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Novel evaluation metrics for sparse spatio-temporal point
process hotspot predictions - a crime case study
Monsuru Adepeju , Gabriel Rosser and Tao Cheng

SpaceTimeLab, Department of Civil, Environmental & Geomatic Engineering, University College London,
London, United Kingdom

ABSTRACT
Many physical and sociological processes are represented as dis-
crete events in time and space. These spatio-temporal point pro-
cesses are often sparse, meaning that they cannot be aggregated
and treated with conventional regression models. Models based
on the point process framework may be employed instead for
prediction purposes. Evaluating the predictive performance of
these models poses a unique challenge, as the same sparseness
prevents the use of popular measures such as the root mean
squared error. Statistical likelihood is a valid alternative, but this
does not measure absolute performance and is therefore difficult
for practitioners and researchers to interpret. Motivated by this
limitation, we develop a practical toolkit of evaluation metrics for
spatio-temporal point process predictions. The metrics are based
around the concept of hotspots, which represent areas of high
point density. In addition to measuring predictive accuracy, our
evaluation toolkit considers broader aspects of predictive perfor-
mance, including a characterisation of the spatial and temporal
distributions of predicted hotspots and a comparison of the com-
plementarity of different prediction methods. We demonstrate the
application of our evaluation metrics using a case study of crime
prediction, comparing four varied prediction methods using crime
data from two different locations and multiple crime types. The
results highlight a previously unseen interplay between predictive
accuracy and spatio-temporal dispersion of predicted hotspots.
The new evaluation framework may be applied to compare multi-
ple prediction methods in a variety of scenarios, yielding valuable
new insight into the predictive performance of point process-
based prediction.

ARTICLE HISTORY
Received 22 September 2015
Accepted 11 February 2016

KEYWORDS
Point process; hotspot;
prediction; space-time;
crime

1. Introduction

1.1. Spatio-temporal point processes and hotspot prediction

Many physical and sociological processes of interest take the form of events that occur
at discrete points in space and time, including crime (Mohler et al. 2011), earthquakes
(Zhuang et al. 2002) and infrastructure failures (Ertekin et al. 2015). These are referred to
as spatio-temporal point processes (henceforth denoted STPPs). Unlike processes that
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can be measured at regular time intervals and fixed spatial locations such as road traffic
(Haworth et al. 2014) and ocean surface temperature (Rayner 2003), STPPs are only
observed through the monitoring and reporting of incidents. Modelling STPPs is there-
fore challenging; whereas many statistical models (such as ARIMA or STARIMA) have
been developed to analyse discrete space-time series (Cheng et al. 2014), such
approaches are only applicable to point data if they are first aggregated into similar
discrete space-time cubes to give event counts. However, many STPPs of interest are
sparse, meaning that counting events over space and time intervals of interest results in
mainly zero counts. For example, in the case of crimes, the majority of urban streets
witness no crime at all on any given day. Conventional statistical modelling approaches
are therefore unsuitable for these sparse STPPs.

Fortunately, a well-developed mathematical framework exists to describe STPPs
(Daley and Vere-Jones 2006). According to this, events (points) arise from an underlying
but unobservable intensity function whose value varies in time and space. The result is a
point cloud, with each point representing a single event. Models based on the STPP
generally attempt to describe the underlying intensity function (or a statistical summary
thereof) based on the observed point data. When the events have other attributes
ascribed to them, for example the Richter scale severity of an earthquake, the process
becomes a marked STPP (Mohler 2014). In this study, we are concerned with the
unmarked STPP.

