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Checking Graph Programs for Confluence

Ivaylo Hristakiev and Detlef Plump

University of York, York, United Kingdom

Abstract. We present a method for statically verifying confluence (func-
tional behaviour) of terminating sets of rules in the graph programming
language GP 2, which is undecidable in general. In contrast to other
work about attributed graph transformation, we do not impose syn-
tactic restrictions on the rules except for left-linearity. Our checking
method relies on constructing the symbolic critical pairs of a rule set
using an E-unification algorithm and subsequently checking whether all
pairs are strongly joinable with symbolic derivations. The correctness of
this method is a consequence of the main technical result of this paper,
viz. that a set of left-linear attributed rules is locally confluent if all sym-
bolic critical pairs are strongly joinable, and our previous results on the
completeness and finiteness of the set of symbolic critical pairs. We also
show that for checking strong joinability, it is not necessary to compute
all graphs derivable from a critical pair. Instead, it suffices to focus on
the pair’s persistent reducts. In a case study, we use our method to verify
the confluence of a graph program that calculates shortest distances.

1 Introduction

A common programming pattern in the graph programming language GP 2 [18]
is to apply a set of attributed graph transformation rules as long as possible. To
execute a set of rules {r1, . . . , rn} for as long as possible on a host graph, in each
iteration an applicable rule is selected and applied. As rule selection and rule
matching are non-deterministic, different graphs may result from such an itera-
tion. Thus, if the programmer wants the loop to implement a function, a static
analysis that establishes or refutes functional behaviour would be desirable.

GP 2 is based on the double-pushout approach to graph transformation with
relabelling [6]. Programs can perform computations on labels by using rules
labelled with expressions (also known as attributed rules). GP 2’s label algebra
consists of integers, character strings, and heterogeneous lists of integers and
strings. Rule application can be seen as a two-stage process where rules are
first instantiated, by replacing variables with values and evaluating the resulting
expressions, and then applied as usual. Hence rules are actually rule schemata.

Conventional confluence analysis in the double-pushout approach to graph
transformation is based on critical pairs, which represent conflicts in minimal
context [17,4]. A conflict between two rule applications arises, roughly speaking,
when one of the steps cannot be applied to the result of the other. In the presence
of termination, one can check if all critical pairs are strongly joinable, and thus
establish that the set of transformation rules is confluent.



In our previous paper [12], we developed the notion of symbolic critical pairs
for GP 2 rule schemata which are minimal conflicting derivations, labelled with
expressions. The set of such pairs is finite and complete, in the sense that they
represent all possible conflicts that may arise during computation. Furthermore,
we gave an algorithm for constructing the set of symbolic critical pairs induced
by a set of schemata, which uses our E-unification algorithm of [9]. The approach
does not place severe restrictions on labels appearing in rules, as the attributed
setting of [3]. What remains to be shown is how to use such critical pairs in the
context of confluence analysis.

In this paper, we present our method for statically verifying confluence of
terminating sets of GP 2 rules. We introduce a notion of symbolic rewriting that
allows us to rewrite the graphs of critical pairs, and show how it is used for
confluence analysis. The correctness of our analysis is a consequence of the main
technical result of this paper, namely that a set of left-linear attributed rules is
locally confluent if all symbolic critical pairs are strongly joinable. We also show
that for checking strong joinability, it is not necessary to compute all graphs
derivable from a critical pair but it suffices to focus on the pair’s persistent
reducts. In a case study, we use our method to verify the confluence of a graph
program that calculates shortest distances.

We assume the reader to be familiar with basic notions of the double-pushout
approach to graph transformation (see [3]). The long version version of this paper
[11] contains the technical proofs together with the full shortest distances case
study.

2 Graphs and Graph Programs

In this section, we present the approach of GP 2 [18,1], a domain-specific lan-
guage for rule-based graph manipulation. The principal programming units of
GP 2 are rule schemata 〈L← K → R〉 labelled with expressions that operate on
host graphs (or input graphs) labelled with concrete values. The language also
allows to combine schemata into programs. The definition of GP 2’s latest ver-
sion, together with a formal operational semantics, can be found in [1]. We start
by recalling the basic notions of partially labelled graphs and their morphisms.

Labelled graphs. A (partially) labelled graph G consists of finite sets VG and EG

of nodes and edges (graph items for short), source and target functions for edges
sG, tG : EG → VG, and a partial node/edge labelling function lG : VG +EG → L
over a (possibly infinite) label set L. Given an item x, lG(x) = ⊥ expresses that
lG(x) is undefined. The graph G is totally labelled if lG is a total function. The
classes of partially and totally labelled graphs over L are denoted as G⊥(L) and
G(L).

