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A travel time-based variable grid approach for an activity-based 

cellular automata model 

Urban growth and population growth are used in numerous models to determine 

their potential impacts on both the natural and the socio-economic systems. 

Cellular automata (CA) land-use models became popular for urban growth 

modelling since they predict spatial interactions between different land uses in an 

explicit and straightforward manner. A common deficiency of land-use models is 

that they only deal with abstract categories, while in reality several activities are 

often hosted at one location (e.g. population, employment, agricultural yield, 

nature…). Recently, a multiple activity-based variable grid CA model was 

proposed to represent several urban activities (population and economic activities) 

within single model cells. The distance-decay influence rules of the model included 

both short- and long-distance interactions, but all distances between cells were 

simply Euclidean distances. The geometry of the real transportation system, as well 

as its interrelations with the evolving activities, were therefore not taken into 

account. To improve this particular model, we make the influence rules functions 

of time travelled on the transportation system. Specifically, the new algorithm 

computes and stores all travel times needed for the variable grid CA. This approach 

provides fast run times, and it has a higher resolution and more easily modified 

parameters than the alternative approach of coupling the activity based CA model 

to an external transportation model. This paper presents results from one Euclidean 

scenario and four different transport network scenarios to show the effects on land-

use and activity change in an application to Belgium. The approach can add value 

to urban scenario analysis and the development of transport- and activity-related 

spatial indicators, and constitutes a general improvement of the activity based CA 

model.  

Keywords: cellular automata; activity-based modelling; land-use change; urban 

growth; multimodal transportation networks 

1. Introduction 

Population growth and urbanisation put increasing pressure on both natural resources and 

the quality of the urban environment. This phenomenon occurs predominantly in rapidly 

developing countries (United Nations 2013), as well as in suburban areas with a poor 



spatial planning history (Ravetz et al. 2013). Therefore, urban modelling continues to be 

a key research topic not only at the global scale (Lambin and Geist 2006), but also at the 

regional scale in land-use modelling (e.g. Barredo et al. 2003, de Kok et al. 2012), and in 

all sorts of environmental studies (e.g. Geertman and Stillwell 2009, Van Steertegem et 

al. 2009, Hansen 2010).  

Many types of models have been developed (Batty 2005, Haase and Schwarz 

2009), including land-use and transport interaction (LUTI) models (Wegener 2004, 

Chang 2006, Iacono et al. 2008), multi-agent systems (MAS) (Bura et al. 1996, Parker et 

al. 2003, Matthews et al. 2007, Gilbert 2008) and cellular automata (CA) models. CA 

models have become popular for studies of land-use change in urbanised areas because 

of their simplicity and flexibility (Santé et al. 2010) and their ability to simulate realistic 

urban patterns by incorporating path dependence and self-organisation (Poelmans and 

Van Rompaey 2010). Recent applications include Engelen et al. (2007), Almeida et al. 

(2008), Stanilov and Batty (2011), de Kok et al. (2012), Aljoufie et al. (2013), and 

Fuglsang et al. (2013). 

Most urban models, including CA models, focus on the rather abstract and 

categorical concept of land-use change. Each unit is in one dominant land-use state at 

each time step in the simulation interval. However, in the real world, many urban zones 

are characterised by mixed land uses (e.g. residential and commercial functions). In 

regions with extensive urban sprawl, like Flanders, Belgium, where ribbon development 

is common, urban and non-urban functions also become mixed, turning agricultural and 

natural areas into highly fragmented landscapes (Poelmans and Van Rompaey 2009). 

MAS capture the interaction between different types of activities in a direct way, but need 

a huge amount of data to realistically represent the agents and their spatial behaviour 

(Parker et al. 2003). They are also computationally very heavy, especially for running 



simulations on large study areas, which can only be solved by aggregating agents into 

‘super-individuals’ and resorting to parallel computing (Parry and Bithell 2012). A more 

straightforward solution for this is to introduce activities and their interactions into the 

simple but efficient grid structure of a CA model. Then a list of all activities that are 

present in each cell of the model provides an appropriate description of the complexity of 

land use in both dense urban areas and regions with urban sprawl. 

Urban CA models rely in the first place on distance-dependent interactions among 

land uses to predict the future development of urban regions. These are captured in the 

neighbourhood effect. The neighbourhood effect is calculated by means of influence 

functions that define the effect of each cell in the neighbourhood on the cell for which the 

neighbourhood effect is being calculated — i.e. the focal cell — where that effect depends 

on both the distance and the state of the cell. The contributions of all cells in the 

neighbourhood are summed to get the neighbourhood effect on the focal cell. A 

neighbourhood effect is calculated for each possible state that the focal cell could have. 

Traditionally, neighbourhoods are small and only capture short-distance effects up to a 

maximum of 1 km. Some modellers tackle this problem by coupling the CA component 

to a regional gravity-based spatial interaction model of the economy and population (e.g. 

Engelen et al. 1995, White and Engelen 2000, Engelen et al. 2007, Lauf et al. 2012). 

However, the coupling of such a macro model with a CA model has several 

disadvantages: additional parameters are needed to link the models, the regions may be 

large but each is represented by a single point, typically the centroid, not all levels of 

spatial interaction are represented, and finally it is still impossible to have several 

activities in a single CA cell (White et al. 2012). A solution is to change the topology of 

the CA model, which has an influence on its dynamics (Baetens et al. 2013), so that long-

distance effects can be efficiently included. 



