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Abstract: Losses on low voltage networks are often substantial.  For example, in the UK they have been estimated as 

being 4% of the energy supplied by low voltage networks.  However, the breakdown of the losses to individual 

conductors and their split over time are poorly understood as generally only the peak demands and average loads over 

several months have been recorded.  The introduction of domestic smart meters has the potential to change this.  How 

domestic smart meter readings can be used to estimate the actual losses is analysed.  In particular, the accuracy of using 

30 minute readings compared with 1 minute readings, and how this accuracy could be improved, were investigated.  

This was achieved by assigning the data recorded by 100 smart meters with a time resolution of 1 minute to three test 

networks.  Smart meter data from three sources were used in the investigation.  It was found that 30 minute resolution 

data underestimated the losses by between 9% and 24%.  By fitting an appropriate model to the data, it was possible to 

reduce the inaccuracy by approximately 50%.  Having a smart meter time resolution of 10 minutes rather than 30 gave 

little improvement to the accuracy. 

1. Introduction 

Losses on low voltage networks can comprise a significant 

portion of the total network losses.  For example, [1] 

estimated the (technical) losses on the UK’s low voltage 
networks as 4% of the electric energy supplied to low 

voltage customers, with the majority of this being due to 

conductor ‘copper’ losses.  Besides the monetary and 
environmental costs of generating this lost energy, the extra 

currents can contribute to voltage and capacity problems.  A 

detailed knowledge of when and where these losses are 

occurring would allow better assessments of network 

efficiencies, assist with planning improved networks, help 

with operational decision making, improve identification of 

non-technical losses (i.e. unmetered and inaccurately 

metered loads [2]) and aid in the setting of network 

configurations [3].  Additionally, accurately evaluating the 

reduction in low voltage losses that embedded generation, 

such as photovoltaics, can provide is important for assessing 

the benefits of this generation [4].  However, the widespread 

lack of monitoring on low voltage networks makes it 

difficult to be precise about the location, timing and even the 

size of these losses, with consequent problems for decision 

making.  The roll out of smart meters to domestic customers 

in the UK which is due for completion in 2025, will provide 

the distribution network operators (DNOs) with an order of 

magnitude more information about the loads on their low 

voltage circuits.  This paper analyses how this information 

can be used to improve the estimates of the low voltage 

conductor losses.  In particular, it investigates:  

 How much lower the estimated losses using 30 

minute intervals are compared with using 1 minute 

intervals.  

 How to adjust the 30 minute loss calculation to get 

closer to the 1 minute value. 

 The benefit for loss calculations of the smart meters 

reporting 10 minute averages rather than 30 minute 

averages. 

It is found that fitting a suitable model to the 30, 60 and 120 

minute readings reduces by approximately 50% the error 

from calculating the losses using only the 30 minute 

readings. 

The next section reviews approaches to estimating low 

voltage losses. Section 3 describes the smart meter data sets 

and the test networks that were used in the analysis. Section 

4 looks at how the calculated losses depend on the time 

interval size used by the smart meters, before Section 5 

analyses how accurately the losses based on 30 minute smart 

meter data, can be used to estimate the losses that would 

have been calculated if the smart meter time resolution had 

been 1 minute. The paper ends with a brief discussion of the 

implications of the work. 

2. Background on low voltage losses 

Although low voltage conductor losses are a major 

component of electricity network technical losses, 

accurately estimating them has been difficult.  A simple 

approach to estimating the losses on a low voltage network 

is to measure the difference between the energy supplied by 

the distribution transformer and the metered energy used by 

the customers.  However, as [3] points out, until the advent 

of smart meters, the energy usage from each customer had 

been measured over long periods, e.g. 6 months or a year, 

and these periods were extremely unlikely to be the same for 

all customers on a low voltage circuit, e.g. the starting day 

of the period will vary for different customers.  Even if the 

metering periods for all customers did coincide, the 

breakdown of the losses to individual conductors and time 

periods would not be known.  Hence the fair allocation of 

the costs resulting from these poorly known low voltage 

losses, is difficult.  This is a particular issue when evaluating 
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the benefits from embedded generation reducing current 

sizes around the network and hence the size of the losses 

[5], [6], [7], [8], or assessing the consequences of new load 

types such as electric vehicles [9].  

