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1. Introduction

While a full theory of quantum gravity is still elusive, much can be learned from studying
quantum gravity in the sense of an effective field theory [1], by considering metrie
fluctuations around a given classical background. Even though this theory is not/powers
counting renormalisable, one can make predictions which are valid at scales well:below
the Planck scale, which includes the only observational evidence for quantum gravity te
date, the cosmic microwave background [2-4]. In particular, unambiguous predietions
can be made for quantum corrections to the Newtonian and other  gravitational
potentials of point particles due to matter loops in flat space [5414] and de Sitter
space [15-18], for quantum corrections to the time delay in various, scenarios [19-21],
corrections to Solar system dynamics [22, 23|, corrections to geodesic deviation [24, 25],
etc. However, the situation changes drastically when one wants«t6 include the effects
of graviton loops (calling any metric fluctuation “graviton” for shortzzand not only the
transverse traceless part), for example to calculate quangum gravitational corrections
in electrodynamics [26-28]. In perturbative quantum gravity, difféomorphism invariance
translates into a gauge symmetry for the graviton, and while one can find local gauge-
invariant gravitational observables at linear order (e.g.; the linearised Riemann tensor for
a flat-space background or the linearised Weyl tenSor,for conformally flat backgrounds),
in general this is impossible (see, e.g., refs. [29531] for proofs with various levels of
mathematical sophistication). In flat space one,can nevertheless calculate corrections to,
say, the Newtonian potential by reconstructing asseattering potential which gives the
same S-matrix element as the perturbative calculation including graviton loops [27, 32—
40]. Since the S-matrix is gauge-independent, the resulting potential is invariant as well
if one restricts, as usual, to diffeomorphisms’ which decay sufficiently fast at infinity.
This approach fails for spacetimes for which' no S-matrix can be defined; moreover, one
would expect that a potential which,is measured locally, in a region of finite size, can
be obtained from a local (or at, least almost local) observable in the quantum theory,
without resorting to non-loealyobservables which are defined at infinity.

There are various approaches to the problem of defining such almost local
observables in a (athleast ‘perfurbative) theory of quantum gravity, among which
predominant ones are the following:

e “Dressing” of the bare field operators and states with a graviton cloud [41-43], either
extended or'string-like. This is analogous to the construction of dressed operators
and states in QED [44-49], going back to the work of Dirac [50].

e Relational observables, considering the value of a field at the point where another
field'has a given value [30, 31, 51, 52]. This goes back to early work by Géhéniau
and Deveber [53-57], extended by Komar and Bergmann [58-60]; see ref. [61] for
a recent review. Generally, these observables use scalars constructed from various
background fields as coordinates, and thus require a sufficiently generic background
spacetime, but an extension of the concept to highly symmetric spacetimes has
recéntly been achieved [62].
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e Defining the distance between points in correlation functions using perturbed
geodesics [63-66], similar to Mandelstam’s path-dependent reformulation of field
theory [67-69]. This approach has been pioneered by Woodard [70], and has also
been used in numerical studies [71, 72]. We adopt it in the following.

To define an n-point scalar correlation function at fixed geodesic distance, one fixes
a starting point x#, n starting directions v?n) and n geodesic distances £(,). One hasthen
to solve the geodesic equation

Koy (T) 4 T Ot (1)) Xy (1) Xy (1) = 0, (1)

where a dot denotes a derivative with respect to the affine parameter 7, with the
boundary conditions an)(()) = zt, )'(’(Ln)(O) = vf‘n), and calculage*the geodesic lengths

(1) = o Oy ()0 (Pl )

Let us assume w.l.o.g. that the affine parameter is normalised such that sq,)(1) = £);
the sought correlation function is then given by

(oxay (D)) -+ oD ) (3)

In addition to the above, one has to parallel tramsport tensor or spinor fields along the
geodesic back to the origin to compare themyin a common Lorentz frame [63, 64, 70].
One can then calculate this expectation walue expanding both the action and the
geodesic perturbatively around a background. In/the present work, we focus on one-
loop corrections to the two-point function around flat space, and calculate

{6(x(0))o(x(1))) (4)

2 = 167Gy, where Gy is Newton’s constant. The main open problem in a

to order k
perturbative calculation of such eorrelation functions is their renormalisation. Solving
the geodesic equation (1) perturbatively with the given boundary conditions, one obtains
terms where the graviton isfintegrated over the background geodesic, a one-dimensional
submanifold. In field theory one deals with distribution-valued operators, and their
restriction to submamnifelds is not well defined in general, leading to new divergences.
While these divergences can be regularised, e.g., in dimensional regularisation, they can
not be renormalised using the usual bulk action counterterms. Previous calculations
have either léft this\problem open [63, 70], or imposed an ad-hoc small distance cut-
off on the intégration over the background geodesic [64, 73]. Borrowing ideas from
the renofmalisation of Wilson loops in non-Abelian gauge theories [74-76] and post-
Newtonian point particle dynamics in General Relativity [77-80], we show that these
additional divergences can be renormalised by a “wave function renormalisation” of the
geodesic itgelf, of the form x*(7) — Z,x*(7), at least to order 2.

The article is organised as follows: section 2 shows the calculation of the correlation
function (4) in detail, separating purely field-theoretic contributions from purely
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geodesic corrections and mixed ones, and performing renormalisation. Section 3 gives
the final result, and discusses its renormalisation group scaling and the gauge (in-
)dependence, and section 4 discusses its significance. Some technical computations are
relegated to the appendices. We use the ‘++4+’ convention of ref. [81], and set ¢ == 1
and k? = 167Gx.

2. Calculation

2.1. Preliminaries

For simplicity, we restrict to the case of a massless scalar, but include arbitrary coupling
of the scalar to curvature (parametrised by the constant &, with & =(n.—=2)/[4(n — 1)]
corresponding to conformal coupling). We then consider the standard Einstein-Klein
Gordon action

§= 5 [ Rv=gate— 5 [(0,60,0 + cBg?) /T ' o)

Since massless tadpoles vanish in dimensional regularisation in flat space, and mass
is multiplicatively renormalised, we need neither a” eounterterm for the cosmological
constant nor for the scalar mass (and to lowest™fon-trivial order in x also no wave
function renormalisation is needed), but wé haveito include a higher-order counterterm
of the form

2

Sor = derae | (VOValFgde. (6)
We also need to include gauge-fixing and ghost terms, but since we only consider external
scalars and work to lowest non-trivial order in x, the ghost terms are irrelevant (as well
as the auxiliary field). The most general linear gauge-fixing action for pure gravity,
depending on two parameters v-and [, is then given by

Sar = —2104 / [5”1#'/ > (1 o+ ;) auh] [aphup - (1 + ;) 8“h] d"z. (7)

We perturbatively expand the action (5) around a flat background

Guv = N + "ihw/ (8)
to second order inbh,, , which can be done using the expansions from appendix Appendix
A. We obtain

S+ 8af = So + kSI? + kS + K25, + O(x?) 9)
with the free action
1 1
So = §/hwpuupahpa d"z + §/¢82gb d"z (10)

and the first order graviton—scalar interaction

1
S19 = = [ (0076 — 5,067 ) 10" d' =

Page 4 of 41
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where we defined the tensor

1
Tuwvps = Tp(u"v)o — 577;u/77pa (12)

and the symmetric differential operators

S = 0,0, — 17,“,02 , (13a)

1 1
Puvpe = gm(p%)uaz - (1 - a)a(wuxpaa)

11 1
+ (2 - O—(;ﬁ) (nuuapag + Upoauau) - (2 ( —;f) >77W77p082'

Since massless tadpoles, which arise from Ss, correspond to  scaleless{integrals in
momentum space, they vanish in dimensional regularisation [82]; andswe do not need the
explicit expression for S,. Similarly, Sf3 gives the vertex corresponding to a 3-graviton
interaction, which is not needed in our case.