A premorphism g : G → H consists of two functions gV : VG → VH and
gE : EG → EH that preserve sources and targets, and is a graph morphism if it
preserves labels of graph items, that is lH

(

g(x)
)

= lG(x) for all x ∈ Dom(lG).
A morphism g preserves undefinedness if it maps unlabelled items of G to unla-
belled items in H . A morphism g is an inclusion if g(x) = x for all items x in G.



Note that inclusions need not preserve undefinedness. A morphism g is injective
(surjective) if gV and gE are injective (surjective), and is an isomorphism (de-
noted by ∼=) if it is injective, surjective and preserves undefinedness. The class
of injective label preserving morphisms is denoted asM for short, and the class
of injective label and undefinedness preserving morphisms is denoted as N .

Partially labelled graphs and label-preserving morphisms constitute a cate-
gory [7,6]. Composition of morphisms is defined componentwise. In this category
not all pushouts exist, and not all pushouts alongM-morphisms are natural1.

GP 2 labels. The types int and string represent integers and character strings.
The type atom is the union of int and string, and list represents lists of atoms.
Given lists l1 and l2, we write l1 : l2 for the concatenation of l1 and l2 (not to be
confused with the list-cons operator in Haskell). Atoms are lists of length one.
The empty list is denoted by empty. Variables may appear in labels in rules and
are typed over the above categories. Labels in rule schemata are built up from
constant values, variables, and operators - the standard arithmetic operators for
integer expressions (including the unary minus), string/list concatenation for
string/list expressions, indegree and outdegree operators for nodes. In pictures
of graphs, graph items that are shown without a label are implicitly labelled with
the empty list, while unlabelled items in interfaces are labelled with ⊥ to avoid
confusion.

Additionally, a label may contain an optional mark which is represented
graphically as a colour. For example, the grey node of the rule schema init in
Figure 3 has the label (x : 0, grey).

Rule schemata and direct derivations. In order to compute with labels, it is
necessary that graph items can be relabelled during computation. The double-
pushout approach with partially labelled interface graphs is used as a formal
basis [6]. This approach is also the foundation of GP 2.

To apply a rule schema to a graph, the schema is first instantiated by eval-
uating its labels according to some assignment α. An assignment α maps each
variable occurring in a given schema to a value in GP 2’s label algebra. Its unique
extension α∗ evaluates the schema’s label expressions according to α. For short,
we denote GP 2’s label algebra as A. Its corresponding term algebra over the
same signature is denoted as T (X), and its terms are used as graph labels in rule
schemata. Here X is the set of variables occurring in schemata. A substitution σ

maps variables to terms. To avoid an inflation of symbols, we sometimes equate
A or T (X) with the union of its carrier sets.

A GP 2 rule schema r = 〈L ← K → R〉 consists of two inclusions K → L

and K → R such that L and R are graphs in G(T (X)) and K is a graph in
G⊥(T (X)). Consider a graph G in G⊥(T (X)) and an assignment α : X → A.
The instance Gα is the graph in G⊥(A) obtained from G by replacing each label
l with α∗(l). The instance of a rule schema r = 〈L ← K → R〉 is the rule
rα = 〈Lα ← Kα → Rα〉.

1 A pushout is natural if it is also a pullback.
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Fig. 1: A direct derivation

A direct derivation via rule schema r and assignment α between host graphs
G,H ∈ G(A) consists of two natural pushouts as in Figure 1. We denote such

a derivation by G
r,g,α
=⇒H . Later we will allow for rules to be applied to graphs

in G(T (X)). In [6] it is shown that in case the interface graph K has unlabelled
items, their images in the intermediate graph D are also unlabelled. By [6,
Theorem 1], given a rule r and a graph G together with an injective match
g : L→ G satisfying the dangling condition (no node in g(L)− g(K) is incident
to an edge in G − g(L)), there exists a unique double natural pushout as in
Figure 1. The track morphism allows to “follow items through derivations”:
trackG⇒H : G → H is the partial premorphism defined by track(x) = if x ∈
D then c(x) else undefined where c is the inclusion D → H , and trackG⇒∗H of
an arbitrary-length derivation is the composition of partial premorphisms. Note
track may not preserve labels due to relabelling.