A common approach to estimating low voltage losses on a 

circuit has been to use a loss factor [10], [11].  This factor is 

used to multiply the peak load losses to give the average 

losses.  Its attraction is that maximum demand is often 

measured (or estimated) for low voltage circuits, and so it 

provides a straightforward way to estimate the losses.  

However, it provides only a rough estimate of the losses as 

the relationships between the peak demand and the peak 

losses, and between the peak losses and the average (or 

total) losses, are very dependent on the circuit’s 
characteristics and the shape of the load curves at different 

points on the circuit.  [10] argues that using the average 

demand rather than the maximum demand is better as it 

reflects a period of time rather than one time instant.   

An alternative approach estimates a low voltage circuit’s 
losses by matching the circuit with a set of benchmark 

circuits.  Various features can be used for the matching, for 

example, [3] use the main feeder length, the length of 

branches, the number of branches, customer information and 

conductor sizes.  The approach relies on the benchmark 

circuits having been modelled in detail, and so their 

calculated loss values are regarded as being accurate.  [12] 

notes that a weakness of this approach is that no two circuits 

are exactly the same, and so the matching may not be valid.   

A general weakness of these approaches is that they just 

provide a single figure for the losses rather than providing a 

geographical and temporal breakdown of the losses.  [13] 

notes that breaking down the losses is becoming more 

important due to decentralised generation and the move 

towards smart grids.  Existing standard load profiles were 

combined with smart meter data to look at the consequences 

of simplifications such as using mean or peak loads.  [13] 

found that existing loss estimation approaches had particular 

problems in low density rural areas.  These branches were 

also sensitive to the time resolution of the data used to 

calculate losses with losses calculated using one second 

mean values being up to 20% higher than those calculated 

using 15 minute values.   

Having customer smart meter readings available for a low 

voltage circuit will allow the “copper” losses to be estimated 
using a load flow analysis [6], [10].  Not only will this avoid 

the coarse approximations involved in using loss factors and 

allow a temporal breakdown of the losses, but the 

consequences of phase imbalance [9] and embedded 

generation can be accounted for.  However, although their 

measurement time periods are much shorter than the months 

or years of the meters that they are replacing, the typical 

measurement time periods of 15, 30 and 60 minutes [14] 

mean that the losses calculated using smart meter data 

underestimate the true losses [13], [15].  This relatively poor 

time resolution when estimating low voltage losses, is a 

particular problem when assessing the impact of recent and 

future developments, such as high levels of photovoltaic 

generation [16], [17].  So as to investigate the effect of the 

time period length on the calculated losses, [15] considered 

the losses from a single appliance switching on and off at 

random.  For short time periods, i.e. in terms of seconds 

rather than minutes, the underestimation was modelled (and 

validated) as being a linear function of the time period.  As 

the time period increases, the assumption of there being at 

most a single switching event (either off to on or on to off) 

in any time interval breaks down and the relationship stops 

being linear.  Comparing the summed demands from 

between 1 and 22 dwellings indicated that the relationship 

between losses calculated using a one minute resolution and 

larger time resolutions became closer to a linear one as the 

number of dwellings increased (Figure 7 in [15]).   

3. The data 

The main question that this paper addresses is how well the 

losses calculated at a time resolution of 30 minutes (i.e. the 

time resolution of the UK’s smart meters) can be adjusted to 
estimate the losses that would have been calculated if the 

time period resolution had been one minute.  As the 

accuracy of the estimate depends on the loads and the 

network topology being analysed, 3 smart meter data sets 

and 3 very different test networks were investigated. 

3.1 Smart meter data sets 

Three smart meter data sets with a time resolution of  

1 minute were used in the investigation:  

 The Customer-Led Network Revolution (CLNR) 

data [18].  This project was carried out in the UK 

from 2011 to 2014. 53 sample dates between 

December 2012 and May 2014 were chosen for 

which there were at least 100 customers with 

demand readings for the whole day.  Figure 1 

shows the first two smart meter profiles in the data 

set for two consecutive Wednesdays in March 

2014.   