The propagators are as usual obtained by invertingsthe /differential operators
appearing in the free action (10), and we obtain

d"p 1 d"p
1p z—Yy) _ ip(z—y)
Go(, y) / Golp (2m)" / 2500 (2n)n (14)
satisfying
0*Go(z, y)\= 8%z — ) (15)

for the scalar field and

2 0N (04
G,uupcr(xa y) = <27],u(pn0)u - n_zn,uunpa> G0<x7 y) + 4(0[ - 1)MGO(JI’ y)

82
i 22(2 +B) (n,w 8; + Npo aaf >G0($> y) (16)
0,0,0,0,
~ 24 B) o ) + (o= D= )| F T Golwy)
satisfying
PG o (2.y) = 068" (w — y) a7

for the graviton field. For later use, we note that the explicit expression in coordinate
space for G reads

Go(r,y) = — (18)

with the constant

2

¢, = FS?;) _ 4;2 ll — n;4(7+ln7r) + (R_SZL)Z[% + (’y+ln7r)2H +0((n—4)*),

where v is'the Euler-Mascheroni constant. Defining the five tensors

T;Ezlji)a(k) = 277u(p770)ua (20&)
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T2 (k) = T Tlpo (20b)
T (k) = 0y kk]; + Npor kzl; : (20¢)
T, (k) = 4W , (20d)
T, (k) = W (200)

the momentum-space graviton propagator can be written as

1
G/J,ypa Zg% lu,ypg— 10 (21)
with the coefficients
2
.gl:]-v go = — _27 g3: 2(2+5)
" (22)
p=a=1, g=—-2+0)|"52+0) vla- DfE-9).
The analogue of Feynman gauge in electromagnetism is achieved for « = 1 and § = —2,

while a one-parameter family of gauges analogous to Landau gauge is obtained for o« = 0.
However, to explicitly show the gauge dependeneeérof our result we will keep o and
arbitrary. We also calculate the trace

2
0" G ruwpo(T,y) = mﬁnpaGo(ﬂi,y) (23)
23

+5 (04—1)5—*( +5)

Go(z,y),

which vanishes for § = 0.

Since we want to calculate the two-point function at fixed geodesic distance, we also
have to perturbatively expand/the equation for the geodesic and its length. Consider
thus a geodesic x*(7) which fulfils the geodesic equation

XAT) Do (X (1)X(1)X7 (1) = 0 (24)
and the initial conditions
X(0) =2, X'(0) =" (25)
for some vector v#. The geodesic length ¢ is given by
1
L= [ V@) dr. (26)
and since asing the geodesic equation we have
d : . . "
d;[gw(x(f))x Y(7)] = [Bair (X)X (PR (T) + 290 (X (7)) X (1)K (7)
= [0aga (x(7)) — 29W(X(T))FZ5(X(T))}XQ(T)XB (T)x"(7)
=0,

(27)
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it follows that
¢ = g (x(0)X"(0)X"(0) = gy (x)v""v" . (28)

To lowest order, the geodesic equation (24) with boundary conditions (25) is solved by
XH(T) =t + ot (29)

and taking v* = —(x — y)* the endpoint of the geodesic is given by x*(1)i= y*. At
higher orders in k, the explicit metric appearing in equation (28) shows that v smust
be corrected if we want to fix £. This is most easily done by introducing an,n-bein e,*
which satisfies the relation

G = €€ Ny (30)

with a flat metric 74,. It then follows that
2 = nabeuaeybv“v” = Nap0™0° (31)

such that fixing the geodesic distance means fixing the bein eemponents v%, i.e., the
initial condition for the geodesic must be taken as

X (0) = g" e, vy (32)

with constant v® [70]. In perturbation théoty, it is éxtremely convenient to fix the local
Lorentz symmetry of the n-bein to symmetrie gauge, which completely decouples the
corresponding ghosts and permits to express the perturbed n-bein using the metric
perturbation h,,, [70, 83, 84], given by equation (A.3).

Let us now derive the geodesic corrections to first order in k, writing y*(7) =
Xb () + kX5 (T) + O(k?). Thetboundary condition (32) reads

pa L

. o v 2
() = v Sl +0(x?), (33)

such that

X4(0) =~ Shi ()" (34)

Since x*(0) = z* is fixed ‘@nceland for all, there are no corrections to the starting point,
such that x4 (0) = 0. Expanding now the geodesic equation (24) to first order and using
that the lowest-order geodesic is given by equation (29), we get

. o gl
RV 00 [ 50 has(o(7) = Dalth o) (3)
which can be integrated with the above boundary conditions to obtain
yn 1 v T «a, B 1 " we_n " /
X4 (1) = —=h*(x)v T+/ / v [8“ha5(7 ) — Oahig(T )] dr"dr
2 o Jo 2

= ST [ [ L0 has() — ()] dr
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where we used the Cauchy formula for repeated integration [85] in the second step, and
write

has(7') = hap(Xo(7")) = hap(z + v7') . (37)

It thus follows that the field entering the correlation function is, to first order in x§ given
by
P(x(1)) = ¢(y) + rxi(1)0,0(y) | (38)

where we have set y* = x* + v* to simplify the expressions here and in the following.
The second-order geodesic corrections follow the same calculational pattern and are
presented in appendix Appendix B.

To order k2, we have thus three contributions to the scalar two-point, function at
fixed geodesic distance: first, the usual field-theoretic corrections~which are displayed
in figure 1; second, terms where the end-point is corrected toufirst order and this is
correlated with a first-order field-theoretic correction as shown infigire 2; and third,
second-order corrections to the endpoint which are shownnin figure 3. We will treat all
those in separate subsections. Since all of these corrections invelyve exactly one graviton
propagator, we can further organise the calculation by treating the tensor structures (20)
one by one. To shorten the presentation, we will moreover only show explicit steps for
T and then just quote the results for the othertensor structures.

v
® ® O e @ ¢ ®
xuffvym U Yy T U Yy oz U Y

Figure 1: Field-theoretic corrections to the'scalar two-point function at fixed geodesic

distance at order k2. Wiggly lineés.are gravitons, plain lines are scalars.

Figure 2: Mixed geodesic/field-theoretic correction to the scalar two-point function at
fixed geodesic.distancérdt order 2. Wiggly lines are gravitons, plain lines are scalars.
The point t = # + (y — x)7 is integrated over the geodesic, represented by the dashed
line.

2.21 Field-theoretic corrections: scalar self-energy

As explained, massless tadpoles vanish in dimensional regularisation, such that the
secondrand third diagrams of figure 1 do not contribute. The fourth diagram is the

Page 8 of 41
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x __m__ y
4 t/

Figure 3: Pure geodesic correction to the scalar two-point function at fixed geodesic
distance at order k2. Wiggly lines are gravitons, plain lines are scalars. The points
t=x+(y—x)T and t' = x + (y — x)7’ are integrated over the geodesic, represented, by
the dashed line.

counterterm coming from Scr (6), whose contribution to the scalar twe-point function
reads

C
0, y)

e [ (8(0) (0P6() o(0) ) (o
= —20(52¢)2 /Q%Go(x,u)@ZGo(y,u) d"u (39)

= —25(32¢)25n($ — y) s

where we used the equation of motion (15), and the fact thatdy24)2 = O(x?) (since no
counterterm is necessary at tree level).
The contribution of the first diagram reads

0 P (ay) = ;n2[<¢<x>¢<y>5?¢¢5?¢¢> < (Bl o(y)) (517051

— 152/ Go(z, u)Go(y,v) [Tumngwg(‘?a@V <8ﬂ8‘5G0(u, v)GHP7 (u, v))
(40)
+ 26750 (0P Gig(u, ) S, G777 (1, v) )

+ &Gy ) 9,5 0 G (u, v)] d"ud"v,

where we have integrated bysparts all derivatives acting on the external propagators
Go(z,u) and Gy(y, v), and used that in addition to the obvious symmetries, the graviton
propagator is symmetric underthe interchange of the index pairs (uv) <> (po) and only
depends on (u—wv)?. Theternd in brackets is usually referred to as the scalar self-energy
or self-mass, but for us'it is of no use to treat it separately, i.e., without the external
propagators. Performing a Fourier transform and using equation (21), we obtain

5 . > 1 1 1 14e% loa
Go P (p) =i’ ;gi [p% — i0]2 / k2 =10 (p— k)2 — 10 lT” 0777 pa(p — k)ppy(p — K)s

Ak
2
(41)

+ 8127777, (p — k) + § (KK — 77 k) | (k'K — n“”kQ)] T (k)

pvpo

which can now be evaluated for the five tensor structures (20) one by one. For T we
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obtain [using also the definition of 7,,,,, (12)]

SFT33,(1), \ - 1 P’ n—2o_ ! !
Gt (p) = (2 P / lk‘z 0 + 5 [ 2 <pk)]2k‘2 —i0(p— k)2 —
A(pk)? 1 A(pk) P’ — (pk)
k-0 k-0 TG e
k2 d"k
(42)
The integral

(43)

k2 i0 27‘(’ k2 10

is a scaleless integral, which vanishes in dimensional regularlsation [82]. Similarly, by
shifting the integration variable k — k—p, one sees that also [[(p=k)*—i0]~" d"k/(27)"
vanishes. Furthermore,

d"lc

44
k:2 10 k2 1() (44)

vanishes by rotational symmetry, and by using that 2(pk) = p*> + k? — (p — k)* we can
reduce also the remaining terms, leading to

SFT33,(1), . of T —2 > 1 d"k
Go <p)_m< AN T 0 (p— k) — 10 (2"

(45)

This is a standard 1-loop tabulated Feynman integral [86] which can be explicitly given
as function of p?. However, forius it is more useful to note that

1 1 d"k by d"p
Go(x,y)Gg(x,y) :// k2410 (p_ ) — 10 (27r) ( )(27T) (46)

such that inverting the Fourier transform we have

G} "M ayy) = in? ("2 +€) ol )Gl ). (47)

Similarly, for the contributions from the other tensor structures we obtain

GIB O ) = ik (n I62)2G0($, y)Go(z,y) (48a)
GET3O) (1) = ik2 ; ! (n ; ’ )Go(fﬂ, y)Go(z,y) (48b)
g(]FT,33,(4) (2,y) =0, (48c¢)
QOFT’%’@ (z,y) = ik (n - 1;;71 —2) Go(z,y)Go(z,y) , (48d)

Page 10 of 41
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where we also had to use equation (C.6). Summing up, we have

5

FT,33 FT,33,(i

§ B y) =3 66y P (2, y)
=1

n—4
16

1 n n—2
bt g -1k ) )

£- -+ o)
x Go(z,y)Go(x,y).