Andersson et al. (2002a, 2002b) introduced a variable grid representation of the 

cell neighbourhood in order to make it computationally feasible to expand the 

neighbourhood to include the entire modelled area, so that all cells could have an effect 

on the possible land use of each individual cell. White (2006) extended the variable grid 

approach by including activities in it: both land uses and their associated activities are 

represented and forecasted for each individual cell. For the purpose of calculating the 

neighbourhood effect, cells, and their associated land uses and activities, are aggregated 

into increasingly large supercells the greater the distance from the focal cell. The 

expansion factor is three, which gives a set of nested Moore neighbourhoods. In other 

words, supercells consist of 32L unit cells and have a resolution of 3L times the resolution 

of the modelling grid, where L, an integer, is the level number of the variable grid (Figure 

1). In the cell neighbourhood, only the cells belonging to the immediate Moore 

neighbourhood (L = 0) have the unit cell resolution. This approach keeps calculations fast 

and simple. 

 [Figure 1 about here] 

Other work further developed these concepts: van Vliet et al. (2009) discuss the 

use of a variable grid approach for land-use change only, van Vliet et al. (2012) tested an 

activity-based model without a variable grid, while White et al. (2011) applied the full 

approach to the Dublin region. In van Vliet et al. (2012) and White et al. (2011), only one 

activity type is considered in each cell, consistent with the dominant land use. White et 

al. (2012) introduced a multiple-activity CA model that can really deal with 

multifunctional land use, where each cell has values for all activity types considered in 

the model. Initial results obtained with this model seem promising, yet some challenges 

remain unsolved. One striking simplification in all variable grid approaches proposed to 

date is that simple Euclidean distances are used in the influence rules of a neighbourhood 



with a size of sometimes several hundred kilometres instead of travel times generated by 

a transport model component.  

Many studies have shown that transport and land use are strongly interrelated 

systems, but the nature of the relation is often debated. Both the road system and the 

public transport system influence and are influenced by the land-use characteristics of 

urban areas and their related activity patterns. The standard work of Newman and 

Kenworthy (1989) suggested a negative relationship between population density and 

energy use in transportation. Although this work has been criticised as being simplistic 

(van de Coevering and Schwanen 2006), other authors have also found statistical 

relationships between the urban structure, activities, access to public transport and 

commuting patterns (e.g. Sohn 2005, Schwanen and Mokhtarian 2005, Næss 2010, 

Fuglsang et al. 2011). Attitudes (e.g. Handy et al. 2005) as well as socio-economic 

characteristics of a country or region, such as income and fuel prices (Giuliano and 

Dargay 2006), have also been found to be important. Hansen (2009) used a raster-based 

approach to show that many new residential and industrial areas in Northern Denmark 

have high accessibility to existing towns, and for industry also to motorway exits. In 

regions with much sprawl, however, it is almost impossible to build a public transport 

network with a high competitiveness and efficiency; nevertheless, public transport can 

influence dynamics within and between city centres (Camagni et al. 2002). The reality is 

without any doubt complex, and to some degree specific to countries or regions. 

Over the past decades, a considerable number of LUTI models have been 

developed. According to Wegener (2004), most of these models describe the link between 

slowly changing systems (land use, networks and buildings), fast changing systems 

(activities) and immediate changes (transport as such). Hagen-Zanker (2012) compared 

the standard CA model of White et al. (1997) with well-known examples of LUTI models 



— in particular MEPLAN (see e.g. Echenique 2004) and  UrbanSim (Waddell 2002). He 

concluded that although these three modelling strategies are fundamentally and 

computationally different, all of them may lead to similar results if their weaknesses are 

overcome. Unlike LUTI models, most CA models do not have an intrinsic economic or 

transport component. An activity-based model includes economic activities, but should 

still be improved by taking transport into account. 

Some LUTI models are linked to a stand-alone transport model, others have their 

own transport subsystem. Aljoufie et al. (2013) coupled a CA-based land-use model, 

developed with the Metronamica framework and thus based on the work of White et al. 

(1997), to a stand-alone transport model for the city of Jeddah. The resulting generalised 

cost of the transport model is used as an input for the accessibility component of the land-

use model. Nevertheless, the accessibility component does not directly influence the 

distance between cells in the influence rules. Blečić et al. (2011) incorporated distance 

effects directly into their CA model. They represented the short-distance CA 

neighbourhood effect and a long-distance accessibility effect separately in what they call 

a ‘wave model’. Two different signals of land-use influences are propagated between 

cells to simulate vicinity and accessibility. Vicinity is here represented by a small-

neighbourhood Euclidean influence function. Accessibility is modelled as an influence 

signal that gets weaker with increasing distance.  

In this study, we use the model of White et al. (2012) to test how travel times can 

be integrated into the variable grid neighbourhood rules (except for the close 

neighbourhood) and show how this impacts modelling results. We define different 

transport network scenarios to compute these travel times with a road-based or a 

multimodal network. The remainder of the paper starts with a short description of the 

multiple activity-based variable grid CA in section 2. Next, in section 3, we explain our 



methodology to define travel time-based distances for the influence rules of the model. 

In section 4, we apply this methodology to the case of Belgium, and define a ‘Euclidean 

scenario’ and four ‘network scenarios’. In section 5, we compare the results obtained with 

the various transport scenarios. This is followed by a discussion in section 6, including 

suggestions for future research, and a short conclusion in section 7. 

2. A multiple activity-based variable grid cellular automaton  

The modelling approach proposed by White et al. (2012) constitutes a multiple activity-

based cellular automaton. It makes use of active, passive and static land uses. Active land 

uses change directly as a result of CA dynamics as forced by exogenous demands: these 

are land uses such as residential, industrial or commercial. Passive land uses, such as 

various agricultural or natural land-cover states, change as a consequence of the dynamics 

of the active land uses — they are taken over or abandoned by active land uses. Static 

land uses, like water and parks, cannot change state and are not subject to the CA 

dynamics, though may affect it. By definition, there exists a one-to-one relationship in 

the model between active land-use types and activity types. In an active land-use cell, 

primary activities are defined as those associated with the dominant land use (e.g. 

population in residential land use). However, each cell can also have non-zero values for 

activities that are primarily associated with other land uses (e.g. employment in residential 

land use). Such activity is referred to as secondary activity. Passive and static land-use 

categories have no associated primary activity, but may host secondary activities; for 

example, agriculture cells may have a resident population.  