 The UMass Trace Repository data [19].  The data 

used were the readings from 114 single-family 

apartments in the USA for the first 350 days of 

2016.  Figure 2 shows the first two smart meter 

profiles in the data set for two consecutive 

Wednesdays in March 2016. 

 The UK Data Archive data [20].  This data set 

comprises data from a small number of smart 

meters covering a very diverse range of customer 

types.  Three Wednesdays and one Saturday in 

2008 were chosen for the analysis.  Only 22 

complete profiles were available for these days, and 

so profiles from these customers for adjacent 

Wednesdays and Saturdays were used to produce a 

set of 100 customers for each of the four days 

The three data sets are available for free public download – 

details are given in [19], [20] and [21].   

The smart meter loads were modelled as being independent 

of the customer’s voltage, i.e. the customer current was the 

smart meter load divided by the voltage at this point in the 

network (see Section 5).  Coarser time intervals for the 

smart meters were modelled by averaging the 1 minute 

readings over the coarser time interval for each customer.  

For example, for a 15 minute interval a customer’s readings 
for minutes 00:00, 00.01, …, 00:14 were averaged to give 
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the value for the first 15 minute period, and then 00:15 to 00:29 were averaged for the next period.  

 

 

Fig. 1.  The first two smart meter profiles in the CLNR data set [18] for two Wednesdays in the 2
nd

 half of March 2014.  

 

 

 

Fig. 2.  The first two smart meter profiles in the UMass data set [19] for two Wednesdays in the 2
nd

 half of March 2016.
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3.2 Test networks 

As losses depend on the size of the phase and neutral 

currents around the network, the ratio of the losses 

calculated using 1 minute intervals to the losses calculated 

using 30 minute intervals will vary with the network 

topology.  Therefore, three test networks with very different 

topologies were used for the analysis (see Figure 3).   

a)   A single tee with the customers split in the ratio 

30:30:40 on the branches. 

b)   A linear network.   

c) A high branching network with just one 

customer on each branch.   

Networks (b) and (c) are the two extremes with network (a) 

in the middle.  For each network, the customers were evenly 

spaced out.  The length of the branch sections was chosen so 

that the highest voltage drop for the three phase single tee 

network with the 100 CLNR loads was just under 6%.   

 

 

Fig. 3.  The test networks.   

4. The effect of current variability on loss calculations 

Averaging a current over a time interval makes it constant 

over the interval and so reduces the spikiness of the current.  

As losses are proportional to the square of the current, this 

means that the losses calculated using the average current 

are lower than the actual losses [10], [15].  Therefore, the 

variability of the total current from a group of customers 

over a time period directly affects the accuracy of the 

estimated losses.   

4.1. Very high spikiness: One narrow spike 

If there is a single narrow column of current of time duration 

(width) D and with a current value of I, and the current is 

zero outside of this column, then for a time interval of width 

w ≥ D that contains all of the current spike (and assuming a 

resistance of 1): 

 The actual loss is I2D 

 The average current is 
I D
w

, and so the loss calculated 

using the average current over the time interval is 
I2D2

w
 

Hence, when w ≥ D , the calculated loss from using the 

average current decreases at a rate of 
1
w

.    

4.2. Very low spikiness: constant current 

The other extreme case is when the current has the constant 

value I over the whole period.  Then the calculated loss over 

any time period is simply I2 times the length of the period.  

So over a fixed time interval, the calculated loss is 

independent of the size and number of periods the fixed 

interval is divided into.  

4.3. Smooth with a linear trend 

Besides short term variations in the current (spikes), for the 

longer time periods, e.g. 30 minutes, there may be a distinct 

increase or decrease in the current over the period.  We will 

consider a whole time period of width 1 and a linearly 

increasing current: 

lt = c + m × t  

where lt is the current at time t  [0, 1].   

If the time period is split up into n equal intervals, then the 

calculated loss is (assuming a resistance of 1) (1) 

∑( 
 ∫ {c+m(j - 1

2
n
)}2j

n

x=j - 1
n

dx) 
 n

j=1

= 1
n
∑(c2+2cm{j - 12

n
}+

m2 {j - 1
2}2

n2 )n

j=1= c2 + cm+
m23 − m2

12n2 

  (1) 

c) Branching 

b) Linear 

a) Single tee 

30% of meters 

30% of meters 

40% of meters 
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Consequently, as the width, w = 1
n
, of the time intervals that 

the time period is divided up into, increases, the loss 

calculated using the average interval current decreases in 

line with w2.   