= K>

(49)

Since from the explicit expression (18) for the propagator in coordinatespaceit’ follows

that

C2

Go(r,y)Go(r,y) = —Wa (50)

we see that the product of two propagators is too singular at coincidenge to be a proper

distribution in n = 4 dimensions. To renormalise it, we first extract a d’Alembertian
using equation (C.3) and then add an “intelligent zero” to obtain

2 ) 1
Gl NG = =56 =) =1 [ 2
SRS A

2n—3)(nA4) " [Nz —gP]"3  [(z—y)"T

_ icp n—4 02

where p is an arbitrary scale (the rénormalisation scale) introduced to make the equation
dimensionally correct. Not the terms in the first line have a well-defined limit as n — 4,
while the second line reduces toya local term on account of the equation of motion (15).
Expanding the constants around n'= 4 [using also equation (19)], it follows that

1 32[1“[/;2@ —m}

Go(z,y)Go(x,y) =

6474 —y)?
1 2
— —24+2lnpu—~v—-1 — 0"z —v).
16W2[n_4 +2Inp—y—Inm+O(n—4)|0"(x —y)
(52)
Let us denote P
(k) . o i 2 hl (/L xXr )
HO (ZE,,LL) = 6477'48 [ 72 ) (53)

which now.is a wellsdefined distribution in four dimensions. Taking then the counterterm
5(32@2 (39) to be

Ii2

ooy o Hg - @A+ 28+ (a- )2 8)| (-2 +2a)

2+ 0

(54)
— (8¢ + T8+ 5(a—1)(2—p) + 6)] + 652 (12)

16
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with an arbitrary finite constant (5?52 2 (1) and

1

n= \/W ) (55)
the sum
N33 (1) + Gy T (2, y) = €—fg2+6X%+aﬁ+a»—U@—ﬁﬂfﬁ%f—%ﬂ>
— 25?@2@2 (M)én(x - y)
(56)

is finite in n = 4 dimensions. Since the bare action is independent of the regularisation
scale u, for the pu-dependence of 5?55 d))g(,u) we calculate from equation (54)

d K2 3

o) =~ € — 152+ )€ + 28 +AARUZ )| (57

Note that both the counterterm (54) and the final resultn(56) dépend on the gauge, and
vanish in the analogue of Feynman gauge, § = —2, for minimal coupling of the scalar
field to gravity, £ = 0.

We can compare this result with the flat-space limit’ of de Sitter calculations for
the minimally and conformally coupled sgealar [87-+89], which use a gauge that in the
flat-space limit reduces to Feynman gauge,@=.1, = —2. Both the sum (56) and the
higher-derivative counterterm (54) then vanish for'minimal coupling £ = 0, consistent
with the result of ref. [87]. For conformalscoupling ¢ = (n — 2)/[4(n — 1)] = 1/6 in
n = 4 dimensions, the sum (56) reads inmFeynman gauge (ignoring the finite part of the
counterterm)

In(p*2?)
2
384W48 [ 2 | (58)

and the higher-derivative ¢ounterterm (54) is

K2 2

w22n—4+0« )%. (59)

5((’)2¢

In contrast, the results of refs. [88, 89] read in the flat-space limit

K2 /1 o [ In(p?z?)
a5+ 18)2 [x (60

after convoluting their self-energy with two external massless scalar propagators, and

K2 2

230472 n — 4 + O(< )0) (61)

5(82(15)2 ==

after correcting for the different normalisation, which do not agree. The cause of the
discrepancy is not known at present.

Page 12 of 41
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2.3. First-order geodesic corrections

The diagram of figure 2 translates into the following contribution to the two-point
function at fixed geodesic distance:

5% () = &2 ((2)x1 (1)Du0(y) 1% )
= =i [ [Ts Gol, 0) 0,0 Gy, u) — €S (Gol, )Gy, )]

| [ 0= 7=l = s 6 () - 006 )
+ ;(x — ), G*"? (u, x)] d"u.

Let us first treat the term without a 7 integration. Performing ayFourier transform and
using equation (21), we obtain

FG’O(SC )__15225: (QZ— )y/ 1 / 1 1
0 BRI TR LN [ 0 ) k2 = iofpek)? — 0

o o o [ dnk ip(x— d p
< [rm = s = 6 N ) e

63)

which can now be evaluated for the five temsor structures (20) one by one. The
calculation is mostly analogous to the purely field-theoretic corrections, with only two
exceptions: first, there is a tensor factor k¥ which can be converted into a factor p” using
equation (C.8) and then into a derivative with respect to x*; second, the final result is
thus not just proportional to Go(z,y)Go(z,y), but to

(z = 9),0"[Go(7f y)Gola,)] = —2(n — 2)Go(x, y)Go(z, y) (64)

because of the explicit formmof G (18). Since these are only minor modifications, we
simply state the final results:

G0 2,y) = IS 1+ €)Go(e, )Gl ) (652)
65500, ke —in " =2 G (2, 4) Gl ). (65D)
G100 (g = -in D (s —n)n —2) +4(n — DeCo(e1)Cola) (650
Gy N 21 2)2(n =) Gofa, )Gole. ) (65d)
s gy — ;21 2)(”232_ 10 G, )Gl ) (65¢)

Theterms with a 7 integration are much harder. Passing to Fourier space and using
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equation (21), we obtain

FG,T($ )_—iKZQXS: / 1 /1<1_ )/ 1 1
0o Y= Sl —i0hY ") @i0pm k210

i=1
X [Tpay(s(k — P)APs — f(kpko - 77/)&7’“2)} (z —y)*(z - y)ﬁ
d"k lo—y) 4P
e e
(66)

k T

X afSpo

() = Feap T4 ()|

wBpo

Note that the k£ and 7 integrations are entangled, in the sense thatathereigyéa factor
exp|—ik(z — y)7] which does not permit us to perform the k integral as for ‘the field-
theoretic contributions, and which gives unpleasant inverse powers of-k(x — y) if we
perform the 7 integration first. Similar integrals appear in the perturbative calculation
of Wilson loops and invariant quark correlation functions [90, 91], and to untangle, we
perform the shift p — p + 7k which results in

9@‘//01(1 [ i0 (p+711>2 —i0p — (1 —1T)kr>2 —i0

FG,r

0 (IL‘, y) - _i/{2

5

1

~

Page 14 of 41

X [70075«1 — 7')/@7 - py)(pg + 7‘]{:5) _ f(kpk‘a r npgkz)} (:U B y)a(x - y)ﬁ
< [310R) 4 7T, (0 4 R, (0] S areen S0
(67)

The k integral can now be performédypand afterwards we can integrate over 7. Again,
this can be done separately for the five tensorstructures (20), and we only show the
explicit steps for TW. Using the definition of Tuwpo (12), we get

- o, 1 b 1 1 1
Ge (x,y) =ik //o (1 T)/kz_io(p+7k:)2—10(p— (1—=7)k)2—i0

x l(l =) (PP 7(pk) ) kaks — (P + (pk) + (1 — 7)7k? ) kaps

A ;((1 Lr)rk? (1= 20) (k) — ) (k) + 7H) e

+ (oK) + 752 paps + E(Th? — (pk) ) kaks + 26kkaps

E() + R (2 = o = ) g e 0
(68)

To be able to calculate the k integral, we need to reduce the product of three
propagators in the first line to two. This is immediate for the terms containing a k2,
whiledfor the'other terms we use