Several factors are incorporated in the model to determine future activity values, 

with the neighbourhood effect being the most important one. Within the variable grid 

approach this effect contains the influence on a cell of all activities throughout the entire 

study area. The Euclidean distance dij between the centroid of a focal unit cell i, for which 



the neighbourhood effect is being calculated, and the centroid of one of its variable grid 

neighbour cells j can only have specific discrete rook or bishop values since the resolution 

of variable grid cells increases by a factor of 3 for each level. Therefore dij can only be R, ξʹ R, 3R, 3ξʹ R, etc., with R being the resolution of the CA grid — i.e. the size of a unit 

cell in the grid. Next, the weights W of the influence functions (Figure 2) are expressed 

in the model as functions of log-base 3 cell distances Lij: 

 Lij = log3(dij/R)  (1)

 WJK,dij = fJK (Lij)  (2) 

where WJK,dij is the weight given by the influence function fJK for the influence of activity 

J on activity K at distance dij. The possible rook or bishop values of Lij are then 0, 0.315, 

1, 1.315, etc. 

 [Figure 2 about here] 

The activity potential VKi for an activity K on a cell i for the next time step is 

calculated as:  

 VKi = r ZKi XKi SKi NKi (3) 

where r is a random perturbation term, ZKi is the zoning status for activity K on cell i, XKi 

is a measure of accessibility to the transport network for activity K on cell i, SKi is the 

suitability of cell i for activity K, and NKi is the neighbourhood effect. The random 

perturbation, which is necessary to account for the possible differences in actor behaviour, 

is drawn from a highly skewed distribution, so that most perturbations are very small. A 

fixed seed is used in the random generator to make different scenarios comparable. The 

neighbourhood effect NKi on cell i for activity K is a function of the influence weights: 



 NKi = J j WJK,dij (AJj / AJ) (4) 

where AJj is the total activity J on cell j, and AJ is the total activity J in the study area. 

Next, the land-use transition potential VTKi for the associated active land use UK 

on cell i is calculated as:  

 VTKi = DKi (VKi)mK + IK (5) 

where DKi is a factor representing diseconomies of agglomeration, accounting for the 

effect of congestion and high land prices on location decisions, mK is a parameter to be 

calibrated for each activity K, and IK is the inertia value for activity K, representing the 

tendency of land uses and activities to remain fixed because of relocation costs. Cells are 

ranked based on their largest land-use transition potential, and subsequently get the land 

use for which they have the highest potential until the number of cells demanded by the 

input scenario for each land use UK is met.  

 The input scenario also defines the total amount of activity K to be located at each 

time step. A parameter QK determines the proportion to be distributed as primary activity 

on the associated land use UK. The allocation of primary activity to the cells with the 

associated land use is in proportion to the activity potential VKi. The remainder of activity 

K is distributed to cells of the other land uses as secondary activity on the basis of activity 

potentials, as modified by compatibility factors representing the compatibility of activity 

K with the various land uses. Several rescaling operations are necessary to keep all 

activity totals and proportions consistent. For a full description of the model, the reader 

is referred to White et al. (2012).  

3. Travel time computations within the Variable Grid CA 

White et al. (2012) observed that the calibrated neighbourhood influence rules in their 



activity-based variable grid CA model divide naturally into two parts: an inner zone with 

a radius of approximately 1 km, where the influence weights decrease rapidly with 

increasing distance, and the rest of the study area, where the weights decrease slowly as 

a function of distance. This can be seen in Figure 2. Therefore, in incorporating network-

based distances in the activity-based CA model, we decided to deal with the immediate 

neighbourhood of a location and more distant areas in different ways. In our approach, 

the classic Euclidean concept of vicinity still holds for distances within the range of a 

local CA neighbourhood of approximately 1 km radius, as used in the MOLAND 

modelling framework (Engelen et al. 2007). For long-distance interactions, however, we 

introduce time distances through the network. To make this dual approach compatible 

with the variable grid, the point at which the transition between Euclidean and network 

distances occurs needs to be between two levels of the variable grid. The level at which 

the network distances are introduced will be referred to as the network grid level or level 

LNG. 

This approach, tailored to the specific requirements of the variable grid CA, is 

more effective than the alternative of coupling the variable grid CA to a transportation 

model to provide the required travel time distances. It can offer higher resolution than a 

typical transport model and thus more accurate distances, while requiring fewer distances 

to be stored in memory. As an internal algorithm it gives fast run times if updates are 

desired during the simulation, or if the modeller wants to execute a full model calibration, 

including transport-related parameters.   

Nevertheless, calculating travel times and simulating travel behaviour between a 

number of widely separated points involves a reasonable amount of computation time. 

For polygon-based modelling approaches, adaptive zoning can be an alternative approach 

(Hagen-Zanker and Jin 2012, 2013). This technique groups polygons systematically and 



thereby develops a new zone map for each origin with small zones nearby and larger 

zones further away, based on the idea that exact locations are less important for long-

distance interactions. Essentially, the same reasoning lies at the basis of the variable grid 

approach. Some studies have even investigated whether network distances, represented 

by a weighted lp norm, are just mathematical functions of Euclidean distances (e.g. Berens 

1988, Brimberg et al. 2007). Although these studies led to interesting results for some 

regions, especially for cities with rectangular road patterns, we believe that these results 

are not relevant to our model, which must be applicable to a wide variety of network 

configurations. 

Therefore, we define a fixed grid zone system that consists of supercells of a 

specific level, LNG, but unlike the template of supercells in the variable grid itself, it is not 

displaced as we move from one unit cell to another. We call this the network grid, or NG, 

and its cells the network grid cells, or NG cells. It has resolution RNG = 3LNG R, where R 

is the resolution of the unit cell grid. Note that the resolution RNG is equal to the size of 

the immediate neighbourhood in which the Euclidean distance calculation is applied.  

