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When graphene is placed on a monolayer of semiconducting transition metal dichalcogenide (TMD) its

band structure develops rich spin textures due to proximity spin-orbital effects with interfacial breaking of

inversion symmetry. In this work, we show that the characteristic spin winding of low-energy states in

graphene on a TMD monolayer enables current-driven spin polarization, a phenomenon known as the

inverse spin galvanic effect (ISGE). By introducing a proper figure of merit, we quantify the efficiency of

charge-to-spin conversion and show it is close to unity when the Fermi level approaches the spin minority

band. Remarkably, at high electronic density, even though subbands with opposite spin helicities are

occupied, the efficiency decays only algebraically. The giant ISGE predicted for graphene on TMD

monolayers is robust against disorder and remains large at room temperature.

DOI: 10.1103/PhysRevLett.119.196801

In the past decade, graphene has emerged as a strong
contender for next-generation spintronic devices due to its

long spin diffusion lengths at room temperature and gate
tunable spin transport [1]. However, the lack of a band gap
and its weak spin-orbit coupling (SOC) pose major limi-

tations for injection and control of spin currents. In this
regard, vanderWaals heterostructures [2] built fromstacks of
graphene and other two-dimensional (2D) materials hold
great promise [3]. Thewidely tunable electronic properties in

vertically stacked 2D crystals offer a practical route to
overcome the weaknesses of graphene [4]. An ideal match
to graphene are group-VI dichalcogenides MX2 (e.g.,
M ¼ Mo, W; X ¼ S, Se). The lack of inversion symmetry

in TMD monolayers enables spin- and valley-selective light
absorption [5], thus providing all-optical methods for
manipulation of internal degrees of freedom [6]. The optical

injection of spin currents across graphene-TMD interfaces
has been recently reported [7,8], following a theoretical
proposal [9]. Furthermore, electronic structure calculations
show that spin-orbital effects in graphene on a TMD are

greatly enhanced [10,11], consistent with the SOC finger-
prints in transport measurements [11–14], pointing to
Rashba-Bychkov (RB) SOC in the range of 1–10 meV.

In this Letter, we show that the SOC enhancement in

graphene on a TMD monolayer allows for current-induced

spin polarization, a relativistic transport phenomenon

commonly known as the inverse spin galvanic effect

(ISGE) or the Edelstein effect [15]. In the search for novel

spintronic materials, the role of the ISGE, together with its

Onsager reciprocal—the spin-galvanic effect—is gaining

strength, with experimental reports in spin-split 2D electron

gases formed in Bi=Ag and LaAlO3=SrTiO3, as well as in

topological insulator (TI) α-Sn thin films [16–18]. In

addition, the enhancement of nonequilibrium spin polari-

zation has been proposed in a ferromagnetic TMD and

magnetically doped TI=graphene [19]. The robust ISGE in
nonmagnetic graphene=TMD heterostructures predicted
here promises unique advantages for low-power charge-
to-spin conversion (CSC), including the tuning of spin
polarization by a gate voltage. Moreover, owing to the
Dirac character of interfacial states in graphene on a TMD
monolayer, the ISGE shows striking similarities to CSC
mediated by ideal topologically protected surface states
[20], allowing nearly optimal CSC. We quantify the CSC
efficiency as a function of the scattering strength, and show
it can be as great as ≈30% at room temperature (for a
typical spin-orbit energy scale smaller than kBT).
The model.—The electronic structure of graphene on a

TMDmonolayer (G=TMD) iswell described at low energies

by a Dirac model in two spatial dimensions [10,11],

H0k ¼ τz½vσ · kþ λðσ × sÞ · ẑþ Δσz þ λsvsz�; ð1Þ
where k ¼ ðkx; kyÞ is the 2D wave vector around a Dirac

point, v is the Fermi velocity of massless Dirac electrons

(v ≈ 106 m=s), and σi, si, τiði ¼ x; y; zÞ are Pauli matrices
associated with the sublattice, spin, and valley subspaces,
respectively. The momentum-independent terms in Eq. (1)
describe a RB effect resulting from the interfacial breaking
of inversion symmetry (λ), and staggered (Δ) and spin-valley
(λsv) interactions due to broken sublattice symmetry C6v →

