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Abstract
Applications of global uncertainty methods for models with correlated parameters are essential to
investigate chemical kinetics models. A global sensitivity analysis method is presented that is able to
handle correlated parameter sets. It is based on the coupling of the Rosenblatt transformation with an
optimized Random Sampling High Dimensional Model Representation (HDMR) method. The
accuracy of the computational method was tested on a series of examples where the analytical solution
was available. The capabilities of the method were also investigated by exploring the effect of the
uncertainty of rate parameters of a syrga@iscombustion mechanism on the calculated ignition delay
times. Most of the parameters have large correlated sensitivity indices and the correlation between the
parameters haghigh influence on the results. It was demonstrated that the values of the calculated
total correlated and final marginal sensitivity indices are independent of the order of the decorrelation
steps. The final marginal sensitivity indices are meaningful for the investigation of the chemical
significance of the reaction steps. The parameters belonging to five elementary reactions only, have
significant final marginal sensitivity indices. Local sensitivity indices for correlated parameters were
defined which are the linear equivalents of the global ones. The results of the global sensitivity analysis
were compared with the corresponding results of local sensitivity analysis for the case of the
syngasair combustion system. The same set of reactions was indicated to be important by both
approaches.

Keywords: sensitivity analysis, HDMR, correlated parameters, syngas combustion


mailto:turanyi@chem.elte.hu

M SC code: 49Q12
ORCID ID:

E. Valk6: 0000-0003-2606-2536
T. Varga: 0000-0002-6500-9546

2

Acknowledgement

The authors thank the support of the Hungarian National Research, Development and Innovation
Office — NKFIH grants K84054 and K11611ahd COST Action CM 1404 “SmartCats”. The work
of TV was supported by the UNKP-16-3 New National Excellence Program of the Mirfistry o

Human Capacities.


http://orcid.org/0000-0001-6621-9492
http://orcid.org/0000-0001-6597-4867
http://orcid.org/0000-0002-1461-165X

1. Introduction

Chemical models based on detailed reaction mechanisms usually have many parameters, the
guantification of which involves a level of uncertainty. The parameters of these models are intrinsically
correlated, but most commonly used uncertainty and sensitivity methods are able to handle only
uncorrelated parameters. An important step of modelling is to investigate the relationship between the
uncertainty of model parameters and the uncertainty of model results. Frequently, the methods used
for the determination of the uncertainty of model results are based dyy@mme modifications of the
parameters. These methods fail if the parameters are correlated since the calculation of the influence
of a given parameter using fixed values of the other parameters is not sufficient.

The reason why uncertainty methods that can handle uncorrelated parameters only are widely used
is that usually the uncertainty of the model input parameters are assessed individually and separately,
and therefore information about the correlated uncertainty of these parameters is not usually available.
However, Sheen and Warl\gjL-B] and Turétyal. [4-9] recently elaborated chemical kinetic model

optimization strategies which are able to calculate not only the optimized values of the parameters, but
also the covariance matrix of the fitted parameters. This matrix carries information about the joint
uncertainty of the parameters. Investigation of the effect of correlated uncertainties of model
parameters on the uncertainty of the model results is clearly a necessary next step.

In this work, global correlated, marginal sensitivity and final marginal indices were calculated to
investigate the uncertainty of a target model output caused by uncertainties in the ayateateys.
The calculation of these sensitivity indices is based on the Rosenblatt transformation and the Random
Sampling High Dimensiad Model Representation Method (RS-HDMR). The basic outline of this
algorithm has been published in our previous art [10]tlheitprevious paper focused on the
application of the method to investigate the effect of wall reactions on hydrogen ignition limits. In this
work, the details of the methodology are described, and the accuracy of the calculated sensitivity
indices is tested using several analytical examples. Local sensitivity indices for correlatedtpes
are definedasthe linear equivalents of the global ones. Also, a chemical kinetic example related to the
ignition delay times of a syngasir mixture is investigated, and the results are compared to
expectations based on reaction kinetics reasoning. The consequence of the correlated uncertainty of 5¢
rate parameters was investigated. This is the most complex chemical system to date where such stud)
has been carried out. In this practically important system, the order of the convergence of ihigysensit
indices and the features of the marginal sensitivity indices were investigated. The resultgatfathe

sensitivity analysis were compared to thosea wfore widely used local sensitivity analysis method.



2. Methods

2.1 HDMR Global Sensitity Analysis

The aim of sensitivity analysis is the determination of the relationship between the uncertainty of
the model input parameters and that of the target model result. Local sensitivity analysis is frequently
used to investigate chemical kinetic models. Local methods are based on the calculation of the partial
derivatives of the model result with respect to the parameters at a fixed point in the parameter space,
which is identical to the nominal parameter set. Local methods are cheap and easily realizable, but the
information that these methods provide is relevant only at a given point in the parameter space, and
doesnot belong to the full uncertainty domain of the model parameters. Global sensitivity analysis
provides information about the importance of the model parameters in the full uncertainty domain of
the parameters and is therefore more relevant where large uncertainties exist in the input parameters
or where the model is highly nonlinear. There are many possibilities to defieking of the
importance of parameters using global meth [11]. However, these methods are computationally
expensive and knowledge about the distribution of the parameters is required. Most global uncertainty

analysis methods can handle only uncorrelated parameters. New global sensitivity analysis methods

which can also handle models with correlated parameters were developed in recent years [12-14]. In

the next section a new sensitivity analysis method will be presented, which calculates global gensitivit
indices |[TT] based on the Random-Sampling High Dimensional Model Representation Method
12]14,17] and the decorrelation method of Rosent [18].

First, we denote the parameters of a modedsfy, x, ..., %) and the simulation result byj((f:

R"—>R). The result of the model can be expressed as a hierarchical expansion of the parameters:

f(x)=f, +i f.(x)+ z fij (xi,xj)+...+ o (X, Xy,e 0 X,) )

i=1 Ki<j<n

where the constand fepresents the mean value of the model output across the input sgrjdRe>R

is the contribution of the i-th input parametetoaxf(x); fij(xi,x):RP—R is the cooperative contribution

of the i-th and j-th inputs parameters t®&)f(etc. The zeroth-order, first-order, second-order, etc.
component functions are denoted byff fj etc., respectively. In the present work, these expansions
were truncated at second-order terms. If parametgexs X ., X, are independent, then the component
functions can be determined uniquely and optim@ [12] and can be expressed using an orthogonal

polynomial basis:



fi(x)= Zai ' i ' (%) (22)

=)
ST
fi (%, %)) = Z;,qzlﬂjq @' (%) @' (x;) (2b)

where @Qand Q denote the order angl, gjj denote the coefficients of basis functignendeg;. These
coefficients are determined by fitting the RS-HDMR function to a sample of runs from the full model.
It is important to notice that the determination of the orthogonal basis functions depends on the
distribution of the input parameters. If optimal basis functions are chosen and the optimal coefficients
are calculated (e.g. using a leagttares method), then sensitivity indices can be determined as detailed
below.

Let V denote the total variance ok)}( Vi the partial variance ofXj due to xalone and Y the
partial variance of K) due to the interactions betweegmmmd x Let E andv denote the expected value
and the variance operators, respectively. We can define the first- and second-order sensitegy indi
as $= Vi/V = V(E(f(x)[x))/V(f(x)) and $ = Vii/V = V(E(f(X)[x,%))/V(f(x)), respectively. If an accurate
fit is obtained such that Eq. (2) provides a good representation of the expansion in Eq. (1), then the
sum of these indices should be close to 1.