The network time distance between a unit (L = 0) cell within a fixed NG cell and 

the centroid of a distant supercell (L ≥ LNG) is then taken to be the network distance 

between the centroid of the NG cell containing the unit cell and the centroid of the NG 

cell containing the centroid of the supercell (Figure 3). We call the NG cell containing 

the unit cell the origin of the transport computation, and we call the NG cell containing 

the centroid of the supercell the destination. As already indicated, we only have to store 

network distances between specific needed combinations of NG cells. The only needed 

‘destinations’ for an ‘origin’ NG cell are exactly the centroids of all the variable grid 

neighbour cells of the central unit cell of an NG cell with L ≥ LNG. Therefore, the results 

can be stored as an 8 × (Lmax – LNG + 1) × NNG matrix, where 8 is the number of possible 



directions (top, top right…), Lmax is the highest needed level number of the variable grid, 

and NNG is the total number of NG cells. The storage size is significantly smaller than a 

NNG x NNG matrix, since the value of Lmax is, even for large regions, often only 6 or 7.  

 [Figure 3 about here] 

Some supercells will lie partly outside the area being modelled. Since it does not 

make sense to calculate distances to points outside the study area, an algorithm was 

developed to determine the centroid of that part of the supercell that is within the study 

area. The NG cell containing that centroid is then used to determine the network distance. 

For the sake of generality and realism the network used to calculate travel times 

can be a multimodal one. The one used here has two components: the road network, and 

public transport — specifically rail in the current application (Figure 4). Both components 

can be combined to generate weighted time distances, or one specific component can be 

selected. If roads only are used, the weights are respectively 1 and 0. For public transport, 

however, displacements are always multimodal since the road network must in general 

be used to reach a station. These access times by road are calculated with the road network 

component. Finally, a Euclidean displacement corresponding to a low speed, which we 

call the Euclidean speed, is added to reach the nearest point in the road network. Note 

that this Euclidean travel time is treated as part of the network distance. To this are added 

the Euclidean travel times from the origin unit cell to the centroid of the origin NG cell, 

and from the centroid of the destination NG cell to the centroid of the destination variable 

grid supercell. The road network itself has known speeds for all road segments, while the 

public transport network is characterized by an origin-destination travel time matrix, with 

the origins and destinations being stations on the network.  

 [Figure 4 about here] 



In the road network component, we calculate network travel times with the 

shortest path algorithm of Dijkstra (1959), applied to all needed origins. We verify 

whether travelling on a straight line between the two NG centroids at low speed — the 

‘Euclidean speed’ — is indeed slower than travelling to and then through the network. 

This verification is especially important in cases where the road network consists of major 

roads only, and the Euclidean distance can be used to represent a more direct route using 

minor roads that are not included in the network.  

The public transport component is mainly designed for rail travel but can also be 

used for local public transport. In either case, the calculation of effective travel times 

through the network requires data on (1) average travel time, and (2) frequency of service 

between each pair of stations on the network. Frequency of service is defined as the total 

number of possible connections between the stations per hour, either direct or indirect, 

but earlier departures should not result in later arrivals. The frequency is used to add a 

penalty to the average travel time, where the penalty is inversely proportional to the 

frequency. Finally, the road network travel times to reach the stations from the origin and 

destination centroids in the network grid are added. Thus the multimodal travel time is 

given by: 

 tm,ij = tp,ab + C / fab + tr,ia + tr,bj  (6) 

where tm,ij  is the multimodal transport time between two NG cells i and j, tp,ab is the 

average public transport travel time between the departure station a and the arrival station 

b, C is the frequency penalty parameter, fab is the frequency of service between stations a 

and b, tr,ia is the road travel time from the origin NG cell i to the departure station a, and 

tr,bj is the road travel time from the arrival station b to the destination NG cell j. 

As already indicated, the travel time distance is a weighted average of the various 

travel times — specifically road and multimodal in the present case. We include the 



possibility of giving more weight to the fastest mode with the introduction of a parameter 

F. If F > 0, then it will increase the weight of the fastest mode between two NG cells, and 

decrease the weight of the slowest mode. Hence, the parameter introduces the option of 

developing scenarios where the existence of one fast travel mode between certain 

locations suffices to make the associated cells relatively more attractive for activities. The 

weighted network time tij between NG cells i and j is then calculated as follows: 

 tij = tm,ij  
௪ ൫௧ೝǡೕ൯ಷ௪ ൫௧ೝǡೕ൯ಷା ௪ೝ ൫௧ǡೕ൯ಷ  + tr,ij  

௪ೝ ൫௧ǡೕ൯ಷ௪ ൫௧ೝǡೕ൯ಷା ௪ೝ ൫௧ǡೕ൯ಷ (7) 

where tm,ij is the multimodal network time between i and j, tr,ij the road network time 

between i and j, wm the multimodal weight, and wr the road weight (with wr = 1 – wm). 

The public transport component is fully optional: by choosing wm = 0, only the road 

network is used. If wr = 0, then travelling by road towards stations is still possible, but a 

straight displacement at low ‘Euclidean speed’ is used when no station is located near one 

of the NG cells. This is of course a rather theoretical option to test the abilities of the 

model. The maximum road distance to reach a station can be specified, and it can be 

different for major and minor stations. A nearby major station overrides a minor one, 

except in a specified smaller zone around the minor station. 

Travelling via a multimodal network is often slower than travelling by road, thus 

tij is often larger than tr,ij, which would have an illogical effect on activity potentials of 

cells close to stations. Therefore, when wm and wr are between 0 and 1, equation (7) is 

only used to calculate the weighted travel time for combinations of NG cells where both 

cells are close to a station. For all other combinations of cells, the calculated road time is 

penalised proportionally to the importance of multimodal travelling:  

 tij = 
 ି ௪   tr,ij   (8) 



where P ≥ 1 is a parameter that defines how much the road time has to be penalised: the 

smaller the value of P, the larger the increase of the road time.  