The STPP framework provides a unifying model of processes as diverse as the
distribution of cells within a retina (Diggle 1986), sightings of rats in cities (Tamayo-
Uria et al. 2014) and the outbreak of violence (O’Loughlin et al. 2010). Models based on
the STPP may be used for both retrospective analysis and forecasting. For example,
retrospective analysis of seismic data based on an STPP model has been used to analyse
the emergence of correlated clusters of earthquake activity in historic datasets (Zhuang
et al. 2002). Predictions are generated by evaluating the intensity function of STPP-based
models at future times. A common aim of a predictive method is to identify regions that
are expected to have a high associated point intensity in the future, such as an area with
a high crime count or a large population of infected individuals. We use the general
term ‘hotspots’ to describe such regions. Predicted hotspots are useful in practice for
planning proactive interventions or responses to future events, as their interpretation is
generally straightforward in all application areas. Key examples include anticipating the
occurrence of earthquakes (Marzocchi et al. 2012) and the focus of this study, namely
the risk of crime (Mohler et al. 2011, Perry et al. 2013).

1.2. Challenges and the state-of-the-art in evaluating STPP-based predictions

As with any other prediction method, forecasts generated using STPP-based models
must be evaluated with reference to a ground truth to ensure that they are reliable. This
is typically achieved with historic datasets, by making predictions for periods of time for
which real data have been collected and comparing the predicted outcome with
experimental observations. This conceptually simple evaluation process is, however,
challenging in practice. On one hand, likelihood-based approaches have been applied
to compare earthquake prediction models (Marzocchi et al. 2012). This is an important
statistical tool for model selection, however likelihood values cannot be used to measure
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absolute predictive performance in any interpretable fashion. On the other hand, just as
conventional statistical prediction approaches cannot be used to model sparse STPP
data, the methods typically used to evaluate their performance, such as the root mean
square error (RMSE), cannot be applied to STPP-based predictions for the same reason.
Measures such as RMSE are designed to evaluate the mean performance over all space
and time and are therefore poorly suited to sparse STPP data. The large number of zero
counts that occur when a sparse STPP is aggregated would strongly influence the RMSE
and reduce its sensitivity to predictive performance in the more relevant hotspot
regions.

Perhaps as a result of the challenges involved with evaluating predictions made
against a STPP, the process of evaluating them has received little attention relative to
the large number of predictive methods developed. In the case of crime prediction,
there is little consensus in academic circles on how best to assess and compare a new
method (Bowers et al. 2004) and systematic evaluation is virtually absent in operational
environments (Perry et al. 2013). A recent review of prediction methods for the spread of
infectious disease also ignores the issue of evaluation (Woolhouse 2011). Where STPP-
based prediction methods are evaluated, the majority of studies in criminology (Mohler
et al. 2011), epidemiology (Kulldorff et al. 2005) and geophysics (Vere-Jones 1995) focus
on measures related to accuracy, including concepts such as true positive and false
discovery rates.

When computing predictive accuracy scores, the observed performance may vary a
great deal from one time window to the next due to the inherent stochasticity of the
data. It is therefore common practice to use the mean value of the aforementioned
measures, obtained by aggregating multiple consecutive prediction time windows
(Mohler et al. 2011). However, comparing mean values amongst different predictive
methods is insufficient to infer that one method outperforms another, as the process of
taking an average hides the inherent variability in the results.

1.3. Aims and objectives

The difficulties associated with evaluating predictions against STPP data hamper the
development and operational uptake of new methods in many fields. Whilst the pre-
diction accuracy is an important measure of predictive performance, several other
aspects should also be considered to gain fuller insight of prediction methods. We
address this shortcoming by developing a more comprehensive set of evaluation
metrics, which are described in detail below. This is the primary motivation and con-
tribution of this study. The second motivation of this study is the development of a
novel method that compares the outcomes of different STPP methods over all time
windows, permitting a rigorous statistical comparison of prediction accuracy. This is an
important advance beyond the comparison of mean predictive accuracy values, which
cannot indicate statistical significance levels.