For an example rule schema and graph program, see the start of Section 5.
When a rule schema is graphically declared as done in Figure 3, the interface is
represented by the node numbers in L and R. Nodes without numbers in L are
to be deleted and nodes without numbers in R are to be created. All variables
in R have to occur in L so that for a given match of L in a host graph, applying
the rule schema produces a graph that is unique up to isomorphism.

Program constructs. The language GP 2 offers several operators for combining
programs - the postfix operator ‘!’ iterates a program as long as possible; se-
quential composition ‘P; Q’; a rule set {r1, . . . , rn} tries to non-deterministically
apply any of the schemata (failing if none are applicable); if C then P else Q
allows for conditional branching (C,P,Q are arbitrary programs) meaning that
if the program C succeeds on a copy of the input graph then P is executed on
the original, if C fails then Q is executed on the original input graph.

Confluence. A set of rule schemataR is confluent if for all graphsG,H1, H2 with
derivations H1 ⇐∗

R
G⇒∗

R
H2 there is a graph M with H1 ⇒∗

R
M ⇐∗

R
H2. R is

locally confluent if this property holds for direct derivations H1 ⇐R G⇒R H2.
Finally, R is terminating if there is no infinite sequence G0 ⇒R G1 ⇒R . . . of
direct derivations.

Assumptions. Our previous results on critical pairs [12] involve several restric-
tions. Firstly, the proper treatment of GP 2 conditional rule schemata requires
extra results about shifting of conditions along morphisms and rules, which we



do not treat here formally. We give an intuition of how to deal with conditions on
labels in our shortest distances case study in Section 5. Secondly, we assume rule
schemata to be left-linear, meaning no list variables are shared between items in
schemata. This ensures that overlapping graphs with expressions results in a fi-
nite set of critical pairs. Thirdly, we allow interfaces in rules to contain edges and
labels, which is a deviation from the GP 2 convention of unlabelled node-only
interfaces. This reduces the number of potential conflicts.

3 Symbolic Critical Pairs

Confluence [17] is a property of a rewrite system that ensures that any pair of
derivations on the same host graph can be joined again thus leading to the same
result, and is an important property for many kinds of graph transformation
systems. A confluent computation is globally deterministic despite local non-
determinism. The main technique for confluence analysis is based on the study
of critical pairs which are conflicts in minimal context.

In our previous paper [12], we defined critical pairs for GP 2 that are labelled
with expressions rather than from a concrete data domain. Each symbolic critical
pair represents a possibly infinite set of conflicting host graph derivations. Hence,
it is possible to foresee each conflict by computing all critical pairs statically.
What is special about our critical pairs is that they show the conflict in the

most abstract way. Informally, a pair of derivations T1

r1,m1,σ
⇐= S

r2,m2,σ
=⇒ T2 between

graphs labelled with expressions is a symbolic critical pair if it is in conflict and
minimal. Two direct derivations are independent if neither derivation deletes or
relabels any common item, and in conflict if otherwise. Independent derivations
have the Church-Rosser property as shown in [10] for the case of rule schemata.

Minimality of a pair of derivations means the pair of matches (m1,m2) is
jointly surjective – the graph S can be considered as a suitable overlap of Lσ

1

and Lσ
2 . Formally, overlapping graphs L1 and L2 via premorphisms m1 : L1 →

S,m2 : L2 → S induces a system of unification problems:

EQ(L1

m1→ S
m2← L2) = {lL1

(a)
?
= lL2

(b) | (a, b) ∈ L1 × L2 with m1(a) = m2(b)}

The substitution σ above is taken from the complete set of unifiers of the above
system computed by our unification algorithm of [9], and is used to instantiate
the schemata to a critical pair.

Definition 1 (Symbolic Critical Pair [12]). A symbolic critical pair is a pair

of direct derivations T1

r1,m1,σ
⇐= S

r2,m2,σ
=⇒ T2 on graphs labelled with expressions

such that:

(1) σ is a substitution from a complete set of unifiers of (EQ(L1

m1−−→ S
m2←−− L2))

where L1 and L2 are the left-hand graphs of r1 and r2, m1 and m2 are
premorphisms, and

(2) the pair of derivations is in conflict, and
(3) S = m1(L

σ
1 ) ∪m2(L

σ
2 ), meaning S is minimal, and



(4) rσ1 = rσ2 implies m1 6= m2. ⊓⊔

We assume that the variables occurring in different rule schemata are distinct,
which can always be achieved by variable renaming. The derivations have to be
via left-linear rule schemata in order for our unification algorithm to work on the
systems of unification problems EQ. For example critical pairs, see Section 5.

