parameters. The 

total correlated, final marginal and marginal sensitivity indices that belong to parameters x3 and x4 are 

equal to each other and the same is valid for parameters x5 and x6. This follows from the structure of 

the correlation matrix and the symmetry of the model. The calculation of marginal sensitivity indices 

for parameters x3 and x6 is discussed here. The total marginal and total correlated sensitivity indices of 

x3 are equal, if  parameters which are uncorrelated with x3 are separated from x3. The final marginal 

sensitivity index of x3 is defined by ))((V)|)((E(V 3
marginal final

3 xx fxfS  , where 

)|(E),,,,|(E 43365421333 xxxxxxxxxxx   follows from the fact that x3 is correlated with x4 only. Since 

)1,0(~ 2
343 Nx  and the variance of the model is )1()1(1))((V 2

56
2
34  xf , the final 

marginal sensitivity index of x3 is obtained as
)1()1(1

1
2
56

2
34

2
34marginal final

3 





S . The final marginal 

sensitivity index of x6 can be defined in a similar way, 
))((V

)|)((E(V 6marginal final
6 x

x

f

xf
S  , where 

 ),,,,|(E 54321666 xxxxxxxx )|(E 566 xxx  . Since )1,0(~ 2
566 Nx , 
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)1()1(1

1
2
56

2
34

2
56marginal final

6 





S . 

In Table 2, the columns belong to parameters x1 to x6. The first row contains the calculated total 

correlated sensitivity indices, both the analytical solution (in bracket) and the numerical values, which 

belong to a sample size of 15000. From row 2 onwards, the marginal sensitivity indices are shown 

which were obtained by separating the effect of one, two, three and four parameters from the given 

parameter. The order of the decoupling of the parameters is arbitrary; in these calculations, always the 

preceding parameter according to their order was selected. In the last row, the total final marginal 

sensitivity indices are presented. These values represent the effect of a parameter without any 

contribution from other parameters. These indices show the case when effects of the other five 

parameters were eliminated from the investigated parameter. 

The results given in Table 2 show that 5x  and 6x have high total correlated sensitivity indices 

while the respective final marginal indices are only 0.1. This is caused by both the non-linearity of the 

model and the strong correlation between these two parameters. The total final marginal indices show 

that the individual effects of all parameters are important, describing 10% of the output variance or 

more. The results also indicate that the sensitivity indices do not change during the decorrelation steps 

in which the effects of x1 and x2 are removed, as was expected. For this reason, the total correlated and 

total final marginal indices are the same for both x1 and x2. 

 

x1 x2 x3 x4 x5 x6 
correlated
1S  

0.278      (0.268) 

correlated
2S  

0.277       (0.268) 

correlated
3S  

0.274        (0.292) 

correlated
4S  

0.276        (0.292) 

correlated
5S  

0.454       (0.434) 

correlated
6S  

0.454        (0.434) 

61S  

0.278       (0.268) 
12S  

0.277        (0.268) 
23S  

0.274        (0.292) 
34S  

0.228        (0.244) 
45S  

0.454        (0.434) 
56S  

0.102        (0.097) 

561 S  

0.278        (0.268) 
612 S  

0.277        (0.268) 
123 S  

0.274        (0.292)  
234 S  

0.228        (0.244) 
345 S  

0.454        (0.434) 
456 S  

0.103        (0.097) 

4561 S  

0.278        (0.268) 
5612 S  

0.277       (0.268) 
6123 S  

0.275        (0.292) 
1234 S  

0.228        (0.244) 
2345 S  

0.429        (0.434) 
3456 S  

0.102        (0.097) 

34561 S  

0.278       (0.268) 
45612 S  

0.277        (0.268) 
56123 S  

0.274        (0.292) 
61234 S  

0.227        (0.244) 
12345 S  

0.454        (0.434) 
23456 S  

0.102        (0.097) 
marginal final

1S  

0.278        (0.268) 

marginal final
2S  

0.278        (0.268) 

marginal final
3S  

0.239        (0.244) 

marginal final
4S  

0.228        (0.244) 

marginal final
5S  

0.097        (0.097) 

marginal final
6S  

0.102        (0.097) 

 

Table 2 The numerically calculated and the analytical (in bracket) total sensitivity indices for test case 
5. 
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The accuracy of the calculated sensitivity indices was investigated. Sample sizes of 1000, 2000, 4000, 

6000, 8000, 10000 and 15000 were used to determine the absolute difference of the calculated and 

analytical sensitivity indices. The absolute difference of the numerically and analytically calculated 

sensitivity indices at given sample size is defined by   max analyticalnumerical

6...1
ii

i
SS 


 for both the 

correlated and the final marginal indices. Fig. 1 shows that both the correlated and the final marginal 

sensitivity indices are close to the analytical value above 10000 samples and the order of differences 

is 10-2. 