We focus throughout on the comparison of STPP models for hotspot prediction. In
addition to their ease of interpretation, hotspots are also useful as a methodological
tool, as they represent spatial subregions on which we may focus our evaluation efforts.
By predicting the location of high-intensity regions, hotspots represent a natural choice
of spatial domain that can be used to assess predictive performance.
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In the following sections, we will present a practical toolkit of robust and interpretable
evaluation metrics, which allows the full and systematic assessment of STPP predictive
methods. We then proceed to apply this toolkit, using crime prediction as our case study.
Four varied crime prediction methods are considered using crime datasets from the
London Borough of Camden, UK and the City of Chicago, Illinois, USA. This case study
provides a key example of how our metrics should be applied routinely to new predictive
methods, providing a comprehensive assessment of their performance in line with the
strongest existing techniques. Finally, we discuss the implications of our findings in terms
of predictive hotspot policing and in the wider context of STPP prediction.

2. Hotspot predictive methods

In this study, we consider four methods for generating a predictive hotspot map, three of
which are successful existing approaches: (1) the prospective hotspot (PHotspot) method
(Bowers et al. 2004), (2) the self-exciting point process (SEPP) model (Mohler et al. 2011) and
(3) a prospective kernel density estimate (PKDE) (Chainey et al. 2008). We provide brief
details of the implementation of these methods in the following section. These and many
other contemporary methods are discussed by Perry et al. in their report (Perry et al. 2013).
For the fourth method, the space-time scan statistic (STSS) (Kulldorff et al. 2005) is innova-
tively modified to generate hotspots for crime prediction. We also consider a method for
randomly generating hotspot maps that is useful as a null hypothesis for comparison with
the other four methods. We now briefly explain how these methods are implemented.

2.1. Prospective hotspot (PHotspot)

The PHotspot method is based on the widespread observation of the near-repeat
victimisation phenomenon in burglary data (Bowers et al. 2004), in which properties
nearby the site of a recent burglary are at heightened risk of themselves being targeted
for some ensuing time period. Bowers et al. quantify the spatial and temporal extent of
the communicable risk, using this to inform their method (Bowers et al. 2004). PHotspot
is similar in philosophy to a spatio-temporal KDE (STKDE), in which overlapping kernels
are combined additively to compute the risk at a given time and location. However,
unlike the STKDE, the risk function is an atypical form and the bandwidths are set a priori
using empirical data analysis. This leads to spatial and temporal bandwidths of 400
metres and 2 months, respectively (Bowers et al. 2004, Johnson and Bowers 2004).

The PHotspot method has previously only been applied to burglary crime data. One
of the contributions of this work is determining how effective the method is in the
context of different crime types. We use the same bandwidths in all cases, since there
have been no studies suggesting alternative values. It is possible to derive optimal
bandwidths directly from the crime data using maximum likelihood methods, however
this is beyond the scope of the current study and the subject of ongoing work.

2.2. Self-exciting point process (SEPP)

The SEPP is a modelling framework that originated in the field of seismology where it
was used to describe the pattern of aftershocks in earthquakes. Mohler et al. applied this
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model to crime prediction, the essence of which is that crimes occur due to a spatio-
temporally heterogeneous risk background and that crime events may trigger further
crimes in their spatial and temporal neighbourhood. The theoretical and computational
details of the SEPP are all found in Mohler et al. (2011), including a discussion of the
criminological basis for the method. Following the authors’ suggestion, we apply an
upper limit on the temporal and spatial extent of the triggering process: crimes may
trigger subsequent events for a time window of up to 60 days and over a distance of
300 m. The algorithm proceeds by repeatedly performing density estimates using a
variable bandwidth KDE. We found that it was necessary to impose minimum band-
widths, since overly narrow values are otherwise selected, preventing the algorithm from
converging. We selected a value of 30 m and 0.5 days for this purpose. This requirement
is probably related to the geocoding process; a large proportion of the crimes are
snapped to either a grid square centroid or the midpoint of a street segment.