The total order effect for parameteican be expressed as:

serl_g +Zsj o= EOV(E ()X X g Xiagre - X)) /V (T (X))
(3)

The total sensitivity indexi'3?' measures the contribution aft the output variance, including
all variances caused by its interactions of any order, with any other input parameters. If the input
parameters are independent, we can determine the optimal orthogonal polynomial expansion of the
component functions. Using Eg. (1) and Eq. (2), the partial variances can be calculated and the
sensitivity indices of the parameters can be determined:

s z(a i ﬁ (42)

O
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This methodology is not applicable when the parameters are dependent, because in this case the
polynomial expansion of the component functions is not unique, and coeffigiemds; cannot be
used to calculate sensitivity indich].

Here we follow the basic idea of Mara and Taran [13] to calculate the sensitivity indices of
models with dependent parameters using decorrelation. A similar approach was also published by
Zhou et aI.]. A new methodology is presented here, which uses the RS-HDMR method to get both
correlated and final marginal sensitivity indices after the decorrelation via the Rosenblatt
transformation. Unlike in previous articles dealing with the global sensitivity analysis of correlated
parameterghe methodology is demonstrated not only on simple test cases, but as$arfm multi-

parameter chemical kinetic model and the implications of the results are discussed. The method was

encoded asn extension to th&sUI-HDMR program of Ziehn and Tomlin [L7,.9The general

methodology is applicable for any distribution of model inputs, but since the rate parameters of the
optimized combustion mechanism are assumed to have multivariate normal distribution, only the case

of a normal distribution is discussed here.

2.2 Decorrelation Using the Rosenblatt Transformation

Mara and Tarantol3] suggested the application of the Rosenblatt transfotion [18] to create
an uncorrelated sample from a correlated one. First, a sample must be generated based on the join

distribution function of the parameters. The Rosenblatt transformation consists of the following steps.
Let X=(Xy, X,,...X,) € R"denote a random vector with an absolutely continuous distribution function
F(X) = F (X, X,,...X,):R" >R, Let X = (ZX_ZZ) =TX=T(X,X,,...,X,) where transformatioi is
given by:
% =P(X, <) = Fy(x) (5a)
X =P(X, <X | X, =X, X, =%,..., X, =X )=F(X|X,...x )i =12...n (5b)

where F,F,.....,F, :R—> R are the marginal distribution functions. Thé=TX random vector is

uniformly distributed, and furthermore

P{X_ig X, i :L...,n} J....J.dann(xn [ X, gy Xg) .o OXF (%) =
]

) X

_[...de...dx_n: X,  where0<x <1 i=1..n
0 0



Thus, the variables<;, x5, ..., X,, are uniformly and independently distributed on the interval
[0,1]. This transformation can be expressed explicitly if F is a normal distribution with meanmector
and covariance matrig = {C,j } Let C"= g fi,j-1..p<n}, |CP|be the cofactor otC,j} in crand|c®|be

the determinant o€®. In this case, the transformed parameters can be calculated using the following

equations:

A XM
Xlgp[ e j (6a)

cl
}CJ“ (Xi —mj)

=2...n (6b)

Z:¢ X —m +i
=

where @ is the standard normal distribution function, which converts a standard normal pdf to a
standard uniform pdf. This means that without applying the funatiatithe end of the transformation,

the transformed parameters obtained are independent with standard normal distribution functions, as
applied in the present work. We used Hermite polynomials as basis functions in the RS-HDMR method

according to the standard normal distribution of the transformed model inputs.

2.3 Interpretation of the Sensitivity Indices of Transformed Parameters

The transformed parametezsx_z,...,x_n are standard normally and independently distributed. The

RS-HDMR method is then applied using samples of these parameters, and the corresponding simulated
output distributions and sensitivity indices are calculated. Since the first parameter is only transformed

and not corrected by the effect of any other parameter, the sensitivity indeth& first parameter is
identical to tfat of the transformed parametéti, which is in fact identical to the sensitivity index

S that reflects all possible parameter correlations. The total contributiartothe variance

of the output (i.e. including first-, second-order effects etc.) is indicated by the sensitivity index

S = gl = gereoreiaee gy performing the transformation for each of the indices i= 1, 2, 3, etc.,

in turn, the sensitivity indicesS®™**‘and S©'@°m™aed can pe calculated for each parameter

independently of the later transformations that aim to decorrelate the parameters. This total sensitivity
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index S ™™ *reflects the contribution that each parameter makes to the total output variance,

taking into account all its possible correlations. If a parameter dominates the output variance, then we

t%?lco rrelated

would expect this index to be close to 1. However, a large valug can occur for a

parameter which would individually have no effect on the model output, but is strongly correlated with
one or more parameters that have a large effect on the model output.
The subsequent transformations aiming to decorrelate the parameters can be performed in any

chosen order. Hence, having n parameters in total, in the second step we may seddhany
remaining (n-1) parameters. If we denote the second selected parameter by subscripSg, then
represents the contribution of to the output variance, without its correlative contribution with x

Notation Sé = S, , emphasizes this meaning and represents a marginal sensitivity. In a similar way

total

the total effect can be calculated, without the influence of parameter 1, dencﬁ?iﬂ' .1 . These
marginal sensitivities are calculated in sequence and in the last step, we?qbtai},q,(n,l),_“,z,l =

ginalmarginalyhich shows the totally uncorrelated contribution of parametéo the variance of

f(x). The marginal sensitivityS:™® = SP0 ., 5, =

_ Stotalﬁnal marginal .
n n

is the total sensitivity index of

parameter n without the influence of correlations with any other para@er [13]. While the intermediate
sensitivity indices in the middle of the sequence of decorrelation depend on the order of tlmselecti

of parameters, the final marginal sensitivity indid&@%'® ™" and S,°*""* ™" are independent

of this order.
For systems with independent parameters, the importance of a parameter can be determined by &

single total sensitivity measure. For correlated systems however, the picture is not so simple since both

totalcorrelatec totalfinal marginal

the correlatedS and final marginalS total sensitivity indices are available,

as well as marginal sensitivity indices which represent partial correlations.

However, if the method described above is carried out for a case where the parameters of the
model are independent, then the calculated correlated, final marginal and marginal sensitivity indices
would be identical to those that could be obtained using a converR&HHDMR method. This is
evident, since in such a situation the transformation of the parameters would leave them unchanged as
there is no correlation to remove from the sample. It should be noted that in practical applications, a
randomly and independently sampled set of parameters is expected to show a small degree of

correlation between the parameter values, which diminishes with the increasing sample size.



totalcorrelatec totalfinal marginal
S and S 9

Therefore, would be obtained even for a theoretically

independent set of input parameters.

If both of these indices are close to zero, then the investigated paranetdrlaw importance.

totalcorrelated

If the correlated indesS, is large (e.g. close to 1), this means that paramageimxportant.

totalfinalmarginal

However, if its total final marginal indeS is small, then its influence on the output

variance originates from strong correlations with other parameters. Finally, if a parameter has a large
final marginal index, then it strongly contributes to output variance, without correlated effects with the

other parameters.