4.4. Loss dependency on the time resolution in practice 

Sections 4.1, 4.2 and 4.3 have shown that depending on the 

circumstances, the calculated losses as the time interval 

resolution increases may stay the same (constant current), 

decrease as the reciprocal of the interval width (single 

narrow spike) or decrease with the square of the width 

(linear trend).  In practice the relationship will be a mixture 

of these and other effects.  Therefore, an empirical approach 

is taken to analysing the effect of the time interval width on 

the calculated losses.   

Modelling all the loads as being located at the same point, 

Figure 4 shows the losses calculated from adding different 

numbers of the CLNR smart meters together for Wednesday 

the 13
th

 of February 2013, and then varying the time interval 

resolution.  So, for example, the hollow square symbol at a 

meter time interval of 90 minutes indicates that for the 

group of 3 meters, the ratio of the losses calculated using the 

average current over 90 minutes to the losses calculated 

using the average current over one minute, is 0.64.  Hence 

all the symbol “curves” start off with a y value of one when 
the smart meter time interval (the x value) is one minute.  

(The losses were calculated by assuming that all the meters 

were grouped together at one node, were all on the same 

phase and the average current over the time interval was 

used in the loss calculation.  Calculating the losses for 

meters distributed across phases and in different locations 

will be considered in Section 5.)  The 1 meter curve has a 

very steep, near linear decrease over the first 4 minutes that 

is not present in the other curves.  Apart from this, although 

the shapes of the curves are very similar, the rate of change 

(the gradient) becomes much less as the number of meters 

increases.  This has consequences when estimating the 

losses for networks as the number of customers using a 

section of conductor will vary, decreasing as you move 

away from the substation. 

 

 

Fig. 4.  How the losses from combining different numbers of meters alter as the meter interval lengthens. 13
th

 February 2013.  

Each symbol type indicates a different number of meters.  As the y-value is the calculated loss using time periods of x minutes 

divided by the loss from using time intervals of 1 minute, all the curves start with a fraction of 1.0 for a time interval of 1 

minute. 

5. Estimation of network losses 

The smart meters were equally spaced over the networks 

shown in Figure 3.  The substation voltage was set at 250 

volts and the voltage at each smart meter was determined by 

iteratively calculating the voltages and the currents 

throughout the network.  The losses in each time period 

were then calculated by summing the phase and neutral 

losses in each branch.  Finally, the losses for the day were 

calculated by summing the losses for the day’s time periods.   

5.1. Losses model 

The model chosen to fit to the time interval width, t, and 

losses data, L, was (2) 

L =  ÷ t

 where  (0, 1) 

           (2) 

 determines the shape of the curve while  is the loss 

estimate for time resolution t=1. 

Given the losses L1 and L2 at times t1 and t2, then (3)  

α  = log (L1
L2
) + log (t2

t1
)   

                        (3) 

Hence,  can be determined followed by .   

The form of the model in equation 2 was selected as 
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 The few values that t can take (e.g. 30, 60 and 120 

minutes) means that the number of parameters (i.e. 

 and ) needs to be low. 

 The curves in Figure 4 all have this approximate 

shape, e.g. using =0.003 gives a good 

approximation to the 116 meter curve while =0.24 

does similarly well for the 1 meter curve.   

 The extreme cases for a single demand spike are 

=1 for a very narrow spike and =0 for a very 

broad spike (see Sections 4.1 and 4.2). 

 Equation 3 means that it is straightforward to 

implement, and so it could be a suitable choice in 

practice. 

5.2. Seasonal and day effect 

The CLNR data set of 53 dates was used to investigate 

whether different values of  should be used for different 

days of the week and seasons of the year.  For each day, the 

losses were calculated for different time interval resolutions 

for the single tee test network shown in Figure 3, and the 

model in equation 2 was fitted to the data.  For the day of 

the week, performing a single factor Analysis of Variance 

test gave a P-value of 0.45, and so this factor is not 

considered any further.  However, for the comparison of the 

s for winter and spring, the Analysis of Variance P-value 

was less than 0.001.  The alpha values calculated for each 

day for this case are shown in Figure 5.   