2.3. Prospective kernel density estimate (PKDE)

Spatial KDEs (SKDEs) are ubiquitous in the analysis of crime data (Chainey et al. 2008,
Malik et al. 2014) and offer a generic means of estimating an underlying spatial
distribution from a data sample. In the context of crime mapping, the popularity of
the SKDE is in part due to the smoothly varying heat maps that it generates (Eck et al.
2005, Chainey et al. 2008). The SKDE requires that data be aggregated over some time
window prior to the latest datum; the temporal element within this window is then
discarded and all data points are treated equivalently. There are, however, no general
guidelines for selecting the size of the time window.

We define the PKDE method as follows. Crime data are aggregated over a rolling
60 day time window and the SKDE is computed using ‘sum of asymptotic mean squared
error’ (SAMSE) plug-in bandwidth selection, implemented in the R package ks (Duong
and Hazelton 2005). Predictions are then made for a one day period as described. The
PKDE is the only purely spatial method of the four considered, although the use of a
rolling time window means that the generated hotspots nonetheless change gradually
over time. This method is an important inclusion as it is expected to generate more
stable hotspot predictions compared with the other spatio-temporal methods.

2.4. Prospective space-time scan statistic (PSTSS)

The STSS is a surveillance method primarily used in the field of epidemiology for the
detection of clusters of diseases (Kulldorff et al. 2005). It has been widely applied in
several other fields such as forestry (Tuia et al. 2008), ecology (Tonini et al. 2009) and
criminology (Nakaya and Yano 2010, Cheng and Adepeju 2014). Most applications of the
STSS in criminology have been retrospective in nature, the goal being to detect
significant historical crime hotspots. The exception is a recently developed prospective
scanning method that operates on a road network (Shiode and Shiode 2014). Crime
prediction on networks is a relatively new development and beyond the scope of this
study.

To our knowledge, the STSS framework has not previously been applied to the grid-
based predictive hotspots considered here. This has prevented any comparisons
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between the predictive hotspot methods discussed above and STSS. We now show how
the STSS may be modified to make it suitable for this purpose, providing predictions for
future events rather than retrospective classification. We name this new approach the
PSTSS.

Clusters identified in historical datasets by the STSS may cover any past time period
and may disappear before the most recent time point in the dataset. Long-departed
hotspots are of little use in short-term proactive policing, therefore we assume that only
clusters that survive up until the end time of the dataset are relevant. The purely spatial
representation of surviving clusters at time tn is used as the basis of a prediction relating
to the time period starting at tn and lasting 24 hours.

The circular surfaces of surviving clusters represent hotspots where crimes are likely
to occur in future, quantified by the significance level (p-value). When ranked by
decreasing significance, they have most of the characteristics of the other hotspot
methods described above, with the exception of the shape of the hotspots, which are
circular and therefore not directly comparable. We therefore develop a method of
converting the circular regions of the PSTSS into grid-based hotspots based on the
assumption that the risk intensity in a region decreases upon moving from the centre
towards the perimeter. Overlaying a regular grid on the circularly clustered surface, we
rank all grid squares that intersect a cluster, first by the p-value of the overlapping
cluster, then by distance from the cluster centre. Figure 1 illustrates this procedure.

In the original implementation of STSS (Kulldorff et al. 2005), a minimum p-value
threshold is applied to the reported clusters, to render the output more manageable. As
PSTSS returns only those clusters that persist until the current day, no such threshold is
necessary and we simply consider all clusters.

2.5. Predictive selective random algorithm (PSRA)

It is often valuable to compare predictive methods with a method that generates
hotspots purely at random. This baseline method acts as a null hypothesis, allowing

Figure 1. Producing ranked grid predictions from the PSTSS. Circular clusters are selected in
ascending p-value order (red, blue, green). In each cluster, grid squares near the centre (darker
shades) are ranked above those nearer the perimeter (lighter shades). The process is halted partway
through filling the green cluster as the desired coverage has been achieved.
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us to test whether the other methods show significantly improvements over a random
algorithm. In specifying this algorithm, we wish to emulate a naïve hotspot generation
process. The simplest possible choice is to pick grid squares with equal probability until
the desired coverage has been reached. However, this is unfairly simplistic as many of
the grid squares cover areas that cannot possibly contain certain crime events. For
example, regions containing no retail outlets cannot experience shoplifting, and resi-
dential burglaries cannot happen from within a park.