2.4 Local Uncertainty Analysis of Models with Correlated Parameters

Local sensitivity analysis is widely uselﬂZO] in combustion modeling to identify the most
important parameters for a given set of conditions, although usually the local sensitivity coefficients
are related only to the nominal parameter set of the model. Usually target model outputs are chosen
for evaluation in accordance with available experimental data and may include quantities such as
ignition delay times, species concentrations, burning velocities etc. The purpose of the local sensitivity
analysis is therefore to explore which of the model parameters are most important for the accurate
prediction of experimental targets.

Here we denote the target result of an investigated model to be Y, while the parameters and the

nominal parameter set are denoted oy (p,, p,.....p,)and p" =(p,,p, ,....p, ), respectively. Let’s

assume thatY = f(p, p,,....p,), f :R" >R, f is continuously differentiable, the parameters are

normally distributedp ~ N(p",C) , whereC e RN genotes the covariance matrix of the parameters.

We denoteY” = f(p’) andS* =(dInY/dIn p. )e R as the local sensitivity coefficient at, and
s°¢ e R"as the vector which contains these sensitivity coefficients. A linear approximation of the

loc

model result Y ap* is denoted by¥ and it can be obtained by =Y’ +.8°(p - p). Itis

i=1
important to note that for linear models the global and the local sensitivity esatgequivalent, due

to the independence of the partial derivativep 0f
The local uncertainty of the model result is defir@ [20] as the variance of the approximating

function Y :



V(Y) = V[Y* + is“”( P - p(‘)j = V[Z s°p, j (7)

i=1 i
Based on the analogy of the sensitivity index used in global sensitivity analysis calcuiaisons,
possible to define its local counterpart. The local sensitivitgxrg can be calculated as the ratio of
the marginal variance of the approximating functonaccording to parameter i and the total variance,

S =V(\7| p,)/V(\?) . For a model with uncorrelated parameters, the covariance matrix is a diagonal

matrix andS can be calculated by the equation

V(1p) _ (8=fc, ®)
V(Y) Z(SIOC)ZC:H

i=1

S =

Similarly to the global sensitivity indices defined for correlated parameters, we may calculate the
correlated sensitivity index and the final marginal sensitivity index for the linearized system with
correlated parameters.

The correlated sensitivity index shows the effect of the uncertaihta parameter on the
uncertainty of Y considering the correlation of the parameter with all other parameters. The linear
approximation of the model result is defined dweighted sum of normally distributed variables.

Therefore

n

( Ioc) C +2iz Ioc Ijoccij ) (9)

i=1 i=2 j=1

V()= (") cls*)=

Accordingly

_ loc Ioc I-OCCr
Scorrelated _ V(Y | p|) _ (( ) ; J ] J
i - i " n n (10)
V (Y) Z ( Ioc) 4 ZZ Z SlocslocC

i=1 i=2 j=1

Note, that if the off-diagonal elements of mat@ixare zero (i.e. the parameters are not correlated),
then Eq. (10) is identical to Eq.)(8

For the calculation of the final marginal sensitivity index, the decorrelation of parameters is needed

according to Section 2.2. We define an element of matras D; =C; -5°°-s,i,j =1...n. This

is the covariance matrix of normally distributed paramefers N (p* ,D), wherep = (p,, p,..... D,)

. The final marginal sensitivity indices can be calculate&¥8™" = v(Y | p,)/V(Y) , where p,

10



denotes the normally distributed parameter which belongs to parameter i, obtained by the elimination

of the effects of all other parameters. As Eq. 6 shows, the Rosenblatt transformation can be carried out

in an analytical way for normally distributed parameters. We ddBPoté{Dij }:i,j =1..p< n}, where‘Dp‘

is its determinant an@if‘ is the cofactor of{Dij} in D”. To calculate the i-th final marginal

sensitivity index, matrixD has to be reordered in such a way that the i-th parameter and the
corresponding covariance values are put in the last (n-th) row of the matrix. In every step of the
decorrelation, the conditional distributions and sum of normal distributions have to be decorrelated.

As a result of the last step, the decorrelated i-th parameter has a normal distribution with variance
Bl/[P5,

of the other rl parameters in matriP, since any reordering in the matrix is equivalent to the

, as shown in Eq. (6b). The corresponding determinant values are independent of the order

permutation of the rows and columns, and the number of permutations is always even. Therefore, the
calculated determinant values are invariant of the reordering. The final marginal sensitivity irelices a

V)

then calculated byg™* ™" = |D|/(jD2

3. Results and discussion

The accuracy and efficiency of the methedlemonstrated first on four linear test cases created
for this study, and a nonlinear model of Jacques I. [21]. For these five test cases|audjias
are available, which allows the testing of the numerical algorithm and the checking of its convergence.
The analytical solutions of our four test cases were calculated according to the procedure described in
the Appendix. The analytical solution of the Jacques model was published in cle [21] and is
reproduced and expanded in this paper. Finally, our method was used to calculate the sensitivity indices
for predicted ignition delay times in a syngas combustion system with respect to 55 Arrhenius
parameters and third body collision efficiencies related to the rate coefficients of the chemical

mechanism.

11



3.1 Analytical test cases

3.1.1 The global sensitivitpdices

The first test case wadinear model with output function fxx1+2x>+3xs. The three parameters
X1, X2, X3 have standard normal distributions and are uncorrelated. Their covariance matrix, denoted by
Co, is therefore the 3x3 identity matrix. It can be shown analytically that the sensitivity inteces a

gowlinaimarginal _ glotalconelated _j2 14 wherei = 1,2,3. The model is linear and there is no correlation

between the parameters. Therefore the correlated and final marginal sensitivity indices aresequal.
Table 1 shows, our code was able to reproduce the analytical results to within anyacta@it;
using 10000 samples for all the four tests.

In test cases 2 toalsimilar linear modelf (X) = X, + X, + X, was investigated. The three parameters

are also standard normally distributed, but are correlated and their joint distribution is characterized
by covariance matri. Three cases are investigated, using covariance malric€s andCz defined
below.

1 04 03 1 -02 03 1 -049 -049
C,=|04 1 05|.C,=|-02 1 -04|. C;=|-049 1 -049
03 05 1 03 -04 1 ~049 -049 1

Since the model is linear, the correlated and the respective total correlated indices are equal, and

the same is true for the final marginal indices. Therefore, we only present the marginal sensitivity

correlated

indices S and the final marginal par§"™ ™9 for the three different sets of correlation

structures. The results for the four test cases are reported in Table 1.