C3v [see Fig. 1(a)]. The Dirac HamiltonianH0k contains all
substrate-induced terms (to lowest order in k) that are
compatiblewith time-reversal symmetry and the point group
C3v [21], except for a Kane-Mele SOC term (∝ σzsz), which
is tooweak [22,23] tomanifest in transport and can be safely
neglected. The dispersion relation associated with H0k for
each valley τ≡ τz ¼ �1 consists of two pairs of spin split
Dirac bands (omitting ℏ),

ϵτζðkÞ ¼ �τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2k2 þ Δ
2
ζðkÞ

q

; ð2Þ
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where k≡ jkj, ζ ¼ �1 is the spin-helicity index and

Δ
2
ζðkÞ ¼ Δ

2 þ λ2sv þ 2λ2

þ 2ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðλ2 − ΔλsvÞ2 þ v2k2ðλ2 þ λ2svÞ
q

: ð3Þ

A typical spectrum is shown in Fig. 1(b). The spin texture
associated with each band reads

hsiαk ¼ −ζϱðkÞðk̂ × ẑÞ þmz
αðkÞẑ; ð4Þ

where α≡ ðτζÞ. The first term describes the spin winding
generated by the RB effect [Fig. 1(c)] and the second its out-
of-plane tilting due to the broken sublattice symmetry. The
entanglement between spin and sublattice degrees of free-
dom generates a nontrivial k dependence in the spin texture.
For example, in the minimal model with only RB inter-
action, ϱðkÞ coincides with the band velocity (in units of v),
while mz

α ¼ 0; i.e., the spin texture is fully in plane [24].
When all interactions in Eq. (1) are included, we find

ϱðkÞ ¼ vkλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔλsv − λ2Þ2 þ v2k2ðλ2 þ λ2svÞ
p : ð5Þ

The breaking of sublattice symmetry modifies the spin
texture, with both valleys acquiring a spin polarization in
the ẑ direction, consistent with first-principles studies [10].
The explicit form of mz

αðkÞ is too cumbersome to be
presented. Here, it is sufficient to note that jmz

αðk ¼ 0Þj ¼
1 with jmz

αðkÞj decaying to zero away from the Dirac point
[25]. Finally, due to time-reversal symmetry the ẑ polar-
izations at inequivalent valleys are opposite. For energies
within theRashba pseudogap (RPG), that is, ϵ0 ≡ jϵτ−ð0Þj <
jϵj < 2~λ≡ jϵτþð0Þj, the Fermi surface is simply conne-
cted. Hence, at low energies, the electronic states have

well-defined spin helicity [Figs. 1(b)–1(c)]. This feature of
G=TMD interfacial states is reminiscent of spin-momentum
locking in topologically protected surface states [20], hinting
at efficient CSC.

Semiclassical argument.—The efficiency of CSC can be

demonstrated using a simple semiclassical argument. For

ease of notation, hereafter we employ natural units

(e≡ 1≡ ℏ). Under a dc electric field, say E⃗ ¼ Ex̂, the
ŷ-polarization spin density in the steady state reads hSyi ¼
P

α

R

ðdkÞ 1
2
hsyiαkδfαk, where δfαk is the deviation of the

quasiparticle distribution function with respect to equilib-

rium and ðdkÞ≡ d2k=4π2. Owing to the tangential wind-

ing of the in-plane spin texture, only the longitudinal

component of the quasiparticle distribution function

δf
∥
αk ≡ gαðkÞk̂ · k̂x contributes to the integral. At zero

temperature gαðkÞ ¼∓ Evαkτ�αkδ(ϵαðkÞ − ϵ), where vαk ¼
∂kϵαðkÞ is the band velocity, τ�αk is the longitudinal

transport time, and ϵ is the Fermi energy (∓ for electron

or holes). For energies inside the RPG (regime I), one easily

finds

hSyiI ¼∓
E

4π
ϱðkFÞkFτ�; ð6Þ

where kF is the Fermi momentum and τ� ¼ τ�ðτ−ÞkF
(assumed valley independent for simplicity). The charge

current density hJxi ¼ −v
P

α

R

ðdkÞhτzσxiαkδfαk can be

computed following identical steps. We obtain

hJxiI ¼
E

2π
vFkFτ�; ð7Þ

where vF ¼ jvτ−ðkFÞj. The implications of our results are

best illustrated by considering the minimal model, for
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FIG. 1. (a) Graphene on aMX2 monolayer. (b) Typical band structure with spin-split bands with opposite spin helicity. (c) Tangential