 

Fig. 1 The maximum of absolute differences of the sensitivity indices calculated using the indicated 
sample size and the analytical values for the correlated (dash-dotted line) and final marginal (solid 
line) sensitivity indices. 
 

3.1.2 The local sensitivity indices 

For the first four linear test cases, the calculation of the local sensitivity indices is equivalent to 

the calculation of the global indices, since the linear approximation of the functions is equal to the 

original functions. The partial derivatives of the models are constant values, since the coefficients of 

the linear approximations are independent of the nominal parameter sets. 

For the first test case, the sensitivity coefficients are 3,2,1 321  loclocloc sss , respectively, and 

for test cases 2 to 4 the local sensitivity coefficients are 1321  loclocloc sss . 

For the fifth test case, 654321)( xxxxxxf x , the linear approximation of the model result at 

),,,,,(* *
6

*
5

*
4

*
3

*
2

*
1 ppppppp  is denoted by f

~
 and the approximation function is  1

*
2)*,(

~
xpf xp

6
*
55

*
64

*
33

*
42

*
1 xpxpxpxpxp  . Since the linear approximation function at 0p *  is the 

constant zero function, the interpretation of sensitivity indices is not possible in this case. Assuming 
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that 0p * , the variance of the approximation function f
~

 is *
6

*
5

*
4

*
3

2

2
22*)

~
(V ppppf  p  

, and the local correlated sensitivity indices are 

     
,
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(V
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(V
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1
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ppp
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
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     
)

~
(V

3.0
S,

)
~

(V

8.0
S,

)
~

(V

3.0
S

2*
6

*
55correlated

6

2*
6

*
56correlated

5

2*
4

*
33correlated
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f

ppp

f

ppp

f

ppp 










, 

respectively.  

The linear approximation function f
~

 is accurate only in a small neighborhood of *p  and 

therefore these sensitivity indices are relevant in this region of the domain of f. The local correlated 

sensitivity indices reflect the contribution of each parameter to the variance of the approximation 

function, taking into account all possible correlations at point *p . Global uncertainty analysis correctly 

shows that parameter pairs ),( 21 xx , ),( 43 xx , and ),( 65 xx  have equal importance. This is not revealed 

by the local uncertainty analysis, except for the case when the function is calculated at the nominal 

parameter set ).,,,,,(* *
5

*
5

*
3

*
3

*
1

*
1 ppppppp  The local final marginal sensitivity indices represent the totally 

uncorrelated contribution of parameter xi to the variance of the approximation function f
~

. Based on 

the definition above of local final marginal sensitivity indices, the corresponding final marginal indices 

are 

 
)

~
(V

S
2

2marginal final
1

f

p

 ,  
)

~
(V

S
2

1marginal final
2

f

p

 ,  
)

~
(V

)3.01(
S

2

4
2

marginal final
3

f

p
 , 

 
)

~
(V

)3.01(
S

2

3
2

marginal final
4

f

p
 , 

 
)

~
(V

)8.01(
S

2

6
2

marginal final
5

f

p
 ,

 
)

~
(V

)8.01(
S

2

5
2

marginal final
6

f

p
  respectively. The local correlated and the 

final marginal sensitivity indices belonging to parameters x1 and x2 are identical (i.e. 

marginal final
1

correlated
1 SS   and marginal final

2
correlated
2 SS  ), which shows that these parameters are 

uncorrelated with the other parameters. In contrast with the result of global sensitivity analysis, 

marginal final
4

marginal final
3 SS   and marginal final

6
marginal final

5 SS   if and only if the nominal parameter set 

),,,,,(* *
5

*
5

*
3

*
3

*
1

*
1 ppppppp  is used.  

In conclusion, both the local correlated and the final marginal sensitivity indices were determined 

for the test case of Jacques et al. [21]. The local sensitivity indices are able to reflect the fact that 

parameters x1 and x2 are uncorrelated with the other parameters. The calculated local indices are not 
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able to detect the same importance of parameters ),( 21 xx , ),( 43 xx , and ),( 65 xx , although this property of 

the parameters comes directly from the structure of the model and the correlation of the parameters. 