12



Co C1
ANALYTICAL NUMERICAL ANALYTICAL NUMERICAL
Scorrelated Sfinal marginal Scorrelated Sfinal marginal Scorrelated Sfinal marginal Scorrelated Sfinal marginal
x1| 0.071 0.071 0.073 0.070 0.535 0.153 0.544 0.155
X2 | 0.286 0.286 0.282 0.288 0.666 0.126 0.661 0.124
x3 | 0.643 0.643 0.642 0.647 0.600 0.137 0.602 0.137
C, Cs
ANALYTICAL NUMERICAL ANALYTICAL NUMERICAL
Scorrelated Sfinal marginal Scorrelated Sfinal marginal Scorrelated Sfinal marginal Scorrelated Sfinal marginal
x1| 0.504 0.376 0.505 0.382 0.007 0.974 0.007 0.975
X2 | 0.067 0.347 0.063 0.350 0.007 0.974 0.006 0.973
x3| 0.338 0.329 0.333 0.330 0.007 0.974 0.006 0.973

Table 1 The calculated analytical and numerical sensitivity indices for the first four test cases

In the second example (related to covariance m&t)x all parameters are important, and the

correlation between the parameters hasignificant effect as illustrated by the high values of

Seome@ed The final marginal sensitivity indices are each higher than 0.1, which suggests that in this

case, each parameter has a significant individual marginal effect. In the third case (cevaaanc

C2) parameterx, has a higher total final marginal sensitivity index than total-correlated index, which

is caused by the effect of negative correlations (see Appendix). The final marginal sensitelities

also significant. In the last example (covariance maigk the same behaviour is expected for all
parameters based on the symmetry of the model and the identical covariance structure.arhere is
significant gap between the correlated and final marginal sensitivity indices. In this examde thi
caused by the anti-correlation between the parameters which damps their effect on the model result.
However, the final marginal sensitivity indices show that the parameters have a high individual effect.
In this final caselaparameters are equally important, which is natural due to the identical covariance
structures of the parameters.

The fifth test example is a nonlinear model with six paramétefs= XX, + X;X, + XsXs , where

the parameters hawestandard normal distribution with correlation matrix

13



100 0 0 O
01 0 0 0 O
00 1 03 0 O

C,= .
0003 1 0 0
00 0O 0O 1 08
00 0 0 08 1

Here, p,, = 0.3 and p,,= 0.8 denote the correlation between parametgrsand x, Xs respectively

This is one of the test cases used by Jacqueal. [21], who also published a method for thencalculati
of the analytical values of the total correlated sensitivity indices. Here we also presamalifieal
calculation of the marginal sensitivity indices. Both analytical calculations are based oct thatfa

the variance of the product of normally distributed parameters can be calculated using the identity:

V(XY) = E(X?2Y?%) — E2(XY) = E(X?)E(Y?) + Cov(X?,Y?) — (E(X)E(Y) + Cov(X, Y))2
= VXOV(Y) + E2(X)V(Y) + E2(Y)V(X) + Cov3(X,Y) + 2E(X)E(Y)Cov(X, Y).
Based on these equations, the variance of the model result is
V (F (X)) = V(XX, + XX, + XX ) =1+ L+ p2,) + L+ ) .

Since xand x are not correlated with the other parameters, the total marginal sensitivity indices
and the final marginal index are equal to the total correlated sensitivity index for thesetpesaThe
total correlated, final marginal and marginal sensitivity indices that belong to parametaisyare
equal to each other and the same is valid for parametansi %. This follows from the structure of
the correlation matrix and the symmetry of the model. The calculation of marginal sensitivity indices
for parametersaand xis discussed here. The total marginal and total correlated sensitivity indices of
x3 are equalif parameters which are uncorrelated witlare separated from.XThe final marginal

sensitivity index of x is defined by SI"™™=V(E(f(XX)|X,)/V(f(X), where
X = X —E(G | X, %, X, %, %) = % —E(X; | X,) follows from the fact thatsis correlated withsonly. Since

%; ~ N (01— p2,) and the variance of the model Y&(f (X)) =1+ (L+ p2,) + @+ p’), the final

_ 2
marginal sensitivity index ofxis obtained aS]"*™" = 12 Pas — . The final marginal
1+ @+ p3,) + A+ pge)
» V(E(T (X)X
sensitivity index of x can be defined ina similar way, S"*™9" = (V((f((>z)|) 6), where

Xs = X = E(Xg | X0, X5, %5, %45 X5) = X5 = E(X5 | X5) . Sincex, ~ N (01~ pZ),

14



finalmarginal __

1- p526

6

correlated sensitivity indices, both the analytical solution (in bracket) and the numerical valulks, whic
belong toa sample size of 15000. From row 2 onwards, the marginal sensitivity indices are shown
which were obtained by separating the effect of one, two, three and four parameters from the given
parameter. The order of the decoupling of the parameters is arbitrary; in these calculations, always the
preceding parameter according to their ordes gelected. In the last row, the total final marginal
sensitivity indices are presented. These values represent the effect of a parameter without any
contribution from other parameters. These indices show the case when effects of the other five

parameters were eliminated from the investigated parameter.

The results given in Table 2 show th& and X; have high total correlated sensitivity indices

while the respective final marginal indices are only 0.1. This is caused by both the non-linearity of the
model and the strong correlation between these two parameters. The total final marginal indices show
that the individual effects of all parameters are important, describing 10% of the output variance or
more. The results also indicate that the sensitivity indices do not change during the decorrelation step

in which the effects ofp@and xare removed, as was expected. For this reason, the total correlated and

1+ U+ p3g) + U+ pl)

In Table 2, the columns belong to parameter® %. The first row contains the calculated total

total final marginal indices are the same for batand x.

X1 X2 X3 X4 X5 X6
correlatec correlatec correlatec correlatec correlatec correlatec
S S S; S, S S
0278 (0.268)| 0277  (0.268) 0274  (0.292) 0.276  (0.292)| 0.454  (0.434)| 0.454  (0.434)
81-6 S2—1 S&Z 843 S5—4 S&S
0.278 (0.268)| 0.277 (0.268) 0.274 (0.292) 0.228 (0.244] 0.454 (0.434)| 0.102 (0.097
S1—6—5 S2—1—6 83—2—1 S4—3—2 S&4~3 86—5—4
0.278 (0.268) 0.277 (0.268) 0.274 (0.292) 0.228 (0.244) 0.454 (0.434)| 0.103 (0.097
S1—6—5—4 S2—1—6—5 S&2—1—6 S4—3—2—1 854&2 S&&#B
0.278 (0.268) 0.277 (0.268)| 0.275 (0.292) 0.228 (0.244] 0.429 (0.434] 0.102 (0.097
81-&54—3 S2—1—6—5—4 83—2—1—6—5 S4—32—1—6 854&2—1 8@54—3—2
0278  (0.268) 0277  (0.268) 0274  (0.292) 0.227  (0.244] 0.454  (0.434)| 0.102  (0.097
finalmarginal finalmarginal finalmarginal finalmarginal finalmarginal finalmarginal
S S S; S, S S
0.278 (0.268) 0.278 (0.268) 0.239 (0.244) 0.228 (0.244] 0.097 (0.097] 0.102 (0.097

Table 2 The numerically calculated and the analytical (in brgdkédl sensitivity indices for test case

5.
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The accuracy of the calculated sensitivity indices was investigated. Sample sizes of 1000, 2000, 4000,
6000, 8000, 10000 and 15000 were used to determine the absolute diftgrémeealculated and
analytical sensitivity indices. The absolute difference of the numerically and analytalaljated

) for both the

sensitivity indices at given sample size is defined Wsﬁ”“me“ca'—sﬁa”a'y“a
i=1..6

correlated and the final marginal indices. Fig. 1 shows that both the correlated and the final marginal

sensitivity indices are close to the analytical value above 10000 samples and the order of differences

is 102

0.10

------- Correlated
Final marginal

0.08 4

0.06 4

0.04 4

Absolute deviation

0.02

— 71 1 r 1 r T r T * T T T 7
0 2000 4000 6000 8000 10000 12000 14000 16000
Sample size

Fig. 1 The maximum of absolute differences of the sensitivity indices calculated using the indicated
sample size and the analytical values for the correlated (dash-dotted line) and final marginal (solid
line) sensitivity indices.