P=0-7)p+7k)*+1(p— (1 -7)k)?—7(1 - 1)k*, (69a)
(k) = 5[0+ 7Y — (o~ (1 = 7)) + (1 — 20)#?] (69b)
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We also take advantage of the fact that the region of integration is invariant under the
exchange 7 <> (1 — 7) to simplify the integrand, and obtain

OFG’T’(l) 1/{ // /[ l 1—7'—1—27' )k:ak5+(1—27'—|—47'2)kap5

1 q
i0 (p zk)? =10

—(1—27) (papﬁ +5 (pk)naﬁ gkakﬁ)] L2 _

+ [ —47((1 — 7)1 — (B3 —47)E)kokp — 4T(1 — 27 + 4€) kdpp + ATpaps

1 1
+(1- 45)7/6277015] (p+7k)2—i0 (p — (1 —1)k)2 = 10}
oNef. o\ d"k ipa—y) 4P
X (.CE y) (.27 y) (271')” dre (271')”

(70)

The tensor factors k* can now be reduced with the help of equations (C.9) and (C.10),
which (again using that the region of integration is imvariant under the exchange
T <> (1 — 7) to simplify the integrand) leads to

Grem (. m / / / [ ) + nf(1~21) "paps 1
n—l) k? —i0 (p+ 7k)? —i0
(n—2) — (2n — 3)7 =272 , 1 1
(n—r T8 50 (p+ k)2 — 10
(1-27)¢ A ! 1
* (n—1)r2<”p“p5 oo ) o i0(p + 7k)2 — 10
n—2 ) 1 1
LTy 1)r(p"‘pﬁ — asp’) br—0p—a=nkz—i0 Y
_n—4m+r(l=T) Dabp 1
2(n = 1)m2(L—=7)? >(p+7k)2—i0(p— (1 —7)k)? —i0
1+4(n—3)r(1—17) NapD? 1
2n=1)72(1—7)2 >(p+7k)? =10 (p— (1 — 7)k)2 =10
o et — 8L g ipe—y 4P
[ I — 1) s drene

Converting p® into apderivative with respect to x® and taking it out of the integral, the
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k integral can be done using equations (C.11) and (46), which gives

Go “T WV (,y) = 8(n1_ 1)iff2 /01 l e (72:—1_ T =2 (= )20P(Go(, 1) V)
+ (n—2) —i;nn_Tl(l —27) (2 — 9)*(z — y)? 0a0s[Go(z, y)Go(z, y)]
n—2

~ a0 @ = 1) 0005 — (2 — )0 [Gilayy) Cofag))

L2 (nle — )" — 9)70u05 — (& — 9)°07) [Go(£ Gl y)

£z —y)*(z — )’ 0a05[Golw, y) Go(z, y)]

n—4n+1)7(l —71)
2r(1 — 1)
1+4(n—-3)7(1—7)
a 2 (1 — 7)»

(e — 1)°0°[Go(x, y) et y)]] ar.
(72)

From equations (18) and (64) we obtain

I
SIS

(z — y)*(z — 1)70a05]Go(z, y) Go(x, y)]
(z — y)*0*[Golx, y)Golz, y)]

(n —2)(2n— 3)Go(z,y)Go(z,y), (73a)
(n/=2)2Go (2, y)Go(x,y) (73b)

and the 7 integral can be done using

r T+ DI(B+1)
/OT(l—T)BdT— NEEEED) (74)
It then follows that
FG (1 o[ =2 (B—=n)I'(3—n) (n*—13n+ 24)
GV w.y) = in [ 7 ( PG-2n) (n—3)(n—4)>
el L(2 —n)['(3—n) (75)
S e - 1)t Gutenn)

Note that this is divergent for'm = 4, even for separated points x # y because already
the prefactor diverges. Coneretely, expanding around n = 4 we obtain

12(1 + 4¢)
n—4

4 0((n - 4)2)] Golz,y)Go(z, y) .

T o 5 1
GraTW (g y) = 1/{2[ + 5(5 + 36¢) + 1(17 — Am? + 14€ — 32725)(” —4)

(76)
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In the same way, the result for the other tensor structures is given by

FG,7,(2
Gh ( )(

x,y) =ik

o — 2 l(n —1)(3n —38)

8 n—3

I'2—-n)'(3—n)
['(5—2n)

+nf[(n —2) —4(n — 1)¢]

_in? [12;1__468 +2(13 — 81¢) + 411(43 — 87— 208¢ + 487"~ )

1G0(x,y)Go(x,y)

+ (’)((n — 4)2>] Go(l‘, y)Go(@", y) 3

(77)
g5 (e.y) = i "2 o) Ot (79)
GFOmO () = in? (n— 2)3 2(5 7n) G, v)Golz, y) . (80)

2.4. Second-order geodesic corrections

The diagram of figure 3 translates intothe following contribution to the two-point
function at fixed geodesic distance:

30, y) = O CIE)() — 58 (60 (N (1)9,0,0(0)

(s1)
= w208Co(Ayg) (VAT + L2800, )X (1)
where all the graviton operators are contained in x4 and x4, whose explicit expressions
are given in appendix/ Appendix B. Since massless tadpoles vanish in dimensional
regularisation, we can drop all terms where two graviton operators are taken at the
same point. Furthermore, the usual time-ordering translates into a path ordering P for
the gravitons along the geodesic, which needs to be taken into account in the expectation
value (x}'(1)x4(1)) (the other correction is already ordered).
Let us start with the y4 correction, passing to Fourier space and using equation (21)
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to obtain
(5 = 5o === o [ [ [ g (8 — 2k
X [KaT 305 (k) + ks Tieys (k) — ko Ti),s(k) e =" ((;;]; 4" dr’
F i a0t S [ [0 =) [
x (K260 — 2k, k) (K105, — 2kan™)T3g,5(k)e~ o= (‘;Z]; 47" dr' .

(82)

To disentangle the 7 and k integrals, we rescale k — k/(7" — 7). Since all of the five
tensor structures (20) are homogeneous of degree zero in k, they'do not change under
the rescaling, and the 7 integrals can be performed easily. Again, we can treat each of
the tensor structures separately, and obtain

6% .y) = ~r20,Colary) [ (4 )7 dr

l€2

T g ol 2 0 ) (o - )

1 (e} (0% g
x/kQ — (k70 < D)
n 83
—ika—y) 4"K (83)

X [k T (B)t o Trogs(k) = kT (R)] e (2m)"

He= ) - WG -0 [

s(k)e F@=y) Ak ] .

2 o ol (@)
x (K200 —Dhoyke? ) (K35, — 2kan™)T| T

aBpd
For the first tensor structure (20)y performing the tensor algebra it follows that

1 .
3020 2, y) = w29 Goludy) [Mik(7)

K2 L 1
- (n -~ 1)(n G 2)(n _ 3) (I - y) a,uGO(xvy)

Wk =)@ = y) i+ Dk -yl + [k(:c—y)ﬂ o ><§7rl>€
b~ =3~ W AC(@y)
kzk_ - [k,ﬁ(a? - y)? —2i(n — 1)[k(z — y)ﬂ e—ik(x—y)(;]-ﬂ-)kn .

(84)

We then convert all £ into derivatives, which can be taken out of the integral. The
remaining integral is just the massless propagator, and we obtain [using also the
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relation (15)]

GEe2 M (g ) — _ - (7 = 9@~ 9 0,Co(e )1+ (@~ )"0, )7g )

OCoONOOOR~WN =

11 + (z — 9)*0,Go(z,y) | (n+ 1) (2 — y)*(z 2y) 0abp + (x — y)*(z

13 ik , e
I o —D(n—2)(n-3) (@ = 4)°0uGo(z, y)(x — y)°0"0" (=Y)
7 ~ 2 =g~ YOGl ) — )00 Colgay).