The results of local sensitivity analysis are relevant in a small neighborhood of the nominal parameter 

set and the approximation function of the model result provides information about the parameters in 

this region. Local sensitivity analysis can be useful if the most probable values of the parameters are 

close to the nominal ones and the variances of the parameters are low. Generally, information about 

the relation of the parameters should be obtained using global sensitivity analysis. 
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3.2 Ignition delay times for the combustion of a syngasair mixture 

Detailed kinetic reaction mechanisms are widely used in many fields of science and technology. 

These mechanisms may contain several hundred species and several thousand reaction steps. The 

mechanisms contain several thousands of parameters, including rate parameters (e.g. Arrhenius 

parameters, third body collision efficiency parameters, parameters of pressure dependence), 

thermodynamic data (e.g. parameters of the temperature dependence of the enthalpies of formation), 

transport parameters etc. The various methods of sensitivity analysis are frequently applied for the 

investigation of the relationship between the values of these parameters and target simulation results 

obtained using such models for the purposes of model evaluation and improvement [20], [22] . 

The generalized HDMR method presented in this paper is well applicable for quantifying the 

correlated and individual (uncorrelated) uncertainty contributions of the rate parameters to the 

uncertainty of the simulation results in a chemical kinetics model. This is now demonstrated for a 

model based on a syngas (H2/CO) combustion mechanism containing 15 species and 18 reactions. 

Calculations of correlated and final marginal indices have been carried out for model simulations of 

ignition delay times of a stoichiometric syngas–air mixture. The conditions of the simulations 

correspond to the measurements of Kalitan et al. [23], who assigned the ignition delay time in a shock 

tube experiment to the maximum slope of the observed OH* emission. The initial conditions of the 

experiment that were reproduced in our simulations were T0 = 1197 K, p0 = 1.1 atm, initial fuel 

composition: H2/CO = 10/90, stoichiometric mixture with air. The ignition delay times were calculated 

in adiabatic constant volume simulations. 

The syngas combustion model of Varga et al. [24] was used for the simulation of the ignition 

delays. During the development of this model 55 parameters were optimized, consisting of the 

Arrhenius parameters Į=ln A, n, and İ= E/R of 18 elementary reaction steps (including 11 low-pressure 

limit parameters) and 5 third body collision efficiency parameters. These parameters were fitted to an 

extensive collection of 7195 experimental data points in 554 datasets. All parameters were fitted that 

could be determined with acceptable accuracy based on these experimental data. These parameters are 

defined in Table 3. The covariance matrix is available from the Supplementary of article [24] and the 

correlation matrix is given in the Supplementary of this article. This matrix shows that there is very 

strong correlation between the parameters.  

Simulation of the ignition was carried out for each of the samples using the SENKIN program 

[25] of the CHEMKIN-II program package, using strict integrator tolerance settings (ATOL=  

1.0×10-20, RTOL= 1.0×10-09) to minimize the numerical uncertainty of the simulations. Correlated and 

final marginal sensitivity indices were calculated. The sampling, the control of simulations and the 
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sensitivity index calculations were carried out using our in-house developed MATLAB code called 

Optima [7]. 

The convergence of the calculated sensitivity indices was checked using increasing sample sizes.  

10000, 25000, 50000, 100000, 250000 and finally 350000 normally distributed random parameter 

samples were generated based on the covariance matrix. The maximum of absolute differences of 

sensitivity indices at a given sample size and the sample size of 350000 were calculated. These values 

are given in Fig. 2, showing that both the correlated and the final marginal sensitivity indices are close 

to the converged values above 100000 samples. 

 