winding of spin texture in regimes I and II. (d) Ratio between the static spin-charge susceptibility and charge conductivity (in units of 2v)
[thick line (Born limit); dashed line (strong scattering limit, u0 → ∞)].
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which ϱðkFÞ ¼ vF=v and thus hSyiI ¼∓ hJxiI=ð2vÞ.
Figure 1(d) shows the ratio of hSyi=hJxi in the linear

response regime computed according to the Kubo formula,

confirming the linear proportionality hSyiI ∝ hJxiI. The

well-defined spin winding direction in regime I, respon-

sible for the semiclassical form of the nonequilibrium spin

polarization [Eq. (6)], automatically implies a large ISGE in

the clean limit. Generally, the CSC is optimal near the RPG

edges, where jϱj is the largest in regime I. In this energy

range, the CSC is only limited by the electronic mobility,

i.e., jhSyijI ≈ hJxiI=ð2vFÞ ∝ ðkFτ�ÞE. These considerations
show that jϱj≡ jhSyij=ð2vFhJxiÞ is the proper figure of

merit in regime I. For models with jλsvj ≪ jλj, the effi-

ciency is nearly saturated,

max
ϵ∈I;λsv¼0

jϱðkðϵÞÞj ¼ 2
ffiffiffi

2
p

=3 ≈ 0.94; ð8Þ

and is generally close to unity for not too large spin-valley

coupling [25]. In regime II, both spin helicities ζ ¼ �1

contribute to the nonequilibrium spin density, resulting in a

decay of the CSC rate. Here, jϱj is not a suitable figure of
merit and an alternative must be sought. As we show later,

in this regime (jϵj > 2~λ) the CSC efficiency exhibits an

algebraic decay law, enabling a remarkably robust ISGE in

typical experimental conditions.

Quantum treatment.—To evaluate the full energy

dependence of the ISGE, we employ the self-consistent

diagrammatic approach developed by two of us in

Ref. [28]. Despite the complexity of the Hamiltonian

(1), one can solve the Bethe-Salpeter equations for the

T-matrix ladder. This provides accurate results in the

regime kFvFτ� ≫ 1. The zero-temperature spin density–

charge current response function reads

χyxðω ¼ 0Þ ¼ 1

2πΩ
hTr½SyGþJxG

−�i; ð9Þ

whereG� ¼ ðϵ −H � i0þÞ−1 is the Green’s function in the
retarded or advanced sector of disordered G=TMD. Here,

Tr denotes the trace over internal and motional degrees of

freedom, h� � �i stands for the disorder average, and Ω is the

area. In the diagrammatic approach, the disorder enters as a

self-energy, Σ
a (a ¼ �), “dressing” the single-particle

Green’s functions, and as vertex corrections in the elec-

tron-hole propagator [Fig. 2(a)]. Since the response func-

tions of interest are determined by the same relaxation time

τ�, the CSC is expected to be little sensitive to the disorder

type as long as the latter is nonmagnetic. For practical

purposes, we use a model of short-range scalar impurities,

VðxÞ ¼ u0
P

N
i¼1 δðx − xiÞ, where fxi ¼ ðxi; yiÞg are ran-

dom impurity locations and u0 parametrizes their strength.

This choice will enable us to establish key analytical results

across weak (Born) and strong (unitary) scattering regimes.

We first evaluate Eq. (9) for models with fully in-plane

spin texture, Δ; λsv ¼ 0. For ease of notation, we assume

ϵ; λ > 0 in what follows. The self-energy is given by

Σ
a ¼ nTa, where Ta ¼ ðu−10 1 − ga0Þ−1 and n ¼ N=Ω is

the impurity areal density. Moreover, ga0 ≡
R

ðdkÞGa
0k

andG�
0k ¼ ðϵ −H0k � i0þÞ−1 is the bare Green’s function.