3.1.2 The local sensitivity indices

For the first four linear test cases, the calculation of the local sensitivity indices is equivalent
the calculation of the global indices, since the linear approximation of the functions is equal to the
original functionsThe partial derivatives of the models are constant values, since the coefficients of

the linear approximations are independent of the nominal parameter sets.

loc

For the first test case, the sensitivity coefficients #?Ce:l S, =2 s'3°° =3, respectively, and

for test cases 2 to 4 the local sensitivity coefficientssife= Sv° = s2° =1.

For the fifth test casef(x) =Xxx, + XX, + XX, the linear approximation of the model result at
p* =(p., P, P Psr 5, ;) is denoted byF and the approximation function if(p*, X) =P, X +
Py X+ Py X+ Py X, + Pg - X + Ps - X5 Since the linear approximation function @t =0 is the
constant zero function, the interpretation of sensitivity indices is not possible in this case.ngssumi
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that p* = 0, the variance of the approximation functidn is V(f) = (s *||§ +2-p; Py +2- Ps - Ps
, and the local correlated sensitivity indices are

* 2 ® 2 * * * \2
orrelated related orrelated -
_(pz) _(pl) _(p4+03' Ps - p4)
ST V() & ST V() ’

V()

Scorrelated: (p; + 039; ' p:t )2 S;:orrelated: (pg + OSP; : p; )2 Scorrelated: (pg + 03?; : p; )2
) V(f) ’ V(f) e V()

respectively.

The linear approximation functionf is accurate only in a small neighborhood @wf and
therefore these sensitivity indices are relevant in this region of the domain of f. Theoloeklted
sensitivity indices refldcthe contribution of each parameter to the variance of the approximation
function, taking into account all possible correlations at pwintGlobal uncertainty analysis correctly
shows that parameter pai(rlél,Xz), (X, X,), and (X, %) have equal importance. This is not revealed

by the local uncertainty analysis, except for the case when the function is caletigechominal

parameter set* Z(DI, pl p3 p; p5 p;). The local final marginal sensitivity indices represent the totally

uncorrelated contribution of parametetocthe variance of the approximation functidn. Based on

the definition above of local final marginal sensitivity indices, the corresponding final marginal indices

are

L \2
analmarginal _ (pz )2 Sﬁnal marginal _ (p:la.k )2 nalmarginal _ (1_ 032)(p2 )2 1 Sznal marginal _ %

fi =
v(f) v > V() v(f)y
o 1-08%)(p:f o a-08%)(p:)f
Sg”a'“’afg'”%—( z(pe) ,Sg“a'"’a“g'”a'=—( 2(p5) respectively. The local correlated and the
V() V()

final marginal sensitivity indices belonging to parametekis and x are identical (i.e.
gorrelatedzsinalmarginal and $orrelated:$nalmarginal)1 which shows that these parameters are
uncorrelated with the other parameters. In contrast with the result of global sensitivity analysis,
Spraimarginal  ginalmaginal - g grelmaeinal - ginalmaginal i gand only if the nominal parameter set
p*= Py, Py, s, s, P, ) is used.

In conclusion, both the local correlated and the final marginal sensitivity indices were determined

for the test case of Jacques et [21]. The local sensitivity indices are able to reflect that fac

parametersxand % are uncorrelated with the other parameters. The calculated local indices are not
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able to detect the same importance of paramétgxg, (x,x,), and(x,X), although this property of

the parameters comes directly from the structure of the model and the correlation of the parameters.
The results of local sensitivity analysis are relevant in a small neighborhood of the nominal parameter
set and the approximation function of the model result provides information about the parameters in
this region. Local sensitivity analysis can be useful if the most probable values of the parameters are
close to the nominal ones and the variances of the parameters are low. Generally, information about

the relation of the parameters should be obtained using global sensitivity analysis.
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3.2 Ignition delay timefor the combustion of a syngaesr mixture

Detailed kinetic reaction mechanisms are widely used in many fields of science and technology.
These mechanisms may contain several hundred species and several thousand reaction steps. Tt
mechanisms contain several thousands of parameters, including rate parameters (e.g. Arrhenius
parameters, third body collision efficiency parameters, parameters of pressure dependence),
thermodynamic data (e.g. parameters of the temperature dependence of the enthalpies of formation),
transport parameters etc. The various methods of sensitivity analysis are frequently applied for the
investigation of the relationship between the values of these parameters and target simulation results
obtained using such models for the purposes of model evaluation and impro@m = 20], [22] .

The generalized HDMR method presented in this paper is well applicable for quantifying the
correlated and individual (uncorrelated) uncertainty contributions of the rate parameters to the
uncertainty of the simulation results in a chemical kinetics model. This is now demonstrated for a
model based on a syngés$./CO) combustion mechanism containih§ species and 18 reactions.
Calculations of correlated and final marginal indices have been carried out for model simulations of
ignition delay times of a stoichiometric syngas mixture. The conditions of the simulations
correspond to the measurements of Kalitan = . [23], who assigned the ignition delay time in a shock
tube experiment to the maximum slope of the observed OH* emission. The initial conditions of the
experiment that were reproduced in our simulations were T197 K, p = 1.1 atm, initial fuel
composition: H/CO = 10/90, stoichiometric mixture with air. The ignition delay times were calculated
in adiabatic constant volume simulations.

The syngas combustion model of Varga et [24] was used for the simulation of the ignition
delays. During the development of this model 55 parameters were optimized, consisting of the
Arrhenius parameteis=In A n, anck= E/R of 18 elementary reaction steps (including 11 low-pressure
limit parameters) and 5 third body collision efficiency parameters. These parameters were fitted to an
extensive collection of 7195 experimental data points in 554 datasets. All parameters were fitted that
could be determined with acceptable accuracy based seexigerimental data. These parameters are
defined in Table 3. The covariance matrix is availdtde the Supplementary of articﬂ%] and the
correlation matrix is given in the Supplementary of this article. This matrix shows that there is very
strong correlation between the parameters.

Simulation of the ignition was carried out for each of the samples using the SENKIN program
of the CHEMKIN-II program package, using strict integrator tolerance settings (ATOL=
1.0x10%°, RTOL= 1.0x16°) to minimize the numerical uncertainty of the simulations. Correlated and

final marginal sensitivity indices were calculated. The sampling, the control of simulations and the
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sensitivity index calculations were carried out using our in-house developed MATLAB code called
Optima].

The convergence of the calculated sensitivity indices was checked using increasing sample sizes.
10000, 25000, 50000, 100000, 250000 and finally 350000 normally distributed random parameter
samples were generated based on the covariance matrix. The maximum of absolute differences of
sensitivity indices at given sample size and the sample size of 350000 were calculated. These values
are given in Fig. 2, showing that both the correlated and the final marginal sensitivity indices are close
to the converged values above 100000 samples.