The final time distance tij can subsequently be used as an input to determine the 

weights in the influence functions of the CA neighbourhood effect, except for the close 

neighbourhood where distances are still Euclidean. This division between the close and 

the far neighbourhoods generates a continuity problem. The weights of the influence 

functions are dependent on log-base 3 cell distances, as specified by equations (1) and 

(2). The distance dij of equation (1) is still Euclidean if it is shorter than RNG. For the 

longer distances, we obviously have to convert the travel time tij into a relative distance 

dij that is comparable with Euclidean distances since we do not want influence functions 

that are in two different intervals dependent on two different quantities. Because the 

influence weights are values that have to be calibrated for each possible cell distance, it 

makes sense to work with a continuous range of cell distances. Consequently, we set the 

shortest calculated travel time between any unit cell in the modelling area and one of its 

variable grid neighbours equal to the network grid resolution RNG, since RNG is the upper 

boundary of the range of Euclidean distances. Next, all the other travel times are scaled 

proportionally as follows: 

 dij = tij (RNG / ts) (9) 

where dij is the relative network distance between NG cells i and j, tij the calculated 

network travel time between i and j, RNG the resolution of the network grid NG, and ts the 

shortest calculated network travel time in the study area. Finally, all distances are 

converted with equation (1) to be expressed in logarithmic cell distances L, so that these 

cell distances can be used to find the corresponding neighbourhood influence weights 

from equation (2). For the short Euclidean distances (L < LNG), L can only have Euclidean 

rook or bishop values (0, 0.315, etc.), while for the longer network distances (L ≥ LNG), 



any value of L is possible. An example of a mixed Euclidean distance-decay and time 

distance-decay influence function can be seen in Figure 5.  

[Figure 5 about here]  

4. Study area and implementation 

This study is a continuation of the work of White et al. (2012), which focused on the 

Belgian case. Hence, in this study too, we applied and tested the adapted activity-based 

CA model to Belgium (map: see Figure 6). Several studies have discussed the problem 

of urban sprawl in Belgium (e.g. Poelmans and Van Rompaey 2009, De Decker 2011) 

and the link between urban land use and the transport network (e.g. Vandenbulcke et al. 

2009, Boussauw et al. 2012). Low land prices together with the dense road network in 

the northern part of Belgium have led to large areas of urban sprawl, and more specifically 

ribbon development along the roads (Antrop 2000). Meanwhile, the average commuting 

distance continues to increase because the population growth in many peri-urban 

municipalities is much higher than the growth of jobs, while the opposite is true for cities 

(Boussauw et al. 2011).  

[Figure 6 about here]  

Studies of both home-to-work travel and general travel in Belgium indicate that 

individual car travel is far more common than any other transport mode (Thys and 

Andries 2011, Vandenbulcke et al. 2009). A survey by the Belgian Federal Department 

of Transport and Mobility indicates that 67% of Belgian employees commute individually 

by car. Train travel is the second most used mode with 9.5%. It is especially popular for 

long distances (> 30 km) and for travel to large cities (Thys and Andries 2011). Thus, a 

road-based approach seems the most relevant for simulating distance-based interactions 



in a realistic way, yet train travel towards the most important stations can improve the 

model significantly. As local public transport, mostly by bus, is less popular except in 

some cities, we have not yet included it in our analysis. Hence, we compare five different 

scenarios for determining distance: (1) the Euclidean distance approach of White et al. 

(2012); (2) road-based network distances; (3) a ‘congestion’ scenario, which uses road-

based network distances with congestion effects in the central area of Belgium; (4) a 

rather theoretical ‘train only’ scenario with multimodal weight wm = 1, which means that 

Euclidean paths with low speeds are used when train travel is not possible; and (5) a 

‘choice’ scenario with road weight wr = 0.7, and multimodal weight wm = 0.3. 

Road data come from the NAVSTREETS database for Belgium, the Netherlands 

and northern France, made available by the Flanders Geographical Information Agency, 

AGIV. We exclude the least important local roads (functional class 5) and estimate 

average speeds on the basis of legal maximum speeds for all road segments as provided 

in the database (Table 1). The ‘Euclidean speed’ is given a low value of 5 km/h. The 

‘congestion’ scenario is largely based on a report of the Flemish Traffic Study Centre 

(Vlaams Verkeerscentrum: Hoornaert et al. 2014). It generally assumes lower speeds in 

the central area of Flanders between Ghent, Antwerp, Brussels and Leuven, and lower 

motorway segment speeds based on saturation statistics.   

[Table 1 about here]  

An origin-destination train time matrix could not be provided by the Belgian 

National Railway Company (NMBS/SNCB); therefore we reconstructed it from their 

website for the most important origin-destination pairs. The resulting matrix contains 

average travel time and frequencies per hour for weekday connections in 2013, between 

the 18 largest major stations (> 8000 users per weekday in 2009) and all 116 stations 

(major and minor) with more than 1000 users per weekday in 2009. The data can be used 



to start model runs from the year 2000, since there were no major changes in the train 

schedule during the period 2000-2013. All missing links are handled as origin-destination 

pairs where travel by train is not possible. Since train commuting is mainly towards the 

big cities, we believe that this limited matrix covers the vast majority of the important 

train connections for a land-use model. After initial tests, and following observations by 

Thys and Andries (2011), we used a maximum distance of 10 km for the access and egress 

legs by car to and from train stations in multimodal travelling. A major station overrides 

a minor one except in the NG cell of the minor station itself.  