1 With the explicit form of Gy (18), we also obtain

23 (@ = y)*0aGolx,y) = —(n = 2)Go(r, y)y (86a)
25 (z = 9)*0,Go(x,y)0"Go(x,y) = (n — 2)*Go (T Ga(z, y) . (86b)

27 and using that n-dependent powers of (z — y) vanish at €oincidence in dimensional
regularisation, after some algebra it follows that

n—2)

31 Gy W (z,y) = in (n»Go(rC y)Go(z,y). (87)

34 The result for the other tensor structures can be calculated in the same way, using in
35 addition that

1

% [ G Y G = 0 Gl =~ e = 0 Gole) . (89

and we obtain

42
42 SG,2,(2)(I y) B2 (n — 2>2G0(37 y)Go(x,y) (89a)
44 ’ 2(n—3) o

S@,2,(3) . o(n — 2)2
46 gO (l’, y) = —1Kk 4 GO(‘T’ y)G()(l’, y) ) (89b)

48 GSG2.(4) L a(n—=2)?

5980 0e.9) = <in2 "2 0 Gola). (390
50 -9 2
51 G387 (1 y) = —ik? (n—2)

54 For the, x{%4scorrection we proceed similarly, using the path-ordering

56 (Phap(®)hs(r")) = (7" = 7")(hap (7 )hys (7)) + O(7" = 7')(hys (7" hap (7)), (90a)

58 (Phas()ms(x)) = (has(T)has(2)) (90Db)
o9 (Pliag(@)h15(7")) = (has(7") hap () - (90¢)
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Passing to Fourier space, using equation (21) and the fact that massless tadpoles
(i.e., an expectation value of two gravitons at the same point) vanish in dimensional
regularisation, we then obtain

(A ()x Zgz (z = y)*(x =) (@ — )ty
! / 1 (%) (1) —ik(z—y)7! d"k
></ (1= 7) [ i (KT () = 2ka Ty, () )8 oy O™
—fzgz [ [0 =) =)= ) - )l g

/ [k TS (k) — 2kako TEpL (k) — 2k, T, (Rt Ak, T, ()]
1 —ik(z—y)(r'—1"") d"k " /
X FER 7(2@” dr"dr

e D O R

x / kT () = 2k T, (k) b 2K, () + Ak, TS5, ()|

1 eik(l’—y)(T/—T”) dnk
k? —i0 (27)"

X dr” dr'.

(91)

We disentangle the 7 and k integrations by the xescalings k& — k/7', k — k/(7/ — 7")
and k — k/(7" — 7'), and perform the 7 integrals to obtain

O ) = 5o 1(n oy Sl e ) e — g
kQ k;aT 9 (k) — 2k Twp(/@)}eik@y)(‘;];
+ > gile =)™ (@ =) (x —y) (@ —y)"n""n"”

2(n — 1)(” —2)(n—4) =
/[k ko TS (k) — 2k T 5 (k) — 2k, TS0, (k) + Akiaky TS0, ()]

Vo iy AR
o ()
j2 — 0" 2m)n

(92)

using also that the tensorstructures (20) are symmetric to simplify the result. The k
integrals can be.evaluated in the same manner as for the x4 correction, using in addition
that

(@ —w)H20"0" Go(2,4)9,0,Go(z, y) = n(n — 1)(n — 2)*Go(,y)Go(w,y),  (93)
and we obtain for the different tensor structures
(n—2)
2(n—4)

QSG’H’(l)(:I:,y) — g2 Gol(z,y)Go(x,y), (94a)

Page 20 of 41
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.2 (n - 2)2
y) =ik 2(n —3)(n—4)
QSG’H’(S) (x, y) — _ik? (n ;(711)(_723; Q)Go(% y)GO(;p, y) , (94(:)

10 gsc,n,(z;) (,y) = 2 (n—1)(n—2)

g(?G’H’@)( GO ('7;7 ?J)Go(xa y) ) (94b)

OCoONOOOR~WN =

Go(x>y)G0($v y)> (94d)
n(n —1)(n —2)?

13 SG,11,(5
G5 ( )(

z,y) = ik Go(z,y)Go(x,y) . (94e)

2.5. Renormalising the geodesic corrections

Summing up the geodesic corrections, we obtain
G, (i FG,0,(i FG,7,(i SG,2,(i SGylil, (i
21 Go (w.y) = Go M Vay) + G T y) + G0 (2,y) KRG (@) (95)

23 with (up to terms which vanish as n — 4)

W, a[n=2(TE-n)T(B—n) 3n?— 15m+ 20
> G )<“”y)_m[ 1 ( T(5 — 2n) (n—3)(n—4)>

28 n —n —n
+§<2F(2F(4 )_F;i) ) _ 1>]G0($79)G0(%?J)

31 1 4 1
= ix? [%—i—_fﬁ + 32 +91¢& + (% — e — 87T2§) (n— 4)] Go(z,y)Go(z,y),

34 (96)

37 9

_ _ _ 3_ 2
38 Q(?’(Q)(w,y) _ 2" '2-n)l'@—n) n’®—n*—20n+ 40

I'(5—2n) (n—3)(n—4)

[nun 22)— 4(n— 1))

40 —10 + 72 4
= iK? [:L)jzf —25 + 162¢ + <—45 + 27?4 52¢ — 127r2§> (n— 4)] Go(z,y)Go(z,y),

43 (97)

]Go(x, y)Go(z,y

—9 _
47 Go" D (w,y) = —i? l%(% 130+ 19) - "

8(n = 3)

49 13 7

”s] Gol,)Gola, )
(98)

(n—2)(5—n)
4

54 G5 (x,y) = in? Go(z,y)Go(z,y), (99)

56 and
o (n—2)(4n® — 12n* +5n +7)

16

58 Go ' (,y) = ix Go(z,y)Go(z,y) - (100)
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Using the explicit form of the massless scalar propagator (18), it follows that

5 .
GS(x,y) =3 66" (x,y)
=1

i 45n+_645 + T aae 40— 1) + Ya-1s+ H2465(2 )
—941(24—@24—(71—4) 121—37r2+15§+47r2§—1;17(a—1)
293 4 495 —n
+ 20— - - R0+ 07| [pe T

(101)

As already noted in section 2.3, because of the divergenf, prefactor the result is
divergent even for separated points x # y, and cannot be rénormalised using only the
higher-derivative counterterm ds24)2. To renormalise the above reésult, we borrow ideas
from the renormalisation of Wilson loops in non-Abelian gauge theories [74-76] and
post-Newtonian point particle dynamics in General Relativity [77-80]. In the case of
Wilson loops on a smooth contour, there is an overall:divergent factor proportional to
the length of the contour, which can be renormalised by rewriting the path-ordered
exponential of the gauge field as a one-dimensional fermion “living on the contour”
coupled to the gauge field, and then performing the usual wave function and mass
renormalisation for the fermion. In the gravitational case, the equations of motion for
point particles contain divergences at. higheriorders in the post-Newtonian expansion,
which can be renormalised by a ‘(formally divergent) shift of the world lines of the
particles proportional to the acceleration of the world line itself. Combining both ideas,
we perform a “wave function remormalisation” of the geodesic x*(7), of the form

X'T) £ Z X)) = XM(T) + 02, (7). (102)

Since we want 67, = O(s?), for dimensional reasons it must be proportional to £~
where ¢ is the length of the geodesic. In contrast to the situation for non-Abelian gauge
theories where the counterterm'is proportional to ¢, this means that the renormalisation
itself is divergent as £ — 0. While this introduces a certain arbitrariness in intermediate
steps, the final result nevertheless is a well-defined distribution. Noting that z* = x*(0),
this “wave function renormalisation” leads to an additional contribution to the two-point
function at fixed geodesie distance of the form

o (@, Ym0 2,y (0(2) 8, (y)) — 102,27 (8,6(x)p(y))
2 # . s ()
A Cm(a: —y)"0,Go(x,y) =i(n —2)c (K [(x — ) } ,
where we have written
57, = g% +0(r?) = C(:L’iy)Q +O(x*) (104)

Page 22 of 41
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with a constant ¢, and used the explicit form (18) of the massless scalar propagator.
Because of translation invariance, we can set y = 0. To shorten intermediate steps,
let us write the result (101) in the form

GS(x,0) = —in*c? A4 + B+ C(n—4)|(2*)*™ (105)

with the constants

A=4(5+6¢), (1064,

3_721—355 45(a—1)+981(a—1)52+1z6§(2 ﬂ)—941(2+ﬂ) (106b)

and C' (whose precise expression is unimportant), of which only A is gauge-independent.

We then proceed similarly to the field-theoretic corrections, using equation (C.3) to
extract a d’Alembertian operator and adding an intelligent zero te obtain

2\2—n __ 1 2(,..2\3—n
= s
1 2 2\3—n n—4/_ 2 1—% 1 n—4cn
= =) m—1)° (@) -t w—3m " W
(107)
Expanding around n = 4, this gives
—ic2 (2?7 = HgY () + (n — 4)(1 + 2 1)y (x; 1) — jjm — 4)Hy? (w; 1)
167?2 [ —|—21nu—|— (71—4)(24 + 1+ In? u)}é“(x) +(9((n—4)2) :

(108)

with the distributions H(()k) and the parameter [ defined in equations (53) and (55),
respectively, and thus

A 3
Gy (2,0) = ———w*Hy' Wagp) FCA + B + 241 j)w* Hy (s ) — S ARPHG? (a5 )

n —

2 24 2
. [( + 4(Alnﬁ+B)

+167T2 n—4)> n-—

2
+A<24+1+1n u)+231nﬂ+26’]5”(1’)+0(n—4).