Properties of Symbolic Critical Pairs. Below we present the properties of critical
pairs as proven in [12]. Symbolic critical pairs are complete, meaning that each
pair of conflicting direct derivations is an instance of a symbolic critical pair.
Additionally, the set of symbolic critical pairs is finite.

Theorem 1 (Completeness and Finiteness of Critical Pairs [12]). For

each pair of conflicting rule schema applications H1

r1,m1,α
⇐= G

r2,m2,α
=⇒ H2 between

left-linear schemata r1 and r2 there exists a symbolic critical pair T1

r1⇐ S
r2⇒ T2

with the (extension) diagrams (1) and (2) between H1 ⇐ G ⇒ H2 and an
instance of T1 ⇐ S ⇒ T2. Moreover, the set of symbolic critical pairs induced by
r1 and r2 is finite.

PQ1 Q2⇐= =⇒

GH1 H2⇐= =⇒

(1) (2)

ST1 T2⇐= =⇒

4 Symbolic Rewriting and Joinability

Symbolic critical pairs consist of graphs labelled with expressions. This is nec-
essary for making the set of critical pairs finite as GP 2’s infinite label algebra
induces an infinite set of conflicts at the instance (host) level. How to rewrite
such graphs is what we focus on next as the current GP 2 framework only defines
rewriting of host graphs.

In this section we propose symbolic rewriting of GP 2 graphs to overcome
the above limitation. This allows for the representation of multiple host graph
direct derivations. The overall aim is to use symbolic rewriting for establishing
the (strong) joinability of critical pairs.

4.1 Symbolic Rewriting

Informally, symbolic rewriting introduces a relation on rule graphs (⇛) where
matching is done by treating variables as typed symbols/constants. What is
special in our setting is that rules cannot introduce new variables. Furthermore,
since application conditions cannot usually be checked for satisfiability as values
for variables are not known at analysis time, they are only recorded as assump-
tions to be resolved later. This type of rewriting is very similar to symbolic graph
transformation, e.g. as in [16].
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Fig. 2: Symbolic direct derivation.

Isomorphism and label equivalence. Since we now consider graphs in G(T (X))
involving GP 2 label expressions, we relax the definition of isomorphism pre-
sented in Section 2 by replacing label equality with equivalence. Furthermore,
since graph isomorphism is central to the discussion of joinability of critical pairs,
we define how isomorphism relates to a critical pair’s set of persistent nodes.

Two graphs G,H ∈ G(T (X)) are E-isomorphic (denoted by G ∼=E H) if there
exists a bijective premorphism i : G → H such that lH(i(x)) ≈E lG(x) for all
items of G. Here ≈E is the equivalence relation on GP2 expressions given by all
the equations valid in GP 2’s label algebra of integer arithmetic and list/string
concatenation.

For an example of why a more general notion of isomorphism is needed,
consider the schemata r1: m:n m+n⇒ and r2: m:n n+m⇒ which both match
a node labelled with a list of two integers (m and n) but relabel the node to

(syntactically) different expressions. The derivations m:n m+nn+m ⇒r2⇐r1 rep-
resent a symbolic critical pair (conflict due to relabelling). The resulting graphs
are normal forms, and isomorphic only if one considers the commutativity of
addition.

Symbolic derivation. The essence of symbolic rewriting is to allow rule schemata
to be applied to graphs labelled with expressions, i.e. graphs in G(T (X)). In the
terminology of Section 2, assignments become substitutions σ : X → T (X). We
call such a derivation symbolic. For example, the critical pairs in Figure 4 involve
such symbolic derivations. Operationally, constructing symbolic derivations in-
volves obtaining a substitution σ for the variables of L given a premorphism
L → S, and then constructing a direct derivation with relabelling as in Sec-
tion 2.

Definition 2 (Symbolic direct derivation). A symbolic direct derivation via
rule schema r, substitution σ between graphs S, T ∈ G(T (X)) consists of two
natural pushouts via match g : Lσ → S as in Figure 2.

We denote symbolic derivations by S
r,g,σ

⇛ T . Note that variables occurring in S

cannot be modified. This kind of rewriting is incomplete in that not all host
graph derivations can be represented by symbolic derivations.

Symbolic derivations allow for the representation of multiple host graph di-
rect derivations, and can be seen as transformations of specifications. The propo-



sition below states that the application of symbolic rule schema coincides, in
some sense, with respect to the host graph derivations it represents. For its
proof see [11].