Land-use data come from the Corine land-use / land-cover data set for 2000, 

which was aggregated to a 300 m grid (Figure 6). Activity maps for population and 

employment were reused from White et al. (2012). There are three urban categories in 

the Corine map that were associated with primary activities: the discontinuous urban 

fabric (associated with population), the continuous urban fabric (associated with ‘urban’ 

employment: wholesale, retail, hotels and catering, and finance), and industrial or 

commercial units (associated with all other employment). As our main aim is to assess 

the impact of different transport scenarios on the model outcome, and compare the results 

that are obtained with a simple Euclidean scenario, we ran simulations from 2000 to 2060 

with the same parameters, rules, land-use area changes, and population and employment 

growth (Table 2) as those used in White et al. (2012), even though that paper indicated 

that this growth is somewhat excessive, especially for the discontinuous urban land use. 

However, a large land-use growth helps to visualise transport scenario differences.  

Since the modelling resolution is 300 m, we could have used LNG = 1 so that the 

boundary between Euclidean and network travel would be 900 m, which is close to the 

‘ideal’ boundary of 1 km. However, in order to keep the computation time reasonable for 

our large study area, we chose LNG = 2, which means that RNG = 2700 m. With these 



settings and with a 64-bit version of the software, the calculation of all needed network 

distances takes +/- 10 min on an Intel® Core™ i5-2520M CPU. Using another distance 

algorithm could still reduce the run time. The network distance calculations are normally 

only performed once; if the network or link speeds do not change between simulations 

the calculations do not need to be repeated. The land use and activity calculations take 

approximately 2 min for 15 years of simulation without updating the network distances. 

The program uses about 500 MB of RAM memory.  

Initial tests were done to determine suitable values for the parameters C, F and P 

in equations (6), (7) and (8). We chose C = 20 min, F = 5 and P = 2, yet these choices 

proved to have only a limited influence on the model results. Only for extreme values, or 

when the parameters are omitted (C = 0 min, F = 0, P ĺ + ∞) do the results differ 

significantly: yet, even then, differences are still slightly smaller than between the 

transport scenarios (at most, about 500 cells have a different land use; most population 

differences are below 1 person/km²). 

[Table 2 about here]  

5. Results 

Land use and activities were modelled for the five transport scenarios for 2000 to 2060. 

To make the comparison of the resulting land-use and activity patterns of the alternative 

transport scenarios easier, we defined an accessibility index to produce maps of the effort 

needed to travel from each network grid cell towards the centroids of its variable grid 

neighbours in a specific transport scenario. For the network scenarios, we first calculate 

two sums: (1) the sum of all possible network times tij from an origin NG cell i to all the 

NG cells j containing the centroids of its variable grid neighbours, and (2) the sum of the 

associated Euclidean distances. We then define the accessibility to be the ratio of these 



network and Euclidean distance sums. The very long distances towards the high-level 

variable grid neighbours (L ≥ 5) were not included in the index to avoid boundary effects. 

Moreover, the neighbourhood effect weights for these levels are very small. To arrive at 

a standardised index, we replace the smallest value in the study area by 1: this is the most 

accessible NG cell. All larger values (less accessible NG cells) are scaled proportionally. 

The results for the four network scenarios can be seen in Figure 7.  

[Figure 7 about here] 

 In the ‘road-based’ scenario, the north of Belgium has the best accessibility 

values, especially in the large cities and along the motorways (Figure 7a). The 

‘congestion’ scenario produces a rather different pattern, with lower accessibility values 

in the central part of Flanders and around Brussels (Figure 7b); the best values are now 

situated along the motorways west and south of this region. The ‘train only’ scenario has 

a very distinct accessibility map with the best accessibility values around the most 

important stations, especially around Brussels (Figure 7c). The accessibility map of the 

multimodal scenario has a fairly similar pattern to that of the ‘road-based’ scenario, but 

logically, values are clearly worse where there is no major station nearby (Figure 7d).  

In general, the predicted land-use change patterns between 2000 and 2060 are 

rather similar for all the network scenarios. The discontinuous residential area grows 

significantly in the central area of Flanders between Brussels, Antwerp and Ghent, as well 

as in the southwest of Flanders. This is shown for the ‘road-based’ scenario in Figure 8. 

The differences between the ‘road-based’ and most other scenarios are distinct but less 

pronounced than the overall growth pattern in all scenarios (Figures 9, 11, 13). The 

differences between the scenarios stand out more strongly in the activity values, 

especially in the population difference maps (Figures 10, 12, 14).  



[Figure 8 about here] 

In the road network-based model the urban growth in the central areas is slightly 

higher in 2060 than in the Euclidean model and vice versa for the peripheral areas (Figure 

9). Most interestingly, some of the more accessible cells in the peripheral areas also 

become residential. Although the general pattern in the population difference map is 

harder to discern, the population values are somewhat higher next to major roads as well 

as in the centres of the major cities (Figure 10).  

[Figure 9 about here] 

[Figure 10 about here] 

The residential land-use difference map between the scenarios without and with 

congestion clearly shows that the model is sensitive to network speed differences (Figure 

11). The population growth is also smaller in the suburban regions of central Belgium in 

this ‘congestion’ scenario (Figure 12). The ‘train only’ scenario leads to some remarkable 

but logical differences, with much more residential growth in central areas that are more 

accessible to rail stations (Figure 13). The differences in population compared with the 

‘road-based’ scenario show a reasonable pattern with more population not only in the 

‘train only’ scenario in big cities but also around smaller stations with good connections 

to big cities. Rural areas, as well as some areas near smaller stations lacking good 

connections with the centre of Belgium (e.g. in West Flanders), gain less population 

(Figure 14). The ‘choice’ scenario produces growth patterns similar to those of the ‘road-

based’ scenario. Only some slight differences can be noted, such as somewhat higher 

population values in big cities.  