(109)

If we try to perform the same procedure with the counterterm (103), we immediately
run into problems because the formula (C.3) is ill-defined for (22)~%, on account of
the later not being a well-defined distribution in any dimension n. To ameliorate the
problem, wewrite

n

(%) 8= p P (@) 730D
2

110
1+ 6(n —4) In(p?a?) + 52(71 — 4)21In®(p%2?) + O((n - 4)3>] (110)
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for some ¢ and take the limit 6 — 0 in the end, which should be possible for all non-local
terms. As long as 6 > 0, every term of the expansion is a well-defined distribution for
suitable (small) dimension n, and we can use the same techniques for renormalisation.
Generalising equation (C.3) to include logarithms, we calculate

()7 (24
=2[(1 = p)(n — 2p) W*(p*2?) + q(n + 2 — 4p) In(4*2®) + 2q(q — 1)] (+*) P> (22"

(111)
and from this
2\—p _ 1 21,2 1-p a
S ([ KA —
2P n(u22?) = 1 20 (22177 (1 (1222) — w+2=4p
G = 0w —an? | )<““) u—mm—mﬂy
(112b)
2P 1n2( 1 222) — 1 2-1,21—]) n2(1272) 3 2(n +2 — 4p) N
e = g 6 (U S a0
u#+an+4—mn+mp+uﬁ»]
(1 —p)2(n — 2p)? '
(112c)

It follows that

(%)% = p 2002 [(ﬁ)l—é’—ﬂ"—@ <1éé (1271 i 7~ 203+ 20) + (3+46)(n — 4))
+ @ _ i(l +6)(n— 4)) ) + ;5(71 4 1n2(u2$2)>] +0((n— 4?)

_ P [(mz)l_g (1(135 (12ﬁ —2(3+20) + 3+ 49)(n — 4) )

(- o ) 1)

(113)
From the explicit expression of the massless propagator (18) we have
(1273 = L5(x), (114)
Cn
and writing
CZHC_O4+C1+(”—4)52, (115)
we obtain
2
oT L K6 1 1 2 "
oz, 0)= _4[5<(n—4)2<0+ n—461 +C2> - n_4C0+C0 —2G|6"(z)
2
— 4 [+ 26+ 1) + 26 O () (116)

+4m K2 H (w3 1) + O(n — 4) |



Page 25 of 41

OCoONOOOR~WN =

AUTHOR SUBMITTED MANUSCRIPT - CQG-104159.R1

Scalar two-point function at fized geodesic distance 25

with the distributions H(()k) and the parameter pi defined in equations (53) and (55),
respectively. Note that while all non-local terms [containing H{" (: 1)] are independent
of the arbitrary parameter §, the limit 6 — 0 cannot be taken for the local term
proportional to §"(z). This is of course a consequence of the fact that the original
counterterm (22)~2 is not a well-defined distribution in any dimension n, but' we see
that the problem only appears at coincidence, as already alluded to previously.

In order for the sum G§(x,0) + G$T(x,0) to have a finite coefficient/ it front of
Hél)(x; ), comparing equations (109) and (116) we need to take

Co A (117)

T 8n2
In order not to have spurious factors of In u, we furthermore haveto set

B+ Alnp
N 872

G +¢ () (118)

and obtain

2 9 _
T (5 0) 4 G (x, 0) = k2 3 26[( A 1

— B+Alnji+ 8r*¢™ 87| 6"
s n_4)2+n_4( A fi + 87°¢C™ (1)) + 877G |07 (x)
+ . (A 167268 ( ))+A7T2 +A+B+20+A1 i+ (A+2B)1
— | —— (A 4 — 4 — n n
1672 | n— 4 Bl 24" 2 s
A
= A HE () — SRR ) HY (1) + O(n — 4).
(119)
Finally, the contribution proportional to ¢™(&)/can be absorbed using a higher-derivative
counterterm of the form (39)/ taking (in addition to the field-theoretic correction)

k? 3—-20[ A 1 ~ 5 fin )
0@0° = g2 25 l(n—4)2+n—4(B+Aln“+8W< () + 877,

2 2

K 1 T A
— A-A167%¢H A— 4+ =4+ B+2C+ Aln*i+ (A+2B)In [ 2¢fin
327?2[n—4( 6mC (u))—l— 24—1-2+ +2C+Aln" i+ (A+2B)Inp+ 87°¢C™" (1)

+ 0y ()

(120)

such that the final remermalised result for the geodesic corrections reads [inserting the
constant A (106)]

—(5+ 68)K>Hy? (w3 1) — 8212 () HEY (5 1) — 203402 (u)0"(x) . (121)

For the'special value § = 3/2, only single poles in (n—4) appear. While a decomposition
of the form (110) would be valid for arbitrary § if the left-hand side were a well-defined
distribution for some n, and the result correspondingly independent of 9, this is not the
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case here. Finally, from the p-independence of the bare counterterms ¢ and d(s24)2 and
equations (118), (120) and (106), we calculate

d . 5+ 66
M@Cﬁ (1) = o2 (E22a)
d 2 7 4
) = 1 [<5+6s>(14+1nu) LB B
(122B)
91 1+ 6¢ 91
+3*2(04—1)52+ 16 (2+B)_E(2+6)

Because of the term proportional to (n —4)~!, this is intrinsically ill-defined; of course,
this is just another consequence of the original geodesic countertermi(a?)72 not being
a well-defined distribution in any dimension n.

3. Results

Adding all terms together and performing a further finite renermalisation for ¢f"(y)
to absorb the gauge-dependent field-theoretic correg¢tions (56), the final result for the
scalar two-point function at fixed geodesic distance (= (z — y)? including one-loop
graviton corrections reads

Go(x,y) = Golz,y) — (5 + 66) k> HY (a7 gga) — 87 w2C™ () HSY (x — s 1)

’ (123)
= 20(82gy2 ()" (@ — ).
where the distributions H_" (x; 1) are given by (53)
k i In (p%2?)
g = 10| (124)

and the finite parts of countertertns.¢i (1) and 62 (9242 (1) depend on the renormalisation
scale p according to

d g W5+68
N@C (1) = o2 ) (125a)
d 2 1 71 177
Nd Ooeay (1 ):%[(54‘65)(4+1DM>+8—95—16(04—1) .
179 o 1412¢ 361
+67( a—1)5"+ 16 2+ 6)_67(2+6)

We see that the result is intrinsically ill-defined at coincidence since the scaling of the
finite parts.with the renormalisation scale is infinite in n = 4 dimensions, but for x # y
we have obtained a finite and gauge-independent result. Since we have

d

M@Hém(w;u) = 4H ;1) , (126a)
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d oy n
M@Ho (w5 p) = —ﬁé (z), (126b)

we can alternatively define the scaling of ¢"™(y) and 5?8“2 »2(1) by imposing the s
independence of Gy(z,y). This results in

d 5 + 6¢ fi fi 54 68 ,u
G4 fin _ n — n —_— 12
O ) = =5 () = ¢ (o) = =557 )
and
d N 1 0 1 n 5 + 65
Oy (1) = SRCM (1) = SR ¢ (10) — 7 I
i 9 2 dm Ho (128)
(5 . 5ﬁn 1 2 ~fin 1 ﬂ 5 Y 6§ In 2 ,U,
= (92¢> ( ) = (82¢)2<M0) + 21‘1 C (N’O) 1 Iuo — ll{l; 87T2 /’LO

which for ¢f%(y) is identical to (125).

The expression (123) together with the scalings (127)pand (128) give a finite and
gauge-invariant scalar two-point function including one-leop grawiton corrections, which
is the main result of this paper. It can be clearly 'seen that the double logarithm
inside H® which is highly unusual for a one-loop Testlt, arises from the double pole
~ (n —4)7% at coincidence. This in turn comes ffomithe restriction of the distribution-
valued graviton operator h,, to the geodesic, whereby new UV divergences appear.
However, the gauge dependence of intermediate steps and the fact that the scaling
of (5?512 ¢)2(,u) need to be imposed by hand‘are puzzling. While we do not have any
explanation for the second part, we canwexplain‘the first, which is done in the next
subsection.

3.1. Gauge dependence

To study the gauge dependence of our correlation function at fixed geodesic distance,
it suffices to work to first_erder:y o this order, the infinitesimal coordinate change
xt — xt — kE* induces the gauge transformation

Sy, = Leny + O(k) = 0,6, + 0,€, + O(k) , (129a)
0u) L) = KEV D, (120D)

where L¢ is the' Lienderivative with respect to £#. We then calculate for the gauge
variation of the perturbed,geodesic coordinate (36)

dexi () = ;(8“@(@ +0,8"(2))(x —y)'7
! (130)
- /0 (1= )z — )" (& = 9)"0a05¢" (7') A7’ + O(x).