Reaction Parameter Reaction Parameter Reaction Parameter
1 | CO+OH=CO+H In A 20 | HO+OH=H,0+0;, E/R 39 CO+HO=CO,+0OH In A
2 CO+OH=CO,+H n 21 | H+OH+M=H,0+M InA 40 CO+HQO=CO,+OH n
3 CO+OH=CO,+H E/R 22 | H+OH+M=H,0+M n 41 CO+HQO=CO,+OH E/R
4 H+0,=0+0OH In A 23 | H+OH+M=H,0+M E/R 42 2HO,=H,0,+0, In A
5 H+0O,=0+0OH n 24 | H+OH+M=H,O+M m_He 43 2HO,=H,0,+0, E/R
6 | H+O,=O+OH ER 25 | H+HO,=H,+O, InA 44 HCO(+M)=H+CO(+M) | LP_In A
7 | H+O(+M)=HO,(+M) | LP_In A 26 | H+HO=H,+O, n 45 HCO(+M)=H+CO(+M) | LP_n
8 | H+Oy(+M)=HOx(+M) | LP_n 27 | H+HO=H+0, E/R 46 HCO(+M)=H+CO(+M) | LP_E/R
9 | H+O(+M)=HO(+M) | m_H; 28 | OH+H,=H+H,0 InA 47 HCO(+M)=H+CO(+M) | m_Ar
10 | H+O,(+M)=HO,(+M) | m _H;O 29 | OH+H=H+H,0 n 48 HCO(+M)=H+CO(+M) | m_He
11 | H+O,(+M)=HO,(+M) | m_Ar 30 | OH+H,=H+H,0 E/R 49 HCO+H=CO+H2 InA
12 | H+O,(+M)=HO,(+M) | m_CGQ, 31 | H,O-+H=H+HO, In A 50 20H=0+H0 In A
13 | O+H,=H+OH InA 32 | HOx+H=H,+HO; n 51 20H=0+H0O n
14 | O+H,=H+OH n 33 | HO+H=H,+HO, E/R 52 20H=0+HO E/R
15 | O+H,=H+OH E/R 34 | 20H(*M)=H0x(+M) | LP_In A 53 2H+M=H+M In A
16 | HO,+H=20H InA 35 | 20H(+M)=H,0,(+M) | LP_n 54 2H+M=H+M n
17 | HO#+H=20H E/R 36 | 20H(+M)=H,0,(+M) | LP_E/R 55 2H+M=H,+M ER
18 | HO+OH=H,0+0, In A 37 | CO+0=CO,+O In A
19 | HO+OH=H,0+0, n 38 | CO+O=CO,+0O E/R

Table 3 The investigated 55 rate parameters of the syngas combustion model. Parameters In A, n, and
E/R are transformed Arrhenius parameters, LP refers to low-pressure parameters and the m values are
third body collision efficiency parameters.
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Fig. 2 The maximum of absolute differences of the sensitivity indices calculated using the indicated
sample size and the sample size of 350000 for the correlated (dash-dotted line) and final marginal
(solid line) sensitivity indices.
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Fig. 3 The global total correlated sensitivity indices for the 55 investigated parameters of the syngas
combustion model. The numbering of the parameters is given in Table 3.
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Fig. 4 The global total final marginal sensitivity indices for the 55 investigated parameters of the
syngas combustion model. Logarithmic scale is used for better visibility of the smaller ifidhiees.
numbering of the parameters is given in Table 3.

3.2.1 Derivation othe final marginakensitivity inax

The calculated total correlated and total final marginal sensitivity indices are shown in Figs. 3
and 4, respectively. It can be clearly seen that a significant part of the uncertainty of the simulations is
influenced by the correlations between the parameters, since the correlated indices are high for most
of them. The correlations between the Arrhenius parameters of each reaction are high, as seen from
the elements of the correlation matrix of the syngas combustion system, available in the Supplementary
Material. The final marginal indices have typically small values, but show which parameters have a
non-zero individual contribution to the uncertainty in the simulation results. This measure can help to
identify reactions playing an important roleaggiven condition. The reactions with the highest final
marginal indices for the conditions in this study. &@®+OH=CQ+H, H+0,=0+0OH, O+H=H+OH,
CO+O=CO;,+0O, OH+OH=0+H0O and H+G+M=HO.+M. Other reactions have very low final
marginal indices for each of their Arrhenius parameters. This suggests that their influence on the
predicted ignition delays for the studied conditions can only be via their correlation with other
parameters. There are no reactions that have both low total correlated and low final marginal indices
for all of their Arrhenius parameters. This means that all the reactions are important in some way even

if their influence is through correlations.
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Given the large differences between the total correlated sensitivity indices and the final
marginal ones for the same reactions, it is interesting to explore the effects oftineldgon ordering
on the intermediate marginal indices. Fig. 5 shows two examples of the calculated marginal indices
for parameter 1 (I of reaction CO+OH=Ce&rH) which differ in the order of decorrelation used
The total correlated sensitivity index of this parameter was calculated first. This represents the effect
of the parameter, taking into account its correlations with all other parameters studied. This value is
around 0.8 as also indicated in Fig. 3, and indicates a high influence of this parameter when its
correlations with other parameters are taken into account. Then, in the first run (blue dashed line), the
effects of parameters 2 and 3 (parameters n and E/R of reaction CO+QH$Gkre eliminated
from the total correlated sensitivity index of parameter 1 (parameter In Aof reaction CQ€RH).
Removal of the influence of correlations with parameters 2 and 3 provides a marginal sensitivity index
for In Awhich represents’s contribution to the output variance, without its correlative contribution
with the other two Arrhenius parameters that belong to reaction CO+ORH+C@ can be seen in the
figure that once these internal correlations have been removed, there is a drop in the marginal
sensitivity index, although it still remains significant even when its correlated effects with n and E/R
are removed as also shown in Table 4. Internal correlations are clearly very important for this
parameter and the covariance matrix shows that these internal correlations are both close to 1 and are
negative. In the second run (black solid line), the effect of correlations with parameter 55 (parameter
E/R of reaction 2H+M=kKi+M) and then 54 (parameter n of reaction 2H+M#£M) were removed,
and so on. Removal of the influence of parameters 53 to 55 means that the influence of correlations
with all rate parameters related to reaction 2H+Me=M have been eliminated as shown in Tahle 4
Again, this leads to a large drop in the marginal index that results from strong negative correlations
between In Afor CO+OH=C&H and all Arrhenius parameters (In A n and Ei& 2H+M=H+M.
Finally, in both cases the sensitivity index of parameter 1 without the effects of any other parameters
was obtained, which is the final marginal sensitivity index. As shown in Fig. 5, the final marginal index
that results from complete decorrelation is independent of the order in which the parameters are
decorrelated. The jumps in intermediate marginal indices can change sign as the effectatdcsrre
are gradually removed, which can result from both positive and negative correlations within the

covariance matrix.
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Fig. 5 Changing of the marginal sensitivity indices of parameter 1 (In Aof reaction CO+OH+HEO

when the effec of the correlations between the Arrhenius parameters of each reaction step are
removed one by one. In the first series, the effects of correlations with parameters 2, 3, ... , 55 were
eliminated (blue dashed line) while in the second series, the effects of correlations with parameters 55
54, ..., 2 were eliminated (black solid line). Full black circles show the points corresponding to the
marginal sensitivity index where the influence of correlations with all rate parameters of the indicated
reaction step have been eliminated. Both series end up at the same value of the final margina
sensitivity index, indicating that the calculated final marginal index is independent of the order of the
decorrelation of the parameters.