Seven approaches for estimating the 1 minute losses using 

the losses from either longer time periods or from different 

days, were analysed for the 53 dates.  Approaches (i) to (v) 

involve fitting the model L =  ÷ t

 to the data, while 

approaches (vi) and (vii) simply scale the 30 minute losses.  

In approaches (i) to (v), the value of  to use for a day is 

determined before the value of  is calculated.   is chosen 

to minimise the difference between the predicted and actual 

losses for the 30, 60 and 120 minute intervals using equation 

3. 

i. All 1 minute  For all the days excluding the one 

being estimated, fit  for each day separately using 

the time interval sizes of 1, 5, 10, 15, 30, 60 and 

120.  The  used for the estimation day is the 

average of the 52 s for the other days.  

ii. Season 1 minute  This is the same as the “All 1 
minute” approach except that the averaging for  is 

only carried out over the days in the same season as 

the estimation days, e.g. winter days if the day 

being predicted is a winter day. 

iii. Current day 30 minute  This approach fitted the 

model of equation 2 only using the losses for the 

30, 60 and 120 minute intervals on the prediction 

day.   

iv. All 30 minute  For each of the 53 days,  was 

chosen in the same way as in part (iii).  The 

average of these 53 s was then used for the 

estimation day and the value of  that gave the best 

fit at times 30, 60 and 120 for this  was then 

determined. 

v. Season 30 minute  This approach is the same as 

the “All 30 minute” approach except that instead of 
using all 53 days, only those days in the same 

season as the estimation day are used.   

vi. Scaling the 30 minute losses  For all the days 

excluding the one being estimated, the ratio of the 1 

minute losses to the 30 minute losses is calculated.  

The 1 minute losses for the estimation day are 

estimated by multiplying the day’s 30 minute 
losses by the average of these ratios.  

vii. Seasonal scaling of the 30 minute losses  This is 

the same as the “Scaling the 30 minute losses” 
approach except that only the ratios for the days in 

the same season as the estimation day are used. 

The results for the approaches are shown in Figure 6 and 

Table 1 where, for each day, the absolute percentage error 

(APE) from the one minute losses for the day was calculated 

for each of the methods.  The APE was calculated as (4)  

Absolute Percentage Error (APE) = 

100 × absolute value (actual loss − predicted loss
actual loss

) 
                                                                                            (4) 

Hence, the means and standard errors in Table 1 are over 53 

observations.  Over the 53 days, the 30 minute loss values 

summed over each day underestimated that day’s 1 minute 

losses by, on average, 24%.  Comparing this with the 30 

minute values in Figure 4, where 3 meters gave a difference 

of 27% and 5 meters gave a difference of 17%, suggests that 

having small numbers of customers on individual phases 

near the tips of the network, has a large impact on the ratio 

of the 1 minute losses to the 30 minute losses.  Performing a 

single factor Analysis of Variance test on the 7 approaches, 

gave a P-value less than 10
-6

, i.e. differences in the 

performances between some of the approaches are highly 

significant.  

 

Table 1. The absolute percentage errors (APEs) for the 

approaches’ predictions of the 1 minute time resolution 
losses for the 53 days, i.e. each mean is based on 53 

observations. 

Approaches Mean Standard error 

i. All 1 minute 6.2 0.8 

ii. Season 1 minute 5.9 0.7 

iii. Current day 30 minute 15.3 1.7 

iv. All 30 minute 14.1 0.9 

v. Season 30 minute 13.9 0.9 

vi. Scaling of 30 minute 6.5 0.8 

vii. Seasonal scaling of 30 

minute 6.1 0.7 
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Fig. 5. The optimal s for estimating the 1 minute resolution losses using L =  ÷ t

 for each of the 53 days in Section 5.2 

grouped by seasons of the year. 

 

 

 

 

Fig. 6. Absolute Percentage Errors (APEs) from the 1 minute resolution losses for each of the 53 days given by the different 

approaches.