Since

(2 = y)*(x — ) 0.058" (7') = 07.€"(7'), (131a)
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(z = y)P0,8"(7") = —0§"(1") (131D)

this reduces after integration by parts to

St (r) = [0, (x) — 0,84 (& — )'r — E(xolr)) + €(a) + Ow) . (T80

However, this is not the full result for the gauge variation. For the initial direction
of the geodesic (32), we fixed the bein components v*, and subsequently ehoose
symmetric gauge for the local Lorentz symmetry of the n-bein. To keep this gauge
condition, we must compensate for the coordinate change by ansexplicityLorentz
transformation [70, 83, 84]. Namely, the change of the n-bein. under the above
infinitesimal coordinate transformation is given by

deen” = Lee," = k050,6" + O(?)

. o (133)
= §6p(augp + 0°€,) + 55,,(%5” — 0%, + (’)(,.;2) :

The first, symmetric term is the one that would be obtained from the transformation of
the explicit expansion (A.3) of the n-bein in symmetriec gauge. The second one can be
cancelled by a compensating Lorentz transformation of the'form

K
bueu® = e, (A" (w) ~Ofh= 5% + O(r?) (134)

with the antisymmetric Lorentz parameter
w® = e/‘ieg(a“f” = 0"Er). (135)

Taking both together, we obtain, the correct’ transformation
(6c + 6, Ye,® = gag(a“gﬂ +0%€,) + O(?). (136)

Since we have used the explicit expansion of the n-bein in the gauge transformation
of the geodesic coordinate(132),/which only takes into account the symmetric part, we
need to perform the Lorentz transformation (135) on the initial direction vector v*. This
results in

Sev" = g(aﬂg,, — 9,6 + O(r?), (137a)
S (1) F25 (06, (2) = 0,6 (@) (@ —y)"T + O(r2). (137b)
and we finally have

Seleb (7) + rxi(T)] = —k€" (xo(7)) + K€" (x) + O(K?) . (138)

Of course; this result is also obtained by restricting to symmetric gauge transformations
0u&p.= 0,&,, for which the compensating Lorentz transformation (135) vanishes.
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Since
S(x(7)) = d(xo(7)) + KXt (T)Dud(x0 (7)) + O (%), (139)
it follows that
Se(x(7)) = K€" (2)Dp(x +v7) + O(K?) . (140)

To obtain a fully invariant variable, we would need to multiply by \/—4¢(x), which to
first order transforms as a total derivative,

S|/ =9(@)s(x(7)

= 0¢ Kl + ;mh(x)>¢(x(7)) + O(’{Q)
_ H@z [5“(:1?)@25(55 —+ UT)] + O(/{2> )

(141)

and then integrate over z, assuming as usual that the gauge trangformation is sufficiently
fast decaying at infinity.

The correlation function (123) that we calculated does netyinclude the factors of
v/—g. However, since massless tadpoles vanish in dimensional regularisation, only its
first-order expansion contributes, which is proportionalsto the trace h of the metric
perturbation. Since the trace of the graviton propagator (23)isproportional to the gauge
parameter /3, including the factors of \/—¢ can only contribute terms which contain at
least one f3; in particular, in the gauge § = 0 includingfactors of /—¢g does not change
the end result. However, even for 5 = 0 both.the regularised result for the field-theoretic
corrections (49) and the geodesic corrections (101) depend on the other gauge parameter
a; for their sum we obtain

(G " wy) + G5 @),
- 142
= —ir?c? [4571—’__25 — 55/—=84¢ — ?(a -1)+0(n-— 4)] {(CC — yﬂ . )

While the direction of the geodesic is invariantly specified by fixing the bein components
of the initial direction v, thestarting point x* is not, and the correlation function is only
invariant under those gaugetransformations that leave x* unchanged, i.e., {#(z) = 0, as
can be seen directly from equation (140). This is then reflected in the regularised result;
why the renormalisation ofithe geodesic (102) removes all gauge dependence is so far
unclear and merits further investigation.

4. Discussion

We have ,calculated the scalar two-point function at fixed geodesic distance in a flat-
space background, including the one-loop effects of virtual gravitons. The result is given
by equationg(123) together with the renormalisation group scalings (127) and (128).
By renormalising the novel UV divergences which appear in the correlation function
usingra.“wave function renormalisation” of the geodesic itself, we have obtained a
finite and gauge-invariant result in four dimensions, which to our knowledge is the
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first fully renormalised result of a correlation function at fixed geodesic distance in
perturbative quantum gravity. It has some unusual features, which all ultimately stem
from the additional UV divergences: a double logarithm appears already at the one-
loop level, while in usual perturbative calculations only involving bulk integrals;. at
most k logarithms can arise at the k-loop level, and correspondingly a dependence
on the finite parts of higher-derivative counterterms even for separatéd points.yThis
is in strong contrast to existing quantum gravitational results at one-loop/order, e.g.
the corrections to the Newtonian potential [5, 6, 9-14, 27, 32-40], where the result is
unambiguous for separated points and the dependence on the finite parts,of higher-
derivative counterterms only appears at coincidence.

A related issue is the connection of the two-point functionat fixed geodesic
distance to results obtained using the S-matrix. Using our result (123) to quantify
quantum gravitational corrections to a scalar interaction potential; the double logarithm
would generate corrections of the form s?r=3In(ur) to the tree-lével 1/r potential.
However, using the inverse scattering method to reconstruétia non-relativistic scattering
potential from the S-matrix element for the interaction ef two sealars including graviton
corrections, the one-loop correction is of the form x?r73 (with.the coefficient depending
on the details of the interaction), which arises fromua single logarithm. Certainly
both approaches should be valid, but one has t0 find the precise connection between
them (which might involve delicate cancéllations), and to clarify their exact relation
with actual experiments. Note that in the ¢ase of matter corrections, the terms in
the quantum-corrected graviton two-point function which would give a contribution
proportional to x%r=3In(ur) are pute gauge,.and when coupled to the conserved stress
tensor of a point particle do not make“a_contribution to the Newton potential [7, 8].1
This has also implications for_a generalisation of the present approach to inflationary
spacetimes. It is known that’ loop. corrections to correlation functions in inflation are
infrared (IR) divergent [92]. T6 obtain physical, IR finite correlation functions it has
been suggested to take long wavelength fluctuations of the metric into account when
defining distances, i.e., fixing the geodesic instead of the background distance [93, 94]. It
then has been shown that IR divergences are indeed ameliorated by this approach, while
it was tacitly assumed that the UV structure of the correlation functions is unchanged,
and divergences can.be renormalised in the usual way. The results of the present work
show that one needs to be careful in making such an assumption, and indeed for our
correlation functionsiit does not hold (we note that the concrete proposal of refs. [93, 94]
is slightly différent fromours).

Some points also merit further investigation from a more mathematical standpoint.
Naturally; it will"be important to see if the geodesic wave function renormalisation
is also sufficient to achieve a finite result at higher loop orders. Another important
issues€oncerns the gauge dependence: although the final renormalised result is gauge-
independent, the regularised expression is not, with the gauge dependence being

1 I thank Michael Duff for bringing this point to my attention.
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cancelled by the geodesic counterterm. While the dependence of counterterms on
the gauge is not unusual, and the reason for the gauge dependence of the regulated
expression has been explained, it is not clear whether this cancellation persists at higher
orders, or for different correlation functions. For the usual perturbative calculations in
gauge field theories, one can use the BRST formalism [95] (or the extension 'due to
Batalin and Vilkovisky [96-98] for open gauge algebras) to prove Watd identities to
all orders in perturbation theory, which imply gauge independence for the correlation
functions of BRST-invariant operators (possibly including quantum corrections t6 the
BRST differential). If furthermore there exists a regulator which formally, conserves
BRST invariance, such as dimensional regularisation for most gauge theories including
perturbative quantum gravity, already the regulated correlation fumctions are gauge-
independent — which is not the case in the calculation at hand. It remains to be seen
if the theory (including fluctuations of the geodesic) can be reformulated in such a way
that BRST invariance is manifest throughout all stages of the ealculation, which would
imply gauge independence of the final results to all ordersin perturbation theory.
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Appendix A. Metric expansions

Writing a general metric g, asbackground g, plus perturbation h,,, we obtain to first
order in the perturbation

Gy = G + Khy (A.1a)
g = g — it + O (A.1b)
V-0 = \/—_g<1 + %/ih) “+ (9(&2) ) (A.lc)
[s =13+ %n(vﬂhg + Vo hG = Vhsy ) + O(k?), (A.1d)
Ragys = Bhpys £ ;H(Vvvwhalé — VsVishaly + VaVishoys — Vs Vishya) (A19
- ;K(Raﬂmhf;] + Rysuiahly) + O(K?)