In order to compare the global indices with local ones which are usually based on Afactors only, it is
useful to calculate the marginal indices for In A of each reaction excluding its correlated effects with
the other Arrhenius parameters for the same reaction. This is shown in Table 4 alongside the final
marginal indices for each reaction. Once the effects of internal correlations are removedeonly a
reactions have high marginal indices. These are CO+OR=@@+H=H+OH, H+OH+M=H,O+M
andHO>+HO,=H,0>+0». Of these, only the first two reactions also have higher final marginal indices.

In A for H+O,=0O+0OH has a fairly low marginal index once correlations with the other Arrhenius
parameters are removed. There are two possible reasons for this. Firstly, there is a very strong
correlation between the A factor for this reaction and both of its other Arrhenius parameters. The A
factor is therefore influential only through these correlations. It was also the reaction with the lowest
temperature dependent uncertainty following the mechanism optimisation by Varga et al. [21] and
therefore has quite a narrow range of input uncertainty.
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Parameter Stota] correlated Stotal without own Arrh. parameters Stotal final marginal
CO+OH=CQ+H In A 0.79916 0.37602 0.00808
H+0,=0+0OH In A 0.87780 0.00168 0.00108
H+02+(M)=HO2+(M) LP_InA| 0.85323 0.00639 0.00002
O+H;=H+OH In A 0.72525 0.10948 0.00490
HO>+H=0H+OH In A 0.86783 0.00549 0.00004
HO2+OH=H.0+O; In A 0.84337 0.01172 0.00007
H+OH+M=H.O+M In A 0.82689 0.05130 0.00007
H+HO=Hz+0, In A 0.72277 0.00751 0.00001
OH+Hx=H+HO In A 0.85176 0.03384 0.00001
H202+H=H>+HO> In A 0.83897 0.00450 0.00000
OH+OH+(M)=H,O+(M) | LP_InA| 0.86769 0.00384 0.00000
CO+G=CG:+0 In A 0.79948 0.00118 0.00313
CO+HG=CO+0OH In A 0.84474 0.00223 0.00001
HOz+HO=H,0:+0; In A 0.88340 0.31538 0.00000
HCO(+M)=H+CO+(M) | LP_InA| 0.88019 0.00007 0.00000
HCO+H=CO+H In A 0.71495 - 0.00000
OH+OH=0+H0 In A 0.82687 0.00324 0.00014
H+H+M=H>+M In A 0.78841 0.01837 0.00000

Table 4 Change of the total correlated global sensitivity indices of parameters In Aor (LRduie A
to the elimination of the corresponding Arrhenius parameters and the final marginal sensitivity
indices.

3.2.2 Comparison of theesults oflocal and global sensitivity analysis

Local sensitivity analysis is widely US@ZO] in combustion modelling to identify the most
important parameters for a given set of conditions. Typically, local sensitivity coefficients are based
on partial derivatives such &sn 7/ 0 In A, and as such, are related only to the nominal set of Afactors
of the model. In addition, they usually do not take into account the level of uncertainty in the input
parameters or correlations between them. On the other hand, in Section 2.4 above, we demonstrated
method for calculating local sensitivity indices which can take account of both input uncertainties and
parameter correlation. In this section, we compare the local sensitivity indices with the global
sensitivity ones and also with the typically used local sensitivity coefficients. All local sensitivity
coefficientswere calculated for the In A (or LP_In A) parameter only using a finite difference method
for simulation conditions identical to the ones used for the calculation of the global sensitivity indices.

The local total correlated and final marginal sensitivity indices are shown in Fig. 6 and the
more typically used local sensitivity coefficients based mz/ ¢ In Aare shown in Fig. 7. Comparing
the results presented in Figs. 4, 5 and 6, and in Table 4, it is clear that when the local sensitivity indices
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take account of correlations they show a similar group of important reactionG@pOH=CQ+H,
H+0,=0+0OH, O+H=H+OH and CO+@=CO;+0 to the global indices. In common with the global
indices, the calculated local total correlated sensitivity indices are high for most reactions, showing
that the correlation between Arrhenius parameters In Abkagificant effect on the local sensitivity
indices. Again, in common with the global indices, the local final marginal indices are small, but show
a similar importane ranking for those parameters that have a non-zero individual contribution to the
uncertainty in the simulation results. The results shown in Fig. 7, based on simple local partial
derivatives, show a different order of importance from that calculated by the local and global methods
that account for correlations and input parameter variance. The most obvious difference between the
two sets of results is for H#50+0H which has a high local sensitivity in Fig. 7, but showed a small
marginal global sensitivity for In Ain Table 4 as well as a small final marginal local ind€g.i6.

This suggests that whilst it has a high sensitivity, the low uncertainty in the A factor for this reaction
following optimization, means that this does not contribute greatly to the final model uncertainty for
the conditions studiedAs mentioned aboveit’s A factor is also strongly correlated to its other
Arrhenius parameters and may therefore have a lower independent effect than for the other important
reactions. Still, the three very different methods identified the same group of reactions as important.
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Fig. 6 The local total correlated (left) and the local total final marginal sensitivity (right) indices for
the 18 investigated elementary reactions of the syngas combustion model. Logarithmic scale is used
for better visibility of the smaller final marginal sensitivity indices.
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Fig. 7 The local sensitivity coefficien®In 7/ 6 In Ahaving the highest absolute values related to the
reaction steps of the syngas combustion model

4. Conclusions

In the present work we described a global sensitivity analysis method that is able to handle
Ltior [13,18] with an

optimized RS-HDMR method [17,19]. The accuracy of the computational method was tested on a

correlated parameter sets. It is based on the coupling of Rosenblatt transfofm

Q)

series of examples where the analytical solution was available. In the Appendix, a general algorithm
is provided for the analytical calculation of total correlated and final marginal sensitivity indices for a
linear model with standard normally distributed parameters. The tests showed that the suggested
method determines the correlated and final marginal sensitivity indices with good accuracy using a
sample size of several ten thousands of parameter sets.

The capabilities of the method were then investigatearfwore realistic correlated multi-parameter
model by exploring the effect of the uncertainty of the rate parameters of a-sgingasnbustion
system on calculated ignition delay times. This model has 15 species and 48 reactions. Correlated
uncertainty information in the form of a covariance matrix, obtained as a result of a parameter
optimization study, was available for 55 rate parameters, which included Arrhenius parameters A, n,
E of 18 elementary reactions and third body collision efficiency parameters m belonging to 3
elementary reaction steps. Normally distributed random parameter sets were generated based on the
covariance matrix. The convergence of the calculated sensitivity indices was checked usasgigcr
sample sizes of 10000, 25000, 50000, 100000, 250000 and 350000., and the accuracy of the calculate

sensitivity indices was investigated.
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The results of the study of the syngas combustion model show that most of the parameters have
large correlated sensitivity indices, and the correlation between the parametengghaafluence on
the results. The final marginal sensitivity indices are small but are meaningful for the investigation of
the chemical significance of the reaction steps. It was demonstrated that the values of the calculated
total correlated and final marginal sensitivity indices are independent of the order of the decorrelation
steps. The parameters belonging to only five elementary reactions have non-negligible finaimar
sensitivity indices. What this suggests is that for chemical kinetic mechanisms with parameters
obtained based on the optimization using large data sets, the correlation between parameters cannot b
neglected. This is of high importance for the future development of such mechanisms since it implies
that where new observational data becomes available that provides additional constraints on the
mechanism, a re-optimization process (using a systematic optimisation approach) would be required
except in cases where high final marginal sensitivity indices are present for a particular pafdraeter
results presented here however, indicate that the final marginal sensitivities for any individual reaction
within an optimized scheme are likely to be small, and therefore new data sets are tméi&aktrain
individual reactions.