 Reaction Parameter  Reaction Parameter  Reaction Parameter 

1 CO+OH=CO2+H ln A 20 HO2+OH=H2O+O2 E/R 39 CO+HO2=CO2+OH ln A 

2 CO+OH=CO2+H n 21 H+OH+M=H2O+M ln A 40 CO+HO2=CO2+OH n 

3 CO+OH=CO2+H E/R 22 H+OH+M=H2O+M n 41 CO+HO2=CO2+OH E/R 

4 H+O2=O+OH ln A 23 H+OH+M=H2O+M E/R 42 2HO2=H2O2+O2 ln A 

5 H+O2=O+OH n 24 H+OH+M=H2O+M m_He 43 2HO2=H2O2+O2 E/R 

6 H+O2=O+OH E/R 25 H+HO2=H2+O2 ln A 44 HCO(+M)=H+CO(+M) LP_ln A 

7 H+O2(+M)=HO2(+M) LP_ln A 26 H+HO2=H2+O2 n 45 HCO(+M)=H+CO(+M) LP_n 

8 H+O2(+M)=HO2(+M) LP_n 27 H+HO2=H2+O2 E/R 46 HCO(+M)=H+CO(+M) LP_E/R 

9 H+O2(+M)=HO2(+M) m_H2 28 OH+H2=H+H2O ln A 47 HCO(+M)=H+CO(+M) m_Ar 

10 H+O2(+M)=HO2(+M) m_H2O 29 OH+H2=H+H2O n 48 HCO(+M)=H+CO(+M) m_He 

11 H+O2(+M)=HO2(+M) m_Ar 30 OH+H2=H+H2O E/R 49 HCO+H=CO+H2 ln A 

12 H+O2(+M)=HO2(+M) m_CO2 31 H2O2+H=H2+HO2 ln A 50 2OH=O+H2O ln A 

13 O+H2=H+OH ln A 32 H2O2+H=H2+HO2 n 51 2OH=O+H2O n 

14 O+H2=H+OH n 33 H2O2+H=H2+HO2 E/R 52 2OH=O+H2O E/R 

15 O+H2=H+OH E/R 34 2OH(+M)=H2O2(+M) LP_ln A 53 2H+M=H2+M ln A 

16 HO2+H=2OH ln A 35 2OH(+M)=H2O2(+M) LP_n 54 2H+M=H2+M n 

17 HO2+H=2OH E/R 36 2OH(+M)=H2O2(+M) LP_E/R 55 2H+M=H2+M E/R 

18 HO2+OH=H2O+O2 ln A 37 CO+O2=CO2+O ln A 

19 HO2+OH=H2O+O2 n 38 CO+O2=CO2+O E/R 

 
Table 3 The investigated 55 rate parameters of the syngas combustion model. Parameters ln A, n, and 
E/R are transformed Arrhenius parameters, LP refers to low-pressure parameters and the m values are 
third body collision efficiency parameters. 
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Fig. 2 The maximum of absolute differences of the sensitivity indices calculated using the indicated 
sample size and the sample size of 350000 for the correlated (dash-dotted line) and final marginal 
(solid line) sensitivity indices. 

 

 

Fig. 3 The global total correlated sensitivity indices for the 55 investigated parameters of the syngas 
combustion model. The numbering of the parameters is given in Table 3. 
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Fig. 4 The global total final marginal sensitivity indices for the 55 investigated parameters of the 
syngas combustion model. Logarithmic scale is used for better visibility of the smaller indices. The 
numbering of the parameters is given in Table 3. 
 

3.2.1 Derivation of the final marginal sensitivity index 

The calculated total correlated and total final marginal sensitivity indices are shown in Figs. 3 

and 4, respectively. It can be clearly seen that a significant part of the uncertainty of the simulations is 

influenced by the correlations between the parameters, since the correlated indices are high for most 

of them. The correlations between the Arrhenius parameters of each reaction are high, as seen from 

the elements of the correlation matrix of the syngas combustion system, available in the Supplementary 

Material. The final marginal indices have typically small values, but show which parameters have a 

non-zero individual contribution to the uncertainty in the simulation results. This measure can help to 

identify reactions playing an important role at a given condition. The reactions with the highest final 

marginal indices for the conditions in this study are: CO+OH=CO2+H, H+O2=O+OH, O+H2=H+OH, 

CO+O2=CO2+O, OH+OH=O+H2O and H+O2+M=HO2+M. Other reactions have very low final 

marginal indices for each of their Arrhenius parameters. This suggests that their influence on the 

predicted ignition delays for the studied conditions can only be via their correlation with other 

parameters.  There are no reactions that have both low total correlated and low final marginal indices 

for all of their Arrhenius parameters. This means that all the reactions are important in some way even 

if their influence is through correlations.  
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Given the large differences between the total correlated sensitivity indices and the final 

marginal ones for the same reactions, it is interesting to explore the effects of the decorrelation ordering 

on the intermediate marginal indices. Fig. 5 shows two examples of the calculated marginal indices 

for parameter 1 (ln A of reaction CO+OH=CO2+H) which differ in the order of decorrelation used. 