[Figure 11 about here] 

[Figure 12 about here] 



[Figure 13 about here] 

[Figure 14 about here] 

6. Discussion 

The transport component of the activity based CA model discussed in this paper is a 

useful extension of the original version of White et al. (2012) for studying the influence 

of existing and evolving transport networks on land-use dynamics. The accessibility 

measure used in the original model, XKi in equation (3), was based on a weighted 

Euclidean distance to reach the network from a cell, and thus represented only a cell’s 

accessibility to the transport network, rather than its general accessibility to the region. 

The new model individually computes the anisotropic accessibility of a unit cell towards 

its supercells and saves it in a structure adapted to the variable grid. The structure of the 

distance grid is more independent of urban development than a population-based zone 

system, as often used in transport models (e.g. the model of the Flemish Traffic Study 

Centre). This is an advantage in less-populated areas, which are important for future 

development, but can be a disadvantage in current urban areas. Nevertheless, more 

detailed zones are possible in our model with a lower network grid level LNG. Moreover, 

we define useful parameters to enhance an easy definition of long-term transport 

scenarios with different modes within an activity and land-use modelling context. 

The transport scenarios indeed generate different results, both in terms of land use 

and activity patterns. The ‘congestion’ and the ‘train only’ scenarios lead to pronounced 

differences compared with the ‘road-based’ scenario. In places where the value of the 

accessibility index is clearly higher for the ‘congestion’ scenario (worse accessibility), 

less land is converted to urban land uses, and the population growth is significantly 

smaller (Table 3). Cells that have slightly worse accessibility in the central areas seem to 

attract more people and urban land use. This is logical as the population and land-use 



growth were fixed, and other mechanisms in the model normally produce the largest 

growth in those central areas. The same conclusions largely hold for the ‘train only’ 

scenario in comparison with the ‘road-based’ scenario (Table 4). The best locations in the 

‘train only’ scenario are those close to large stations, and those are often already built-up. 

New space for urban development is limited. Nevertheless, the model predicts substantial 

densification, since almost 100,000 extra people (or 160 per km²) are allocated to these 

areas, compared to the ‘road-based’ scenario. The regions around these areas also gain 

extra residential land use and population, while there is clearly less growth in remote 

areas far from stations. Obviously, the ‘choice’ scenario is, by definition, much more 

realistic than the theoretical ‘train only’ scenario, yet its results do not differ much from 

those of the ‘road-based’ scenario (Table 5). This is clearly caused by the values of the 

modal weights w in the ‘choice’ scenario, but we chose these values because it is 

reasonable that the road network plays the most important role in allocating new land 

uses, especially in the many suburban villages and ribbon developments of Belgium. In 

comparison with the ‘road-based’ scenario there is a slightly higher population growth 

near the most important stations. On the contrary, residential land-use growth is slightly 

greater near the edge of these cities in less accessible cells of this scenario. This may seem 

contra-intuitive but it is caused by the attraction effects of the model since there is no 

space for urban growth very close to major stations. 

[Table 3 about here]  

[Table 4 about here] 

[Table 5 about here] 

Although the variable grid provides a good computational framework for activity 

predictions in large study areas, network distance calculations can be further improved. 

Firstly, in the approach described in section 3, distances are measured between centroids 



of NG cells, of which one may represent the centroid of a larger variable grid supercell. 

The latter might not be representative of the location of the activities within the supercell. 

Hence, the logical next step is to represent each supercell by a centre that reflects the 

actual distribution of activity within the supercell. Initial tests of this approach are 

generally positive, but more work is necessary to define the best way of implementing it. 

Secondly, the access and egress legs in the multimodal computations can be made more 

realistic, since in home-to-work travel there is often a very short leg at the work end of 

the displacement (Thys and Andries, 2011). Because of the symmetry of the variable grid, 

such an asymmetric approach has not yet been implemented.  

Extra details could also be included in an improved transport-based model, such 

as different modal weights w for different regions of the study area, or transport networks 

evolving over time. The functionality to introduce changes to the network at specified 

time steps during a simulation is already implemented, but has not been used due to a lack 

of data. Since Belgium already has a dense network, there are likely to be few additions 

to the network, but a growing population and increased congestion could reduce travel 

speeds in the future, and road characteristics could change. Congestion scenarios of 

transport models can therefore provide useful input for the model. It would be an 

interesting exercise to couple our activity based CA model directly to a transport model 

in order to get simultaneous predictions of activities, land uses and transport for the future. 

On the other hand, we fear that a direct coupling would increase the computation time 

drastically.  

Finally, in a more complete and general sensitivity analysis it would be interesting 

to examine how parameters, rules and functions of the activity based CA could be 

adapted, added or removed to improve the model. For instance, the accessibility 

component of the earlier CA models using Euclidean distances seems to have less 



influence in the network-based implementation, and so it might be redundant. 

Additionally, it would be interesting to use a generalized cost measure of distance. Such 

a measure would enable the model to be used to investigate the effects of a subsidised, 

and hence cheaper, public transport in comparison with congestion pricing schemes for 

the road network.  

7. Conclusion 

The activity-based CA model of White et al. (2012) was a big step forward in comparison 

with earlier CA models, since every cell is modelled as a truly multifunctional 

environment where people live and work. Future versions of this model could even 

include agricultural yield or natural activities as a complement to the current, 

predominantly urban activities. In this study, we developed an activity-based CA model 

with travel time-based interaction rules for long-distance interactions, and simple 

Euclidean distance-based rules for the local vicinity interactions. The network-based rule 

sets for the model are clearly more realistic and provide the possibility to test different 

transport scenarios. The impacts of road congestion and public transport usage on land-

use and activity futures can be evaluated with the proposed approach, and possibly new 

spatial indicators could be derived to clearly display these impacts.  

Nevertheless, the new version of the model still has some shortcomings. The 

variable grid could be adapted by defining activity centres as the representative locations 

of large variable grid cells, of which some can only be reached by road and others both 

by road and public transport. Furthermore, more critical assessment, calibration and 

sensitivity analysis are needed to confirm that all its current components are useful and 

necessary, and to update parameters and rule sets. 