In chemical kinetics modelling, local sensitivity anadyisiwidely used. Local sensitivity indices
for correlated parameters were defined, which are the linear equivalents of the global oresuliche
of global sensitivity analysis were compared with the corresponding local sensitivity indices for the
case of the syngaair combustion system as well as with more typically used local sensitivity
coefficients based on simple local partial derivatives. Using the equations derived here, sensitivity
indices can be calculated quickly from the local sensitivity vector and the corresponding covariance
matrix, without using a sophisticated global uncertainty analysis code. A high degree of siméarity
seen between the global and local methods when correlations were accounted for. However, although
the same set of reactions was indicated to be important by all approaches, the ordering of the

importance ranking differed when simple local measures were used.

28



PwbdPE

o

N o

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.
23.
24,

25.

References

D. A. Sheen, H. Wang, Combust. Flame 1588 (2011)

H. Wang, D. A. Sheen, Prog. Energy Combust. SGi142015)

D. A. Sheen, H. Wang, Combust. Flame 168 (2011)

T. Turanyi, T. Nagy, I. G. Zsély, M. Cserhati, T. Varga, B. T. Szabo, I. Sedyd, P. TAKiss,
Zempléni, H. J. Curran, Int. J. Chem. Kinet, 284 (2012)

I. G. Zsély, T. Varga, T. Nagy, M. Cserhéati, T. Turanyi, S. Peukert, M. Braun-Unkhoff, C.
Naumann, U. Riedel, Energy 436 (2012)

T. Varga, |. G. Zsély, T. Turanyi, T. Bentz, M. Olzmann, Int. J. Chem. Kine29&(2014)

T. Varga, T. Nagy, C. Olm, I. G. Zsély, R. Palvolgyi, E. Valko, G. Vincze, M. Cserhéti, H. J.
Curran, T. Turanyi, Proc. Combust. Inst, 8389 (2015)

C. Olm, T. Varga, E. Valko, S. Hartl, C. Hasse, T. Turanyi, Int. J. Chem. Kinet2382016)

V. Samu, T. Varga, K. Brezinsky, T. Turanyi, Proc. Combust. Inst636 (2017)

E. Valko, T. Varga, A. S. Tomlin, T. Turanyi, Proc. Combust. Inst68a (2017)

A. Saltelli, K. Chan, E. M. Scott, Sensitivity Analysis, (John Wiley&Sons LtD., Chichester,
England, 2000)

G. Li, H. Rabitz, J. Math. Chem. 599 (2012)

T. A. Mara, S. Tarantola, Reliab. Eng. Syst. Safe, 103 (2012)

C. Zhou, Z. Lu, L. Zhang, J. Hu, Appl. Math. Model, 3885 (2014)

I. M. Sobol', Math. Model. Comp. Exp, 407 (1993)

G. Li, C. Rosenthal, H. Rabitz, J. Phys. Chem. A, 70%5 (2001)

T. Ziehn, A. S. Tomlin, Env. Model. Soft. 2475 (2009)

M. Rosenblatt, Ann. Math. Stat. 2870 (1952)

T. Ziehn, A. S. Tomlinhttp://www.gui-hdmr.dg/

T. Turanyi, A. S. Tomlin, Analysis of Kinetic Reaction Mechanisms, (Springer-Verlag Berlin
Heidelberg, 2014)

J. Jacques, C. Lavergne, N. Devictor, Reliab. Eng. Syst. Sdf196 (2006)

A. S. Tomlin, Proc. Combust. Inst. 3469 (2013)

D. M. Kalitan, J. D. Mertens, M. W. Crofton, E. L. Petersen, J. Propul. Pow&f23 (2007)

T. Varga, C. Olm, T. Nagy, I. G. Zsély, E. Valkd, R. Palvolgyi, H. J. Curran, T. Turanyi, Int.
J. Chem. Kinet. 48407 (2016)

A. E. Lutz, R.J. Kee, J. A. Miller, “SENKIN: A Fortran Program for Predicting Homogeneous

Gas Phase Chemical Kinetics with Sensitivityalysis,” Report No. SAND87-8248 (1988)

29


http://www.gui-hdmr.de/

Appendix: Analytical calculation of the total correlated and final marginal sensitivity indices for a
linear model with normé} distributed parameters

Let us consider a linear model having n parameters with model result Y. The parameters are denoted

by X, i=L1..n. The linear model is defined by equatign- Zci - X, , where theC, values are the

i=1
coefficients of the corresponding parameters and are constant within the model. The paratheters of

model are normally distributed. Deno@owv(X;, X;) the covariance between parameters i and j.

The model result Yis defined by weighted sum of normally distributed variables, therefore the variance

is defined as
n n i-1

V(Y) =Y .C*CouX;,X,)+2:>>'C -C,-Cov(X;,X,).
i=1 i=2 j=1

The correlated sensitivity index shows the effect of the uncertainty of a parameter on the
uncertainty of Y considering the correlation of the parameter with all other parameters, and it can be

calculated as the ratio of the marginal varianc&oficcording to parameter i and the total variance

2
C’CoUX,, X,)+ CiC-COV(Xi,X-)J
Scorrelated_ V(Y | X|) _ ( J; J :
( - T n n o i-1 :
VI srccowx,, x)+2-33°C -C, - Cov(X, X))
i=1 i=2 j=1

For the calculation of the final marginal sensitivity index, decorrelation of parameters is needed.

Define an element of matri® as D; = Co«X;, X;)-C, -C,,i,j=1..n. This is the covariance matrix
of normally distributed parameterX, ~ N(0,D), where X = ()21, Xore-ns )Zn). The final marginal

sensitivity indices can be calculated 85" ™" = V(Y | )T(i )/V(Y) , where )Z denotes normally

distributed parameter i , obtained by the elimination of the effects of all other parameters. The

Rosenblatt transformation can carried out in an analytical way for normally distributed parameters.
Denote Dp:{{Dij}:i,j =1.p<n); D] is its determinant angby| is the cofactor offD; § in D. To

calculate the i-th final marginal sensitivity index, the covariance mathas to be reordered in such

a way that the i-th parameter and the corresponding covariance values are placed in the last (n-th) row

of the covariance matrix. In every step of the decorrelation, the conditional distributions and the sum
of normal distributions have to be decorrelated. As the result of the last step, the decorrelated i-th
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parameter has a normal distribution with variahbp/ ‘Dﬂn

. The corresponding determinant values

are independent of the order of the othet parameters in the covariance matrix, since any reordering

in the covariance matrix is equivalent to the permutation of the rows and columns, and the number of
permutations is always even. Therefore, the calculated determinant values are invariant of the
reordering. The final marginal sensitivity indices are then calculated by

Sﬁnalmarginal — V(Y | >T(|) — |D| .
| V(Y)  |Dp|-v(Y)
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