Lemma 1 (Soundness of symbolic rewriting). For each symbolic derivation

S
r,g,σ

⇛ T and each host graph G = Sλ and assignment λ, there exists a direct

derivation G
r,g,α
⇒ H where H = T λ and α = λ ◦ σ.

4.2 Joinability

Confluence analysis is based on the joinability of critical pairs. Informally, a
symbolic critical pair T1 ⇚ S ⇛ T2 is joinable if there exist symbolic derivations
from T1 and T2 to a common graph. However, it is known that joinability of all
critical pairs is not sufficient to prove local confluence [17]. Instead, one needs
to consider a slightly stronger notion called strong joinability that requires a set
of persistent nodes in a critical pair to be preserved by the joining derivations.
The set of persistent items of a critical pair consists of all nodes in S that are
preserved by both steps, and are defined in terms of the pullback N of the
intermediate graphs O1 and O2 of the critical pair2.

Definition 3 (Strong joinability). A symbolic critical pair T1 ⇚ S ⇛ T2 is
strongly joinable if we have the following:

1. joinability: there exist symbolic derivations T1 ⇛
∗ X1

∼=E X2 ⇚
∗ T2 where

i : X1 → X2 is an E-isomorphism.
2. strictness: let N be the pullback object of O1 → S ← O2 (1). Then there

exist morphisms N → O3 and N → O4 such that the squares (2), (3) and
(4) commute:

N

O1 O2

O3 O4

S

T1 T2

X1 X2

i

(1)

(3)

(4)

(2)

The strictness condition can be restated in terms of the track morphisms of
the joining derivations, as in [17]: the track morphisms trackS⇛T1⇛

∗X1
and

trackS⇛T1⇛
∗X2

are defined and commute on the persistent items of the critical
pair, i.e. i(trackS⇛T1⇛

∗X1
(x)) = trackS⇛T2⇛

∗X2
(x) for each x ∈ N . See the

first author’s thesis for a proof of equivalence [8]. The graphs O3 and O4 in the
above definition are the derived spans of the joining derivations as the joining
derivations are of arbitrary length, e.g. see [11] and [3].

Lemma 2 (Joinability preservation). If a symbolic critical pair T1 ⇚ S ⇛

T2 is strongly joinable, then each of its instances according to some assignment
λ (T λ

1 ⇐ Sλ ⇒ T λ
2 ) is also strongly joinable.

Here we consider the critical pair instances to be critical pairs over the rule
instances in their own right. For proof(s), see [11].

2 For the construction of pullbacks over partially labelled graphs see [7, Section 4]



Main = init; {add, reduce}!

init(x : list)

1

x ⇒

1

x:0

add(x, y : list; m, n : int)

x:m y

1 2

n
⇒ x:m y:m+n

1 2

n

reduce(x, y : list; m, n, p : int)

x:m y:p

1 2

n
⇒ x:m y:m+n

1 2

n

where m+ n < p

Fig. 3: Shortest Distances program

5 Case Study: Shortest Distances

The shortest distances problem is about calculating the paths between a given
node (the source node) and all other nodes in a graph such that the sum of
the edge weights on each path is minimized. The Bellman–Ford algorithm [2] is
an algorithm that solves that problem. It is based on relaxation in which the
current distance to a node is gradually replaced by more accurate values until
eventually reaching the optimal solution. An assumption made is that there is
no negative cycle (a cycle whose edge weights sum to a negative value) that is
reachable from the source, in which case there is no shortest path.

GP 2 implementation. A GP 2 program that implements the above algorithm is
shown in Figure 3. Distances from the source node are recorded by appending the
distance value to each node’s label. Nodesmarks are used: the source node is red,
visited nodes are gray, and unvisited nodes are unmarked. Given an input graph
G with a unique source node and no negative cycle, the program initializes the
distance of the source node to 0. The add rule explores the unvisited neighbours
of any visited nodes, assigns them a tentative distance and marks them as visited
to avoid non-termination. The reduce rule finds occurrences of visited nodes
whose current distance is higher than alternative distances, i.e. only when the
application condition (m+ n < p) is satisfied by the schema instantiation. The
program terminates when neither add or reduce rules can be further applied.

However, since rule application is non-deterministic, different graphs may
result from a program execution. The above algorithm is correct only if the
loop {add,reduce}! is confluent. In the absence of a full program verification,
a programmer may want to check that this loop indeed returns unique results.