We therefore propose the PSRA, in which hotspots are drawn with equal prob-
ability from the pool of grid squares that have ever received at least one crime of the
type being considered. Land use data might provide a more accurate measure of
whether crimes can occur in different regions, however for this study we use the
presence or absence of crime records as a straightforward proxy for land use to avoid
additional complications. This may result in the removal of some grid squares where
the absence of crime is due to low victimisation rates rather than land use. The net
effect is to make the PRSA baseline slightly more conservative and has no significant
effect on our results.

3. A framework for assessing hotspot predictive methods

Here we will develop a new set of metrics to evaluate four varied aspects of STPP-based
hotspot prediction. The first, accuracy, measures the number of crimes that fall within
predicted hotspots during the time window of interest. The second, compactness,
describes the spatial arrangement of the hotspots in terms of the level of dispersion.
This is relevant to planning interventions or proactive responses. Thirdly, the dynamic
variability of a predictive method describes the extent to which the predicted hotspots
change on consecutive time windows. Finally, the complementarity between multiple
methods indicates the numbers of crimes uniquely detected by a single method.

Throughout this section, we denote the total area of the region of interest by A, and
the area covered by predicted hotspots by a. These hotspots represent a prediction for
the locations of crimes in some future time window, wt . We use wt ¼ 1 day in our case
study. Other studies consider different time windows of one month (Gorr et al. 2003),
one week and two days (Bowers et al. 2004). In this study, we are most concerned with
the short timescale required by patrolling police officers, who are, in the case of
Camden, assigned tasks on a daily basis. We expect that this practice is unlikely to differ
significantly between modern urban police forces. However, all of the results presented
here are theoretically applicable to any forecasting time window.

Evaluation metrics are computed by specifying the area coverage a=A, and assessing
the resulting hotspot map (Bowers et al. 2004). Alternatively, some studies vary the
coverage as the independent variable, plotting the value of a given metric against
coverage to determine the relationship (Mohler et al. 2011). In this sense, the coverage
is treated as a discrimination threshold in a binary classification task and the output
resembles a receiver operating characteristic (ROC) curve (Brown and Davis 2006),
though the interpretation is not identical. We use a mixture of these approaches in
the current study. A variable coverage level provides a more detailed evaluation, but it is
more practical to consider a fixed coverage in order to simplify the comparison process
between methods. Where a fixed coverage is required, we choose 20%, following
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Bowers et al. (Bowers et al. 2004). We later show evidence that suggests that this value
has little effect on our conclusions when varied by around 10% in either direction.

For operational and comparison purposes, we define a hotspot as one or more
subregions on a regular spatial grid defined on the domain of interest. The length of
the grid square side may be defined by the user according to the level of spatial
granularity desired in the predictions. We use a side length of 250 m throughout this
study, but other authors have considered predictions at finer scales (Bowers et al. 2004,
Johnson et al. 2007). The grid size is chosen to reflect a reasonable patrolling area for
police, in addition to managing computational demands. In various conversations with
police officers in the London Borough of Camden, this cell size was deemed sufficient.
Further experiments (data not shown) revealed little variation in our results when a grid
with length 150 m is used.

For a given time window, the grid squares are ranked by predicted intensity, follow-
ing several preceding studies (Bowers et al. 2004, Mohler et al. 2011). To obtain hotspots,
grid squares are selected in decreasing intensity order until a desired coverage area is
obtained. By defining hotspots using a fixed coverage, we achieve a standardised scale
on which to compare different methods, assuming a constant level of available police
resources. Alternative methods include defining a threshold intensity value and labelling
all regions with intensity above the threshold as hotspots (Roerdink and Meijster 2000),
using a scanning algorithm (Patil et al. 2010), or selecting regions based on a statistical
test for significance (Brimicombe 2012). These approaches emphasise the varying level
of demand for police presence over space and time. Whilst it would be interesting to
assess prediction methods using a variable resource level, it is beyond the scope of the
present study.