The total correlated sensitivity index of this parameter was calculated first. This represents the effect 

of the parameter, taking into account its correlations with all other parameters studied. This value is 

around 0.8 as also indicated in Fig. 3, and indicates a high influence of this parameter when its 

correlations with other parameters are taken into account. Then, in the first run (blue dashed line), the 

effects of parameters 2 and 3 (parameters n and E/R of reaction CO+OH=CO2+H) were eliminated 

from the total correlated sensitivity index of parameter 1 (parameter ln A of reaction CO+OH=CO2+H). 

Removal of the influence of correlations with parameters 2 and 3 provides a marginal sensitivity index 

for ln A which represents it’s contribution to the output variance, without its correlative contribution 

with the other two Arrhenius parameters that belong to reaction CO+OH=CO2+H. It can be seen in the 

figure that once these internal correlations have been removed, there is a drop in the marginal 

sensitivity index, although it still remains significant even when its correlated effects with n and E/R 

are removed as also shown in Table 4. Internal correlations are clearly very important for this 

parameter and the covariance matrix shows that these internal correlations are both close to 1 and are 

negative. In the second run (black solid line), the effect of correlations with parameter 55 (parameter 

E/R of reaction 2H+M=H2+M) and then 54 (parameter n of reaction 2H+M=H2+M) were removed, 

and so on. Removal of the influence of parameters 53 to 55 means that the influence of correlations 

with all rate parameters related to reaction 2H+M=H2+M have been eliminated as shown in Table 4. 

Again, this leads to a large drop in the marginal index that results from strong negative correlations 

between ln A for CO+OH=CO2+H and all Arrhenius parameters ( ln A, n and E/R ) for 2H+M=H2+M. 

Finally, in both cases the sensitivity index of parameter 1 without the effects of any other parameters 

was obtained, which is the final marginal sensitivity index. As shown in Fig. 5, the final marginal index 

that results from complete decorrelation is independent of the order in which the parameters are 

decorrelated. The jumps in intermediate marginal indices can change sign as the effects of correlations 

are gradually removed, which can result from both positive and negative correlations within the 

covariance matrix.  

 



24 

 

 

Fig. 5 Changing of the marginal sensitivity indices of parameter 1 (ln A of reaction CO+OH = CO2+H) 
when the effects of the correlations between the Arrhenius parameters of each reaction step are 
removed one by one. In the first series, the effects of correlations with parameters 2, 3, ... , 55 were 
eliminated (blue dashed line) while in the second series, the effects of correlations with parameters 55, 
54, ... , 2 were eliminated (black solid line). Full black circles show the points corresponding to the 
marginal sensitivity index where the influence of correlations with all rate parameters of the indicated 
reaction step have been eliminated. Both series end up at the same value of the final marginal 
sensitivity index, indicating that the calculated final marginal index is independent of the order of the 
decorrelation of the parameters.  
 
In order to compare the global indices with local ones which are usually based on A factors only, it is 
useful to calculate the marginal indices for ln A of each reaction excluding its correlated effects with 
the other Arrhenius parameters for the same reaction. This is shown in Table 4 alongside the final 
marginal indices for each reaction. Once the effects of internal correlations are removed, only a few 
reactions have high marginal indices. These are CO+OH=CO2+H, O+H2=H+OH,  H+OH+M=H2O+M 
and HO2+HO2=H2O2+O2. Of these, only the first two reactions also have higher final marginal indices.  
ln A for H+O2=O+OH has a fairly low marginal index once correlations with the other Arrhenius 
parameters are removed. There are two possible reasons for this. Firstly, there is a very strong 
correlation between the A factor for this reaction and both of its other Arrhenius parameters.  The A 
factor is therefore influential only through these correlations. It was also the reaction with the lowest 
temperature dependent uncertainty following the mechanism optimisation by Varga et al. [21] and 
therefore has quite a narrow range of input uncertainty.  
  