Neglecting the real part of Σa, we have

Σ
� ¼∓ inðη0γ0 þ η3γKM þ ηrγrÞ; ð10Þ

where γ0 ¼ τ0σ0s0 (identity), γr ¼ τzðσ × sÞ · ẑ,
γKM ¼ τ0σzsz, and in the weak scattering limit

η0¼
u20
8v2

ðϵþλÞ; η3¼
u20
8v2

λ; ηr¼−
u20
16v2

ϵ; ð11Þ

inside the RPG and η0 ¼ u20ϵ=4v
2 and ηKM ¼ ηr ¼ 0 for

ϵ > 2λ (see Ref. [25] for full T-matrix expressions). The

rich matrix structure in Eq. (10) stems from the chiral

(pseudospin) character of quasiparticles. In constrast, in the

2D electron gas with RB spin-orbit interaction, the self-

energy due to spin-independent impurities is a scalar in all

regimes [29]. Next, we evaluate the disorder averaged

Green’s function Ga
k
¼ ½ðGa

0kÞ−1 − Σ
a�−1. We define ϵa ¼

ϵþ ianη0, λa ¼ λ − ianηr, and ma ¼ ianη3, which re-

present an energy shift, a renormalized RB coupling,

and a random SOC gap, respectively. After tedious but

straightforward algebra we find

Ga
k
¼ −

�

ðϵaLa
þ þ λaLa

−Þγ0 þ vLa
þτzσ · k

−
1

2
ðϵa −maÞLa

−γr þ ðmaLa
þ þ λaLa

−ÞγKM

− vLa
−γvk þ Γ

a
k

�

; ð12Þ

where La
� ¼ ðLa

1 � La
2Þ=2 with

La
1ð2Þ ¼ ½v2k2 − ðϵa −maÞðϵa þma � 2λaÞ�−1; ð13Þ

γvk ¼ τ0σ0ðk̂ × sÞ · ẑ, and Γ
a
k
is a ki-quadratic term [25].

The last step consists of evaluating the vertex corrections.

The renormalized charge current vertex satisfies the Bethe-

Salpeter equation

(b)

(a)

FIG. 2. Diagrammatic expansion of the response function.

(a) Bethe-Salpeter equation for the charge current vertex in

the R-A sector. (b) Skeleton expansion of the T-matrix ladder.

The full (open) square denotes a T (T†) matrix insertion, while the

circles represent electron-impurity interaction vertices. The red ×

stands for impurity density insertion (n).
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~Jx ¼ Jx þ n

Z

ðdkÞfTþGþ
k
~JxG

−

k
T−g: ð14Þ

The infinite set of noncrossing diagrams generated by the

T-matrix ladder describes incoherent multiple scattering

events at all orders in the scattering strength u0 [Fig. 2(b)],
yielding an accurate description of spin-orbit coupled

transport phenomena in the dilute regime [28]. To solve

Eq. (14), we decompose ~Jx as ~Jx ¼ ~Jμνρx τμσνsρ, where the

repeated indices μ; ν; ρ≡ f0; ig are summed over. The

number of nonzero components ~Jμνρx is constrained to

only 4 by the symmetries of G=TMD [30]: ðμ; ν; ρÞ ¼
fð0; 0; yÞ; ðz; x; 0Þ; ð0; z; xÞ; ðz; y; zÞg. Exploring the prop-

erties of the Clifford algebra, one can show that the nonzero

vertex components have a one-to-one correspondence to

their associated nonequilibrium response functions [31].

This allows us to express χyx in terms of the spin density

component only, ~Jsx ≡ ~J00yx , i.e., χyx ¼ Fsðu0Þ~Jsx, where

~Jsx ¼ −
v

ϵ

ϵ2ðϵþ 2λÞ þ θðϵ − 2λÞð8λ3 − ϵ3Þ
ϵ2 þ 4λ2

þ εΛ: ð15Þ

Here, θ is the Heaviside step function and εΛ is a weak

correction logarithmic in the ultraviolet cutoff Λ set by the

inverse of the lattice scale [32]. Finally, Fsðu0Þ is a

complicated function, which in the Gaussian and unitary

scattering limits takes the form

Fsðu0Þ¼
1

2πn
×

( 4

u2
0

; jgþ0 u0j≪1;
�

ϵ
2πv2

logj Λ
2

ϵ
ffiffiffiffiffiffiffiffiffiffi

ϵ2−4λ2
p j

�

2
; ju0j→∞;

ð16Þ

respectively. Analogously, we can determine the expression

for the charge conductivity σxx ¼ Fcðu0Þ ~Jcx with ~Jcx ≡ ~Jzx0x

[25]. The CSC rate can now be determined,

−
2vχyx

σxx
¼ θð2λ − ϵÞ þ 2λ

ϵ
gðu0; ϵÞθðϵ − 2λÞ; ð17Þ

where gðu0; ϵ ¼ 2λÞ ¼ 1 and deviates only slightly from
this value when u0 is large and for ϵ > 2λ [see Fig. 1(d)].
The central result (17) puts our earlier semiclassical argu-
ment on firm grounds, and shows that the CSC is little
affected by the disorder strength outside the RPG.