Critical Pairs. There are 7 critical pairs in total for the above program: two
between add with itself (SD1/2), one between add and reduce (SD3), and four
between reduce with itself (SD4-7). Figure 4 gives the first three critical pairs,



x:m 1 x′ : m′2

y3

n n′

S1

x:m 1 x′ : m′2

y:m+n3

n n′

T1

x:m 1 x′ : m′2

y:m′+n′3

n n′

T2

add

⇚
add

⇛SD1

x:m1

y2

n n′

S2

x:m1

y:m+n2

n n′

T3

x:m1

y:m+n′2

n n′

T4

add

⇚
add

⇛

SD2

x:m

1

y:p

2

y′

3

n n′

S3

where m+ n < p

x:m

1

y:m+n

2

y′

3

n n′

T5

x:m

1

y:p

2

y′:p+n′

3

n n′

T6

reduce

⇚
add

⇛

SD3

Fig. 4: Shortest Distances critical pairs involving add.

x:m1

y:p2

n n′

S6

where m+ n < p and p+ n′ < m

x:m1

y:m+n2

n n′

T11

x:p+n′1

y:p2

n n′

T12

reduce

⇚
reduce

⇛SD6

Fig. 5: A reduce critical pair requiring a semantic joinability argument.

whereas the reduce critical pairs are very similar to those and are omitted for
space reasons. The only interesting reduce critical pair involves a 2-cycle where
either node gets its distance updated by reduce and is given in Figure 5. All
of the conflicts are due to relabelling of a common node. Note that due to the
semantics of GP 2 marks (marked cannot match unmarked), other conflicts are
not possible. Variables have been renamed where necessary. The persistent items
of all critical pairs are the graph items of S since the rules do not delete any
graph items, and the common node of each critical pair that gets relabelled (e.g.
node 3 in SD1) does not have a label in the pullback graph N of Definition 3.

The critical pairs SD1/2 are between the rule add with itself where an unvis-
ited node can get initialized with different distance values, either from 2 neigh-
bouring nodes or from the same node but different (parallel) edges. In SD3 the
distance of a node in a path is used in different ways: either to initialize the dis-
tance of a neighbouring node (via add), or to have its own distance updated (via
reduce). Note that the application condition is recorded as part of the critical
pair. The critical pairs SD4/5 represent a conflict of reduce with itself where a
node may get different updated distance values depending on which path is cho-
sen, similar to SD1/2. SD6 involves a 2-cycle where either node gets its distance
updated by reduce. SD7 involves a sequence of three nodes, similar to SD3.

Joinability Analysis. Due to space limitations, here we only give a top-level
explanation of why each of the critical pairs are strongly joinable. See [11] for
the full details. The result of the analysis is that all critical pairs are strongly



(a) Label equivalence example for SD1. (b) Implication checking for SD3.

Fig. 6: Z3 code for label equivalence analysis of shortest distances.

joinable except the 2-cycle critical pair SD6 whose label condition is unsatisfiable
assuming non-negative cycles and the semantic argument that both schemata do
not modify edge labels. (Without using this information, the critical pair is not
joinable.) Hence the loop {add, reduce}! is confluent.

An interesting practical aspect of joinability is that it involves, in most cases,
checking label equivalences for validity. (We check for validity rather than sat-
isfiability since we need that all instances of a strongly joinable critical pair
to be strongly joinable rather than at least one.) For this purpose, we use the
SMT solver Z3 [15]. It provides support for (linear) integer arithmetic, arrays,
bit vectors, quantifiers, implications, etc.

For the critical pair SD1, the result graphs T1 and T2 are isomorphic only
if the label equivalence m + n = m′ + n′ is valid, which it is not (encoded
as a forall expression in Figure 6a where variables have been renamed). The
analysis proceeds by applying reduce to both T1 and T2, and the semantics of
the reduce condition (containing comparison of integer expressions) guarantees
a strong isomorphism between the results. Note that reduce is necessary for
the joining derivations, meaning the rule add is not confluent on its own. The
analysis of SD2 proceeds in a similar way as SD1 with the same conclusion.
For SD3, one needs to check implications between conditions to ensure strong
joinability between a pair of derivable graphs. An implication that shows up
during the analysis is shown in Figure 6b which Z3 reports to be valid. Therefore
the critical pair is strongly joinable. The analysis for the critical pairs SD4/5 is
the same as for SD1/2.

The critical pair SD6 is different than the rest - its label condition is satisfiable
only when the sum of the edge labels is negative (n+ n′ < 0), which is not
possible under the assumption of no negative cycles and the observation that
no rules modify edge labels. Without this semantic information, it is possible
to instantiate the critical pair to a concrete graph with non-isomorphic normal
forms, and thus obtain an example of non-confluence.