The application to Belgium is interesting since the country could benefit from 

more public transport usage to reduce future urban sprawl. Therefore, we intend to 



continue this work with a historical calibration exercise to validate and improve the 

model. Enhanced model versions could be used to promote sustainable land-use scenarios 

and provide the relevant decision-makers with better insights into the coupled problems 

of growing congestion and urban sprawl.  
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Table 1. Average modelling speeds for road segments in km/h.  

Link type Legal max. speed 

(reality) 

Average speed 

(model) 

Motorway 120 100 

Express road, urban motorway 90-100 85 

Major road 90 70 

Secondary road 70 55 

Local road 50 40 

Urban low speed zone 30 30 

‘Euclidean speed’ - 5 

 

Table 2. Land-use and activity growth scenarios, and parameter values of the 

application to Belgium that were copied from White et al. (2012). 

Active land use or activity Value in 2000 Value in 2060 

Discontinuous urban fabric (cells) 56,051 101,741 

Continuous urban fabric (cells) 527 570 

Industrial or commercial units (cells) 5540 6000 

Population 10,251,249 12,662,761 

‘Urban’ employment 855,822 891,061 

Other employment 3,140,781 3,850,000 

 
 
  



Table 3. Comparison in 2060, in terms of discontinuous residential land use and 

population, between the ‘road-based’ scenario (‘R’) and the ‘congestion’ scenario (‘C’). 

The classes are defined by relative accessibility index values (division of ‘congestion’ 

and ‘road-based’ index values).  

Relative 
accessibility 
(C / R) 

Total 
area 

(km²) 

Population 

density 

difference 

((C – R)/km²) 

Discontinuous residential  

in 2060 (cells) 

R only 
Both  

scenarios 
C only 

< 0.97 9493 3.11 192 12911 222 

0.97 – 1 6731 9.80 89 19349 516 

1 – 1.15 8746 8.03 572 36577 1276 

> 1.15 5692 - 29.11 1806 30245 645 

 

 

Table 4. Comparison in 2060, in terms of discontinuous residential land use and 

population, between the ‘road-based’ scenario (‘R’) and the ‘train only’ scenario (‘T’). 

The classes are defined by relative accessibility index values (division of ‘train only’ 

and ‘road-based’ index values).  

Relative 
accessibility 
(T / R) 

Total 
area 

(km²) 

Population 

density 

difference 

((T – R)/km²) 

Discontinuous residential  

in 2060 (cells) 

R only 
Both  

scenarios 
T only 

< 1 597 160.62 5 4140 384 

1 – 2 5774 53.96 551 24242 2370 

2 – 3 14408 - 11.13 4325 41484 5163 

> 3 9881 - 25.01 3962 23032 926 

 

  



Table 5. Comparison in 2060, in terms of discontinuous residential land use and 

population, between the ‘road-based’ scenario (‘R’) and the ‘choice’ scenario (‘Ch’). 

The classes are defined by relative accessibility index values (division of ‘choice’ and 

‘road-based’ index values).  

Relative 
accessibility 
(Ch / R) 

Total 
area 

(km²) 

Population 

density 

difference 

((Ch – R)/km²) 

Discontinuous residential  

in 2060 (cells) 

R only 
Both  

scenarios 
Ch only 

< 1 2012 4.80 200 12352 8 

1 – 1.04 4241 0.98 289 20446 89 

1.04 – 1.08 8984 - 1.02 303 37163 376 

> 1.08 15424 - 0.30 100 30888 419 

 

  



Figure 1. Structure of the variable grid. 

 

 

 

Figure 2. Example of a neighbourhood influence function for the variable grid activity 

based CA model. 

 

  



Figure 3. Detail of a fixed ‘network grid’ (NG) with resolution 32R. The model cells 

with resolution R are shown within one NG cell. When the distance is needed from a 

black unit cell to the centroid of its black variable grid neighbour, the distance from the 

red centroid of the fixed NG cell containing the black unit cell towards the centroid of 

the red NG cell containing the centroid of the black variable grid neighbour is used. 

 

 

Figure 4. The road component and the public transport component can be combined or 

used separately to generate time distances. 

 

  



Figure 5. Example of a neighbourhood influence function with a Euclidean part for 

local interactions and a network time-distance part for long-distance interactions. The 

cell distance axis is made continuous with equation (9). 

 

 

  



Figure 6.  CORINE land-use map of Belgium in 2000, with an indication of the regions 

(Flanders, Wallonia and the Brussels Capital Region (B)) and the largest cities (Brussels 

(B), Antwerp (A), Ghent (G), Leuven (Le), Liège (Li), and Charleroi (C)). 

 

  



Figure 7. Accessibility index for different transport scenarios in Belgium: (a) the 

standard ‘road-based’ scenario, (b) the ‘congestion’ scenario, (c) the ‘train only’ 

scenario, and (d) the ‘choice’ scenario. 

 

  



Figure 8. New discontinuous residential development in Belgium in the road-based 

scenario between 2000 and 2060. The rectangle shows the extent of the zooms in the 

next figures.

 

  



Figure 9. Differences in residential development between the Euclidean and the  

‘road-based’ scenarios in 2060. 

 

 

  



Figure 10. Differences in population values between the Euclidean and the ‘road-based’ 

scenarios in 2060. 

 

 

  



Figure 11. Differences in residential development between the ‘road-based’ and the 

‘congestion’ scenarios in 2060. 

 

 

 

  



Figure 12. Differences in population values between the ‘road-based’ and the 

‘congestion’ scenarios in 2060. 

 

 

  



Figure 13. Differences in residential development between the ‘road-based’ and the 

‘train only’ scenarios in 2060. 

 

 

  



Figure 14. Differences in population values between the ‘road-based’ and the ‘train 

only’ scenarios in 2060. 

 

 