R = Rop + VYV (ahgys — ;ﬁvzhaﬂ - ;wavﬁh +0(r?), (A.1f)
R'= R~ kh*" Rop + £V VPhag — iV?h + O (k7). (A.1g)
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Higher orders can then be obtained by repeating the expansion, i.e.,

Pl = Flal o f | 2 L] e)v=gaa

+ ;,.;;2 // [@fo];gm(y)tghw(:c)hpg(y)\/—_gd”x\/—_gd”y + (’)(,i?») 7

(A.2)

and the second functional derivative is calculated by setting g = g after performing the
first one, etc.

To calculate geodesic corrections, we also need the expansion of the n-=bein, which
in symmetric gauge reads [70, 83, 84|

1
= 8,7 (30 St = o™ ) + (k) (A.3)

Appendix B. Geodesic expansions

Using the expansions (A.1) and (A.3), the boundary conditionifer the tangent vector to
the geodesic (32) is given to second order by

Xo(0) = —(z —y)", (B.1a)
$40) = S — Y. (B.1)
£0) = ~She s — o) (B.1c)
and the boundary condition for the geodesicritself is
Xo(0) =2, 5(0) = x5(0) = 0. (B2)
Expanding the geodesic equation(24), we obtain
W(r) = [30"hdaln) Pabts ()| (%30, (B.30)
RE() = W) [0hhs(r) = J0uhas(7) N6 ()RE ()
= [0.15(7) + Dahlt(7) = 0 has(7) | X3 (T) X6 (7) (B.3b)

% [300uhas(7) — 0,005 S (RGN ).

Note that at seeond order there are additional terms involving second derivatives of the
metric (in the Jast line), which come from evaluating the Christoffel symbols on the
first-order_perturbed geodesic, and we denote

has(7) = hap(X0(7)) = hap(z + (y — 2)7) . (B4)

Integrating these differential equations with the above boundary conditions, we obtain
at first order

W) = o) =)+ [ =) =) [50hes) - A 0 (B
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4
5 and from this, using the Cauchy formula for repeated integration [85],
6
7 1 g N 1
: () = Sk @y [ (=) @) @=y)’ |50 has(7) = Dub5(7)] a7’ (BG)
9
10 For the second-order corrections we can perform some simplifications since not all
}; terms will contribute to one-loop order. Since the second-order geodesie correction to
13 the correlation function at one-loop order contains exactly two gravitons (see Figure 3);
]‘5" both of these gravitons come from y4. When taking the expectation yalue, massless
16 tadpoles vanish in dimensional regularisation, and we may drop all terms,containing
17 two gravitons at the same point, such as the boundary condition (B.1c), Integrating
18 once, it follows that
20 T
21 W) = [ [0arh(r) + 9hE() = 9 ha(r)] (2 = y)?
22 0
23 X /T/(x —y)(z —1y)° laah (7" — 0,hg (7)) | dT"ds’
24 0 Yy ) 9 o) yIts
25 7]
26 + [[]50"0haatr) — 00,15 | (@ = ) @ #9E
27 o L2
T/ 1
gg X / (7 =" (& —y)(x —y)° {8”%5(7’”) — 8#7%(7’”)} dr" d7’ + tadpoles,
0 2
30 B
31 (B-1)
gg and then \
34 (o) = [N (B5)
35
36 Finally, the scalar field entering the correlation function reads
37
o d(x(1)) = ¢(y) + fx (1)0.0(y) B9)
1 B.9
40 + G (0. 5r (DN (1),0,0(y) + O ().
42
22 Appendix C. Feynman/integrals
45
46 The general one-loop masslessiintegral with arbitrary powers is given by [86]
47
4 / 1 1 @k i P(5-a)P(5-p)l(a+p5-3) |
50 [k — 0] [(ksyp)* 710} (2m)"  (47)% D(a)T(B)L(n — o — B)[p? —i0]*+7~2
o1 (C.1)
gg In particular, we have
54 a— N
55 / (pQ) \ 1 d"k
56 (k2 —i0]> (kK — p)? —i0 (2m)"
57 . N C.2
58 B F(§—a)F(&+1—§)F(n—2) 1 1 dnk (€.2)
59 D n n 2 _ _m)2 _ 3 n’
29 I(3—1)r2—3)T(@l(n—1-a)/ k¥ —i0(k=p)?*—i0(2m)
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which can also be derived in coordinate space. First one easily calculates

F(p—l—l) F(l—%—p—i—k‘) (x2)p—k
(p+1-F) T(1-3%-p)

o Tlp+1) F(%—i—p)
T+ 1=k)r(2+p—k)

using I" function identities [85] in the second equality; note that this identity is alsowvalid

(%) @) = (~4)';
(@3)

()",

for negative k by analytic continuation. From the momentum space representation for
the propagator (21) it follows that

_9\e—1 1 A%k ip(z—y d"p
Go(x,y)<8 ) Go(r,y) // —p)2—i0 (27r)”e : )(QW)" ’
(C.4)

and thus, with the explicit form of Gy in coordinate space’(18) and using twice the
identity (C 3) we obtain

// (k2 — 10 (k — pl) 10(d”/)€ lp(z_y)(;?;n:(82>a_1[Go(%y)(a_g)aﬂGo(i’%y)]

gl-ep(2 — 2 a—1
e ) e Y
s PRILC L SR e

"T()'(3—n) F(a)'(3=n)

(C.5)
which for integer o and after performing a Fourier transform is easily seen to be equal
to the result (C.2), using again I' functionyidentities [85]. In particular, for the cases
o = 2,3 which are needed for the.calculations we obtain

// [k:21110]2(k L Uk o P 5)Go(e, ) Golay),  (C.6a)

p)? —i0 (2m)» (2m)"
p! 1 Ak ey A0 (n—3)(n—4)
// 0P g S ey Gl y)Golzy).

(C.6b)

Since the only‘available external tensors are the external momentum p* and the
metric n*¥, we cai perform integrals with tensor factors k* by making a general ansatz
and contracting.with the external momentum or the metric, leading to scalar integrals.
Those can then/be performed using

2(pk) = p* + k> — (k — p)?, (C.7)

and we obtain for the cases of interest
/ kH 1 d"k p” 1+ E k2 1 1 d"k
(k2 0] (k — p)2 —i0 (2m)» 2 p? ) [k2 —i0]> (k — p)2 —i0 (2m)"

(C.8a)
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kPR 1 "k rip'p” 2 | 1.2\2 2.2 ) 212
/[k2—101a<k—p>2—io<2w>n‘/[ g (MR ) = k)
1 1 1 d"k

4(n— D)p? (k2 —10]° (k — p)? — 10 (21)"
10 (C.3h)

X

OCoONOOOR~WN =

By shifting and rescaling the integration variable, it follows that

16 (k2 —i0]> (p + 7k)2 —i0 (27)" 27 T2 ) k2 —10]° (p + 7k)2 20 (27)7
20 (C.92)
20 a3 1 a4k p,upl/ V

21 / VCZ — ]O]a (p -+ 7—]{7)2 —i0 (271')” - /[ p2 (n(p2 + 72k2)2 o 4T2k2p2) A 77“ (p2 B T2k2)2
23 ) X 1 o

24 A — 1)r2p? [k — 00 + k)2 — 10 (2m)"
26 (C.9b)

28 and

30 /k‘“ 1 1 d™k
31 (p+7k)? —i0 (1 — 1)k — p)? —i0 (2m)"
32 1—2r 1 1 ark
33 = _p,u, / R . 9
34 2r(1—=7)J (p+7k)2—i0 ((1 =7)k="p)? —i0 (27)"
1 1 d"k
krEY

36 / (p+7E)2 — 10 (1 — 7)k — p)? N0 (2m)"
38 B nptp” — ntp? A pHpY / 1 1 d"k

U —-D72(1—7)2 Tl 1) (p+7k)2—i0((1 — 1)k — p)? — 10 (2m)»
41 (C.10b)

(C.10a)

43 We also need shifted and reSealed sealar momentum integrals, which are given by

45 1 1 dnk - 1 dnk
46 / b+ TR — 10 (1 S Mk—pP —i02my AT / K2 =10 (k — p)2 — 0 (27m)"
48 (C.11a)

49 / 1 1 d"k 20— n/ 1 d"k
o0 (k2 i0Jes(p+ 7k)2 — i0 (2m)" k2 —i0 (k —i0 (2m)n
52 (C.11b)
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