25 

 

 

 

Parameter Stotal correlated Stotal without own Arrh. parameters Stotal final marginal 
CO+OH=CO2+H ln A 0.79916 0.37602 0.00808 

H+O2=O+OH ln A 0.87780 0.00168 0.00108 
H+O2+(M)=HO2+(M) LP_ln A 0.85323 0.00639 0.00002 

O+H2=H+OH ln A 0.72525 0.10948 0.00490 
HO2+H=OH+OH ln A 0.86783 0.00549 0.00004 

HO2+OH=H2O+O2 ln A 0.84337 0.01172 0.00007 
H+OH+M=H2O+M ln A 0.82689 0.05130 0.00007 

H+HO2=H2+O2 ln A 0.72277 0.00751 0.00001 
OH+H2=H+H2O ln A 0.85176 0.03384 0.00001 

H2O2+H=H2+HO2 ln A 0.83897 0.00450 0.00000 
OH+OH+(M)=H2O2+(M) LP_ln A 0.86769 0.00384 0.00000 

CO+O2=CO2+O ln A 0.79948 0.00118 0.00313 
CO+HO2=CO2+OH ln A 0.84474 0.00223 0.00001 
HO2+HO2=H2O2+O2 ln A 0.88340 0.31538 0.00000 

HCO(+M)=H+CO+(M) LP_ln A 0.88019 0.00007 0.00000 
HCO+H=CO+H2 ln A 0.71495 - 0.00000 
OH+OH=O+H2O ln A 0.82687 0.00324 0.00014 
H+H+M=H2+M ln A 0.78841 0.01837 0.00000 

 
Table 4 Change of the total correlated global sensitivity indices of parameters ln A or (LP_ln A) due 
to the elimination of the corresponding Arrhenius parameters and the final marginal sensitivity 
indices.  
 
 

3.2.2 Comparison of the results of local and global sensitivity analysis 

Local sensitivity analysis is widely used [20] in combustion modelling to identify the most 

important parameters for a given set of conditions. Typically, local sensitivity coefficients are based 

on partial derivatives such as  ln  /  ln A, and as such, are related only to the nominal set of A factors 

of the model. In addition, they usually do not take into account the level of uncertainty in the input 

parameters or correlations between them. On the other hand, in Section 2.4 above, we demonstrated a 

method for calculating local sensitivity indices which can take account of both input uncertainties and 

parameter correlation. In this section, we compare the local sensitivity indices with the global 

sensitivity ones and also with the typically used local sensitivity coefficients. All local sensitivity 

coefficients were calculated for the ln A (or LP_ln A) parameter only using a finite difference method 

for simulation conditions identical to the ones used for the calculation of the global sensitivity indices. 

The local total correlated and final marginal sensitivity indices are shown in Fig. 6 and the 

more typically used local sensitivity coefficients based on  ln  /  ln A are shown in Fig. 7. Comparing 

the results presented in Figs. 4, 5 and 6, and in Table 4, it is clear that when the local sensitivity indices 
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take account of correlations they show a similar group of important reaction steps: CO+OH=CO2+H, 

H+O2=O+OH, O+H2=H+OH and CO+O2=CO2+O to the global indices. In common with the global 

indices, the calculated local total correlated sensitivity indices are high for most reactions, showing 

that the correlation between Arrhenius parameters ln A has a significant effect on the local sensitivity 

indices. Again, in common with the global indices, the local final marginal indices are small, but show 

a similar importance ranking for those parameters that have a non-zero individual contribution to the 

uncertainty in the simulation results. The results shown in Fig. 7, based on simple local partial 

derivatives, show a different order of importance from that calculated by the local and global methods 

that account for correlations and input parameter variance. The most obvious difference between the 

two sets of results is for H+O2=O+OH which has a high local sensitivity in Fig. 7, but showed a small 

marginal global sensitivity for ln A in Table 4 as well as a small final marginal local index in Fig. 6. 

This suggests that whilst it has a high sensitivity, the low uncertainty in the A factor for this reaction 

following optimization, means that this does not contribute greatly to the final model uncertainty for 

the conditions studied. As mentioned above, it’s A factor is also strongly correlated to its other 

Arrhenius parameters and may therefore have a lower independent effect than for the other important 

reactions. Still, the three very different methods identified the same group of reactions as important.  

 

 

Fig. 6 The local total correlated (left) and the local total final marginal sensitivity (right) indices for 
the 18 investigated elementary reactions of the syngas combustion model. Logarithmic scale is used 
for better visibility of the smaller final marginal sensitivity indices. 
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Fig. 7 The local sensitivity coefficients  ln  /  ln A having the highest absolute values related to the 
reaction steps of the syngas combustion model. 
 

4. Conclusions 

In the present work we described a global sensitivity analysis method that is able to handle 

correlated parameter sets. It is based on the coupling of Rosenblatt transformation [13,18] with an 

optimized RS-HDMR method [17,19]. The accuracy of the computational method was tested on a 

series of examples where the analytical solution was available. In the Appendix, a general algorithm 

is provided for the analytical calculation of total correlated and final marginal sensitivity indices for a 

linear model with standard normally distributed parameters. The tests showed that the suggested 

method determines the correlated and final marginal sensitivity indices with good accuracy using a 

sample size of several ten thousands of parameter sets.  