As the 1 minute losses usually will not be available in 

practice for any of the days, approaches (i), (ii), (vi) and 

(vii) provide more of a performance target rather than a 

generally applicable approach.  Performing the Analysis of 

Variance test on the 3 approaches that do not use knowledge 

of 1 minute losses (i.e. (iii), (iv) and (v)) gave a two sided P-

value of 0.52.  Consequently, the differences between 

approaches (iii), (iv) and (v) are not significant.  In practice, 

(iv) or (v) would seem more appropriate as the value of  

could be calculated once and then used for future days while 

approach (iii) calculates  afresh for each day.   
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Paired two sample tests for differences between the means 

between approaches (i) and (vi) and between approaches (ii) 

and (vii) (i.e. comparing the curve fitting approach with the 

scaling approach when 1 minute data for similar circuits is 

known) gave two sided P-values of 0.01 and 0.11 

respectively, and so while the former is significant the latter 

is not.  Hence, if 1 minute loss data is available for other 

days, then there is possibly some indication that the model 

of equation 2 is better than simply scaling the 30 minute loss 

value.   

5.3. Assessing approach (iv) 

The lack of a significant benefit from modelling at the 

seasonal level in Section 5.2, means that in practice the 

simpler approach of making no distinction between the 

seasons is likely to be the preferred approach.  The 

robustness of the performance of approach (iv) along with 

the inaccuracy of simply using the 30 minute loss value to 

estimate the 1 minute losses, were analysed using the 114 

smart meters from the UMass data set and the three test 

networks of Figure 3.  Besides randomly allocating the 

meters to the phases for these networks, the situation where 

the linear network was single phase was also analysed.  

Finally, how the performance depends on the network size is 

investigated by reducing the number of smart meters to 85 

(75%) and 29 (25%).  Table 2 gives the mean over the 350 

days of the Absolute Percentage Error (APE) for approach 

(iv) along with the corresponding MAPEs from using the 30 

minute values to estimate the 1 minute losses.   

In Table 2, approach (iv) gives just under a 50% 

improvement over using the 30 minute interval values when 

estimating the 1 minute losses.  Table 2 also shows the loss 

estimates are significantly worse when there are few meters 

on a branch. 

 

Table 2. The Mean Absolute Percentage Errors (MAPE) of 

the estimates from approach (iv).  The MAPEs from the 30 

minute losses are given in the brackets. 

 114 meters 85 meters 29 meters 

Single tee, 3 4.3 (8.6) 5.4 (10.9) 9.7 (20.5) 

Branching, 3 7.9 (16.2) 9.0 (19.0) 12.0 (28.5) 

Linear, 3 phase 4.2 (8.7) 5.2 (10.7) 9.9 (21.3) 

Linear 1 phase 1.0 (2.1) 1.3 (2.7) 3.4 (6.7) 

 

The UK Data Archive smart meter data set [20] was also 

used to assess the benefit of approach (iv).  Three 

Wednesdays and one Saturday in 2008 were chosen for the 

analysis.  Only 22 complete profiles were available for these 

days, and so profiles from these customers for adjacent 

Wednesdays and Saturdays were used to produce a set of 

100 customers for each of the four days to populate the 

single tee network in Figure 3.  How the calculated losses 

for each day vary with different smart meter time intervals is 

shown in Figure 7.  The values are given as a fraction of the 

losses calculated using 1 minute time intervals.   

Approach (iv) gave a MAPE of 4.8% compared with a 

MAPE of 19.0% from using the 30 minute intervals to 

estimate the 1 minute losses. 

  

 

 

Fig. 7. How the calculated losses at different time resolutions compare with those calculated at a resolution of 1 minute for 4 

different days using the UK data archive data set of smart meter customer curves [20].  The symbols , ,  and  denote 

the different days.

5.4. 10 minute versus 30 minute time intervals 

Most smart meters allow the interval the load is averaged 

over to be configured in software, but shorter time intervals 

increase the communication overhead.  Therefore, the 

benefit of having a smart meter time interval resolution of 

10 minutes as opposed to the UK’s 30 minutes was 
investigated by applying approach (iv) in the cases of 10, 
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30, 60 & 120 minutes and 30, 60 & 120 minutes.  Table 3 

gives the results for the CLNR and UMass data sets.  