6 Local Confluence

In this section we present the Local Confluence Theorem which establishes the
local confluence ofR if all symbolic critical pairs are strongly joinable. It was first
shown in [17] for the (hyper)graph case and later extended to (weak) adhesive
categories in [5]. We also discuss our method for confluence checking based on
symbolic critical pairs.
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Fig. 7: Local Confluence Diagram (a) and Initial pushout in G⊥ (b).

Theorem 2 (Local Confluence Theorem). A set R of left-linear rule schemata
is locally confluent if all of its symbolic critical pairs are strongly joinable.

The full proof closely follows the Local Confluence Theorem proof of [3, Theo-
rem 6.28], which requires several properties ofM and N established in [7]. Due
to space limitations, here we give only an outline containing the important steps.

Proof outline. For a given pair of direct derivations H1

r1,m1,α
⇐ G

r2,m2,α
⇒ H2, we

have to show the existence of derivations H1 ⇒∗
R

X ′′
1
∼= X ′′

2 ⇐
∗
R

H2 as the
outer part of Figure 7a. If the given pair is independent, this follows from the
Church-Rosser Theorem for rule schemata [10]. If the given pair is in conflict,

Theorem 1 implies the existence of a symbolic critical pair T1

r1,m
′

1
,σ

⇚ S
r2,m

′

2
,σ

⇛ T2

with extension diagrams as in the upper half of Figure 7a involving an instance of
the critical pair, and the extension morphism e : P → G ∈ N . By assumption,
this critical pair is strongly joinable. By Lemma 2, the critical pair instance
Q1 ⇐ P ⇒ Q2 is also strongly joinable, leading to derivations P ⇒ Q1 ⇒∗

Xλ
1
∼= Xλ

2 ⇐
∗ Q2 ⇐ P where λ is the instantiation of the symbolic critical pair.

The next step is to show that the joining derivations P ⇒ Q1 ⇒∗ Xλ
1
∼=

Xλ
2 ⇐

∗ Q2 ⇐ P can be extended via the morphism e : P → G ∈ N . This in-
volves constructing the initial pushout of e and showing that the joining deriva-
tions preserve its boundary graph. Here the commutativity of the squares (2)
and (3) in Definition 3 is used, together with the properties of pullbacks and
initial pushouts. The final step involves showing that X ′′

1
∼= X ′′

2 . This is due to
the commutativity of (4) in Definition 3 and that pushouts are unique up to
isomorphism. ⊓⊔

Remark. The full proof of the theorem requires the construction of the bound-
ary/context graph of e : P → G ∈ N . This is always possible in our setting - use
the same definition as in the unlabelled case (e.g. see [3, Example 6.2]) and omit
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labels as done in Figure 7b. Other necessary results include the Embedding and
Extension Theorems, which are easily obtained by inspecting the proofs in [5]
which already considers categories with a special set of vertical morphisms.

Confluence analysis. Next we give our decision procedure for confluence based
on symbolic critical pairs. In the following, we consider only terminating sets
of rules R since a non-terminating rule set may be locally confluent but not
confluent. We begin by discussing persistent reducts.

In the context of a critical pair T1 ⇚R S ⇛R T2 with a set of persistent
items N , a graph X derivable from T1 or T2 is a persistent reduct if the only
rules applicable to X would delete the image of a common persistent item, i.e.
an item in trackS⇛Ti⇛

∗X(N). Such graphs are useful when searching for joining
derivations – one need not consider graphs derivable from such reducts because
strong joinability requires the existence of all persistent items, expressed as the
following proposition. For its proof see [11]

Proposition 1. If a critical pair T1 ⇚R S ⇛R T2 is strongly joinable, then
there exists a pair of E-isomorphic graphs X1 and X2 such that Xi is a persistent
reduct derivable from Ti, i = 1, 2. Moreover, the isomorphism commutes on the
persistent items of the critical pair in the sense of Definition 3.

However, it is not enough to nondeterministically compute a pair of reducts
and then compare them for strong joinability. Instead, one needs to consider
all reducts. Consider the terminating set of rules in Figure 8. This system is
non-confluent because of the derivations A ⇐∗ S ⇒∗ D

r4⇒ , which are two
non-isomorphic normal forms. However, a confluence checker needs to search for
strong joinability of critical pairs first. A strongly joinable critical pair T1 ⇚R

S ⇛R T2 is given. All the nodes of S are persistent nodes, and there are no
persistent edges. The graphs T1 and T2 have multiple persistent reducts - T1

reduces to A and B while T2 reduces to C and D. The isomorphism A ∼= C

demonstrates strong joinability, B ∼= D but violates the strictness condition,
A ≇ D and B ≇ C, thus a confluence checker needs to compare all persistent
reducts for isomorphism.