Discussions.—In realistic G=TMD heterostructures, Δ
and λsv can be comparable to the RB coupling [10], leading
to major modifications in the band structure. Nevertheless,
a thorough analysis, summarized in Fig. 3, shows that the
ISGE remains robust. For instance, for jλsvj ≪ λ; jΔj, the k
dependence of the in-plane spin texture is virtually unaf-
fected [Eq. (5)]. Thus, according to the semiclassical results
the CSC efficiency should be high at the RPG edge. This is
confirmed by a numerical inversion of the Bethe-Salpeter
equations in the full model. The figure of merit γ plotted in
Fig. 3 reaches its predicted optimal value [Eq. (8)]. When
the spin-valley coupling is significant, the in-plane spin
texture shrinks; however, the CSC efficiency remains
sizeable [Fig. 3(b)]. Outside the RPG, the definition of
the efficiency γ is complicated due to the coexistence of

counterrotating spins. To analyze this regime, we employ a
heuristic definition satisfying the conditions (i) 0 ≤ γ ≤ 1

for all parameters, (ii) γ decays for ϵ ≫ 2~λ due to the
collapsing of spin-split Fermi rings, and (iii) γ is continuous
across the RPG. Since the band velocity saturates quickly
to its upper bound (¼ v), we use its value at the RPG edge
as representative for the regime II, which lead us to the
following definition

γ ¼ 2jχyxj
σxx

×

�

vFðϵÞ; ϵ < 2 ~λ;

vFð2~λÞ; ϵ ≥ 2 ~λ;
ð18Þ

where vFðϵÞ≡ jvτ−ðkðϵÞÞj. Consistent with the rate derived
for theminimal model (17), the asymptotic behavior of γ is of
the power-law type, and thus the CSC remains robust in the
accessible range of electronic densities. A relevant question is
how much efficiency is lost due to thermal fluctuations.
Figure 3(b) shows the CSC figure of merit at selected
temperatures in the weak scattering limit (see Ref. [25] for
methods). Since the T ¼ 0 ratio decays slowly in regime II,
the smearing caused by thermal activation is ineffective,
allowing a giant ISGE at room temperature, e.g., γroom ≈ 0.3
for a chemical potential μ ≈ 5λ ≈ 50 meV. We finally
comment on the rippling of the graphene surface and
imperfections causing local variations in the RPG [33].
Inhomogeneities in the spin-orbit energy scales are expected
to be small in samples with a strong interfacial effect [34]. As
long as jλðxÞ−λj≪λ, the random spin-orbit field acts merely
as an additional source of scattering [25], which according to
our findings would not affect the ISGE efficiency.

In conclusion, we have presented a rigorous theory of the

inverse spin galvanic effect for graphene on transition-metal

dichalcogenide monolayers. We introduced a figure of merit
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FIG. 3. Main figure: Fermi energy dependence of the ISGE

efficiency at selected values of Δ for λ ¼ 15 meV and λsv ¼ 0.

The x axis is rescaled as xϵ ¼ jϵ − ϵ0j=j2~λ − ϵ0j for clarity. Insets:
(a) γ as function of chemical potential μ at selected temperatures

for a prototypical heterostructure with λ ¼ 10 meV, λsv ¼ Δ ¼ 0

(Ref. [13]); kBT
� ¼ 25 meV (room temperature). (b) Variation of

γ with λsv for a Fermi energy slightly below (above) the RPG’s

edge [ϵ� ¼ 2~λ × ð1.00� 0.05Þ] for Δ ¼ λ=2 and λ ¼ 15 meV.

All calculations are performed in the weak scattering limit.
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for charge-to-spin conversion and show it attains values close

to unity at the minority spin band edge. The effect is robust

against nonmagnetic disorder and remains large at room

temperature. The current-driven spin polarization is only

limited by the electronic mobility, and thus it is expected to

achieve unprecedentedly large values in ultraclean samples.

Our results are also relevant for group-IV honeycomb layers

[35], which are described by similar Dirac models.

The codes used for all numerical analyses are available

from the Figshare database, under the Ref. [36].
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