The capabilities of the method were then investigated for a more realistic correlated multi-parameter 

model by exploring the effect of the uncertainty of the rate parameters of a syngasair combustion 

system on calculated ignition delay times. This model has 15 species and 48 reactions. Correlated 

uncertainty information in the form of a covariance matrix, obtained as a result of a parameter 

optimization study, was available for 55 rate parameters, which included Arrhenius parameters A, n, 

E of 18 elementary reactions and third body collision efficiency parameters m belonging to 3 

elementary reaction steps. Normally distributed random parameter sets were generated based on the 

covariance matrix. The convergence of the calculated sensitivity indices was checked using increasing 

sample sizes of 10000, 25000, 50000, 100000, 250000 and 350000., and the accuracy of the calculated 

sensitivity indices was investigated. 
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The results of the study of the syngas combustion model show that most of the parameters have 

large correlated sensitivity indices, and the correlation between the parameters has a high influence on 

the results. The final marginal sensitivity indices are small but are meaningful for the investigation of 

the chemical significance of the reaction steps. It was demonstrated that the values of the calculated 

total correlated and final marginal sensitivity indices are independent of the order of the decorrelation 

steps. The parameters belonging to only five elementary reactions have non-negligible final marginal 

sensitivity indices. What this suggests is that for chemical kinetic mechanisms with parameters 

obtained based on the optimization using large data sets, the correlation between parameters cannot be 

neglected. This is of high importance for the future development of such mechanisms since it implies 

that where new observational data becomes available that provides additional constraints on the 

mechanism, a re-optimization process (using a systematic optimisation approach) would be required 

except in cases where high final marginal sensitivity indices are present for a particular parameter. The 

results presented here however, indicate that the final marginal sensitivities for any individual reaction 

within an optimized scheme are likely to be small, and therefore new data sets are unlikely to constrain 

individual reactions.  

In chemical kinetics modelling, local sensitivity analysis is widely used. Local sensitivity indices 

for correlated parameters were defined, which are the linear equivalents of the global ones. The results 

of global sensitivity analysis were compared with the corresponding local sensitivity indices for the 

case of the syngasair combustion system as well as with more typically used local sensitivity 

coefficients based on simple local partial derivatives. Using the equations derived here, sensitivity 

indices can be calculated quickly from the local sensitivity vector and the corresponding covariance 

matrix, without using a sophisticated global uncertainty analysis code. A high degree of similarity was 

seen between the global and local methods when correlations were accounted for. However, although 

the same set of reactions was indicated to be important by all approaches, the ordering of the 

importance ranking differed when simple local measures were used. 

  



29 

 

References 

1. D. A. Sheen, H. Wang, Combust. Flame 158, 2358 (2011) 
2. H. Wang, D. A. Sheen, Prog. Energy Combust. Sci. 47, 1 (2015) 
3. D. A. Sheen, H. Wang, Combust. Flame 158, 645 (2011) 
4. T. Turányi, T. Nagy, I. G. Zsély, M. Cserháti, T. Varga, B. T. Szabó, I. Sedyó, P. T. Kiss, A. 

Zempléni, H. J. Curran, Int. J. Chem. Kinet. 44, 284 (2012) 
5. I. G. Zsély, T. Varga, T. Nagy, M. Cserháti, T. Turányi, S. Peukert, M. Braun-Unkhoff, C. 

Naumann, U. Riedel, Energy 43, 85 (2012) 
6. T. Varga, I. G. Zsély, T. Turányi, T. Bentz, M. Olzmann, Int. J. Chem. Kinet. 46, 295 (2014) 
7. T. Varga, T. Nagy, C. Olm, I. G. Zsély, R. Pálvölgyi, É. Valkó, G. Vincze, M. Cserháti, H. J. 