Although having 10 minute data generally leads to better 

estimates, the improvement is limited and the MAPE is only 

being reduced by 10% or less.   

 

Table 3. The MAPEs from using approach (iv) with 10 

minute and 30 minute intervals. 

 Using 10 Using 30 minutes 

CLNR Single tee, 3 13 15 

UMass Single tee, 3 3.9 4.3 

UMass Branching, 3 7.9 8.8 

UMass Linear, 3 4.0 4.2 

UMass Linear 1 1.0 1.0 

5. Discussion 

The time resolution for the three data sets used in this 

research was 1 minute.  As the calculated losses will be 

higher if a finer time resolution is used, the estimates of the 

1 minute losses underestimate the actual losses.  If the 

energy supplied by the substation is not available for 

improving the 1 minute estimates, then the results in [15] 

suggest fitting a straight line to the two lowest time 

resolutions available, i.e. the estimates for 1 and 2 minute 

resolutions, to estimate the actual losses.  However, the very 

limited availability of data with time intervals below 1 

minute meant that it was not possible to analyse the 

accuracy of the approximation.   

The analysis has assumed that all customers have smart 

meters.  In practice, there may be some customers with older 

“legacy” meters.  By the completion of the smart meter roll 
out in the UK in 2025, the number of these meters is likely 

to be small.  Approach (iv) can be used to estimate the 

losses for networks with a small number of non-smart 

meters by assigning appropriate smart meter profiles to 

these customers.  A sensitivity analysis can then be carried 

out by carrying out the analysis with different profiles.  

The investigation assumed that the values recorded by 

working smart meters were 100% accurate.  Although 

concerns have been raised about smart meter accuracy, the 

analysis reported in [22] found that 99.9% of meters had an 

accuracy of between ±0.5%.  Hence, smart meter inaccuracy 

is unlikely to have a significant effect on the investigation’s 

findings.  

The voltage at each customer and the peak currents in each 

cable section are other important low voltage network 

performance measures that data from smart meters could 

help to estimate.  However, these depend on the maximum 

and minimum values during the smart meter period rather 

the case of losses where the dependence is on the sum over 

the period.  Therefore, their estimation has not been 

considered in this paper. 

6. Conclusions and implications 

When a high percentage of customers have smart meters, it 

offers distribution network operators a low cost way to 

estimate low voltage network losses.  However, how the 

losses calculated using the average currents over a time 

interval, vary as the time interval size varies depends on 

factors such as the spikiness of the demands, the relative 

sizes of the different spikes, and the presence or absence of 

trends in the demands.  Hence, just using the 30 minute 

average currents that stem from smart meter readings, will 

underestimate the actual losses.  The investigation found the 

following:  

 30 minute estimates of losses – The absolute 

percentage error (APE) of the daily estimate from 

using 30 minute smart meter data to estimate the 1 

minute losses, depends on the number of smart 

meters on each branch, with a lower APE when this 

number is higher.  For the single tee network, the 

three smart meter data sets gave MAPE values of 

9%, 14% and 24%.  While these provide an 

indication of the order of magnitude of the 

underestimation of the losses when 30 minute 

intervals are used, there will be considerable 

variation between different network topologies, 

customer types and days. 

 Improving on the 30 minute value – Fitting the 

model of equation 2 to the 30, 60 and 120 minute 

readings, reduced the error from using the 30 

minute values to estimate the 1 minute losses by 

around 50%.  For example, the reductions for the 

single tee network with the CLNR, UMass and UK 

data archive smart meter data sets were 

respectively 41%, 50% and 75%.   

 Benefit of 10 minute smart meter intervals – Table 

3 shows that using 10 minute smart meter intervals 

improves the losses estimate, but the improvement 

in the accuracy is relatively low compared with the 

overall inaccuracy.  For the single tee network, the 

improvements for the CLNR and UMass data sets 

were respectively 13% and 9%. 

Combined with the straightforward nature of approach (iv), 

these results mean that approach (iv) is a practical way to 

improve the loss estimates calculated using smart meter 

data.  
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