Input : A terminating set of left-linear rules R with a set of critical pairs CP

1 foreach cp = (T1 ⇚R S ⇛R T2) in CP do

2 for i = 1, 2 do

3 construct all derivations Ti ⇛
∗

R Xi where Xi is a persistent reduct
4 {let PRi be the set of all persistent reducts Xi}

5 end

6 foreach pair of graphs (A,B) in PR1 × PR2 do

7 if there exists a strong isomorphism A → B then

8 mark cp as strongly joinable
9 end

10 end

11 end

12 if all critical pairs in CP are strongly joinable then

13 return “confluent”
14 else

15 return “unknown”
16 end

Algorithm 1: Confluence Analysis Algorithm

Confluence Algorithm. Given a set of symbolic critical pairs and a terminating
rewrite relation R, Algorithm 1 checks whether all symbolic critical pairs are
strongly joinable (Definition 3) by computing persistent reducts and then check-
ing for isomorphisms (that are compatible with the joining derivations according
to Definition 3). If that is the case, then the symbolic critical pair is strongly
joinable. It is sufficient to consider persistent reducts due to Proposition 1. If all
critical pairs are found to be strongly joinable, the algorithm reports R to be
confluent. Otherwise, it reports “unknown”.

Isomorphism checking is an integral part of joinability analysis. Since at the
host graph level every label is taken from the concrete GP 2 label algebra without
variables, checking for isomorphism (∼=) is decidable. However, when analysing
graphs at the symbolic level, the problem of E-isomorphism (∼=E) involves de-
ciding validity of equations in Peano arithmetic. To the best of our knowledge,
the problem is open for pure equations (no negation). Nevertheless, decidable
fragments exist such as Presburger Arithmetic, whose decision procedures can
be used during the analysis of the shortest distances case study (shown in [11]).

Note that the confluence algorithm does not determine non-confluence. This
is due to the limitations of symbolic rewriting: not every host graph deriva-
tion can be represented by a symbolic derivation. However, in certain cases it
is possible to use a combination of unification and satisfiability checking to de-
termine that two non-isomorphic persistent reducts represent non-isomorphic
normal forms at the host graph level. In these cases the algorithm could report
non-confluence, which is a topic of ongoing work.

Related work. It is important to stress the differences with the symbolic approach
of [14] which also defines symbolic critical pairs. That paper is in the context
of symbolic graph transformation [16] where whole classes of attributed graphs
are transformed via symbolic rules (rules equipped with first-order logical for-



mulas). Symbolic critical pairs represent conflicts between such symbolic rules.
However, no construction algorithm is given for these critical pairs. In fact, that
paper treats attribute algebras as parametric, and thus a general construction
algorithm is an undecidable problem. Joinability and local confluence are not
considered. Symbolic rewriting is used to check critical pairs for strong conflu-
ence (joinability with 1/0-length derivations), which serves as an inspiration for
validity checking in our case study.

The differences with critical pairs in the attributed setting of [3] are similar
to the above. In this setting, graph attributes are represented via special data
nodes and linked to ordinary graph items via attribution edges, giving rise to
infinite graphs. The critical pair construction however is restricted to rules whose
attributes are variables or variable-free. The algorithmic aspects of confluence
analysis are not considered.

7 Conclusion

We have presented a method for statically verifying confluence (functional be-
haviour) of terminating sets of GP 2 rules, based on constructing the symbolic
critical pairs of a rule set and checking that all pairs are strongly joinable with
symbolic derivations. The correctness of this method is a consequence of the
main technical result, namely that a set of left-linear attributed rules is locally
confluent if all symbolic critical pairs are strongly joinable. We have also shown
it is sufficient to focus on the persistent reducts when checking strong joinability.
In a case study, we used our method to verify the confluence of a graph program
that calculates shortest distances.

An interesting topic of future work is the extension of confluence analysis to
handle GP 2 program constructs other than looping, e.g. conditional branching.
Other topics are the practical aspects of joinability analysis, namely develop-
ing decision procedures for label equivalence (e.g. see [13]), and the theoretical
treatment of conditional rule schemata.
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