Curran, T. Turányi, Proc. Combust. Inst. 35, 589 (2015) 
8. C. Olm, T. Varga, É. Valkó, S. Hartl, C. Hasse, T. Turányi, Int. J. Chem. Kinet. 48, 423 (2016) 
9. V. Samu, T. Varga, K. Brezinsky, T. Turányi, Proc. Combust. Inst. 36, 691 (2017) 
10. É. Valkó, T. Varga, A. S. Tomlin, T. Turányi, Proc. Combust. Inst. 36, 681 (2017) 
11. A. Saltelli, K. Chan, E. M. Scott, Sensitivity Analysis, (John Wiley&Sons LtD., Chichester, 

England, 2000) 
12. G. Li, H. Rabitz, J. Math. Chem. 50, 99 (2012) 
13. T. A. Mara, S. Tarantola, Reliab. Eng. Syst. Safe. 107, 115 (2012) 
14. C. Zhou, Z. Lu, L. Zhang, J. Hu, Appl. Math. Model 38, 4885 (2014) 
15. I. M. Sobol', Math. Model. Comp. Exp. 1, 407 (1993) 
16. G. Li, C. Rosenthal, H. Rabitz, J. Phys. Chem. A 105, 7765 (2001) 
17. T. Ziehn, A. S. Tomlin, Env. Model. Soft. 24, 775 (2009) 
18. M. Rosenblatt, Ann. Math. Stat. 23, 470 (1952) 
19. T. Ziehn, A. S. Tomlin, http://www.gui-hdmr.de/ 
20. T. Turányi, A. S. Tomlin, Analysis of Kinetic Reaction Mechanisms, (Springer-Verlag Berlin 

Heidelberg, 2014) 
21. J. Jacques, C. Lavergne, N. Devictor, Reliab. Eng. Syst. Saf. 91, 1126 (2006) 
22. A. S. Tomlin, Proc. Combust. Inst. 34, 159 (2013) 
23. D. M. Kalitan, J. D. Mertens, M. W. Crofton, E. L. Petersen, J. Propul. Power 23, 1291 (2007) 
24. T. Varga, C. Olm, T. Nagy, I. G. Zsély, É. Valkó, R. Pálvölgyi, H. J. Curran, T. Turányi, Int. 

J. Chem. Kinet. 48, 407 (2016) 
25. A. E. Lutz, R. J. Kee, J. A. Miller, “SENKIN: A Fortran Program for Predicting Homogeneous 

Gas Phase Chemical Kinetics with Sensitivity Analysis,” Report No. SAND87-8248 (1988) 
 

 

  

http://www.gui-hdmr.de/


30 

 

Appendix: Analytical calculation of the total correlated and final marginal sensitivity indices for a 
linear model with normally distributed parameters 
 

Let us consider a linear model having n parameters with model result Y. The parameters are denoted 

by niXi 1 ,  . The linear model is defined by equation 



n

i
ii XCY

1

, where the iC  values are the 

coefficients of the corresponding parameters and are constant within the model. The parameters of the 

model are normally distributed. Denote  ),( ji XXCov the covariance between parameters i and j. 

The model result Y is defined by weighted sum of normally distributed variables, therefore the variance 

is defined as 
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The correlated sensitivity index shows the effect of the uncertainty of a parameter on the 

uncertainty of Y  considering the correlation of the parameter with all other parameters, and it can be 

calculated as the ratio of the marginal variance of Y  according to parameter i and the total variance 
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For the calculation of the final marginal sensitivity index, decorrelation of parameters is needed. 

Define an element of matrix D as njiCCXXCov jijiij 1, ,),( D . This is the covariance matrix 

of normally distributed parameters,  D0X ,~ˆ N , where  nXXX ˆ,,ˆ,ˆˆ
21 X . The final marginal 

sensitivity indices can be calculated as )(V)ˆ|(Vmarginal final YXYS ii  , where iX̂ denotes normally 

distributed parameter i , obtained by the elimination of the effects of all other parameters. The 

Rosenblatt transformation can carried out in an analytical way for normally distributed parameters. 

Denote   np:i,jDij
p  1D ; pD  is its determinant and p

ijD  is the cofactor of  ijD  in pD . To 

calculate the i-th final marginal sensitivity index, the covariance matrix D has to be reordered in such 

a way that the i-th parameter and the corresponding covariance values are placed in the last (n-th) row 

of the covariance matrix. In every step of the decorrelation, the conditional distributions and the sum 

of normal distributions have to be decorrelated. As the result of the last step, the decorrelated i-th 
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parameter has a normal distribution with variance n
nnDD . The corresponding determinant values 

are independent of the order of the other n1 parameters in the covariance matrix, since any reordering 

in the covariance matrix is equivalent to the permutation of the rows and columns, and the number of 

permutations is always even. Therefore, the calculated determinant values are invariant of the 

reordering. The final marginal sensitivity indices are then calculated by 
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