3.1. Accuracy and statistical significance

In the case of accuracy metrics, we denote the total number of crimes in the prediction
time window by N, and the number of crimes captured in the hotspots by n. Since N
may be small for any given prediction time window, all performance metrics are subject
to significant random variation between different time periods. We therefore evaluate
prediction methods using many consecutive time windows to reduce the variance in our
estimate of the metrics (Mohler et al. 2011).

We consider two different measures of predictive accuracy. The hit rate is the
proportion of crimes accurately captured by the defined hotspot area, n=N (Bowers
et al. 2004). This quantity varies with a and is only meaningful at attainable coverage
levels. A large hotspot may yield a high hit rate, but the associated coverage could be so
large that it is useless for effective police deployment. To mitigate this drawback,
Chainey et al. (Chainey et al. 2008) propose a measure called the predictive accuracy
index (PAI), given by the ratio of hit rate to area coverage,

PAI ¼ n
N

� �
=

a
A

� �
: (1)

The PAI is interpreted as the ratio of crime density in predicted hotspots to the crime
density over the whole region. There is no general consensus as to the most appropriate
measure of predictive accuracy in crime prediction.
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Having computed measures of predictive accuracy as described above, we wish to
compare different prediction methods to determine which has the strongest performance.
A straightforward option is to compare mean values directly, however the statistical
significance of any such result is unknown. Rather than pooling all prediction accuracy
measures to compute amean value, we therefore consider the values as a time series, with a
regular time interval wt ¼ 1 between observations. Comparing the predictive accuracy of
two different predictive methods for a given coverage level is then equivalent to comparing
two paired time series. This is complicated by the possibility of temporal autocorrelation in
the values, due to the fact that crime levels are themselves correlated in time (Johnson and
Bowers 2004). We therefore make the simplifying assumption that the difference in pre-
dictive accuracy between two methods is independent of the underlying crime rate.

Under this assumption, the time series of differences comprises independent and
identically distributed (iid) random variables. The comparison of the two methods may
then be achieved through standard statistical tests for paired observations. In this study
we use Wilcoxon’s signed-rank test (WSR), as it is well established and demonstrates
good statistical power (Diebold and Mariano 1995). WSR is a distribution-free test that is
used to compare two related samples by assessing whether their mean population ranks
differ. The test statistic is given by

W ¼
XN
i¼1

sgn y2;i � y1;i
� � � Ri� �

; (2)

where N is the sample size, y1,i denotes sample i from prediction method 1, Ri is the rank of
the difference and sgn is the sign function. By convention, sgn 0ð Þ ¼ 0, meaning that exact
matches are not included. Having computed W, the statistical significance value can be
obtained using a lookup table.We use a single-tailed lookup, which effectively tests whether
one method is significantly better than another. The test is implemented in the R package
stats. In this study, we consider four prediction methods, so six pairwise comparisons are
needed to test all combinations. We apply a Bonferroni correction to avoid false positives.

3.2. Compactness

Measures of prediction accuracy do not reflect the spatial distribution of hotspots.
Besides accurate predictions, police establishments and medical services are interested
in whether the identified hotspots can easily be addressed with the available resources.
In the context of crime, officers must be capable of physically patrolling hotspots
(Bowers et al. 2004), while in the field of epidemiology quarantine regions must be
arranged optimally to slow or prevent disease transmission (Riley et al. 2014). We refer to
this property as hotspot compactness. The notion of compactness reflects the intuitive
idea that more compact and connected hotspots are easier to patrol and therefore
considered more effective from a policing standpoint. We note that compactness is not
the primary objective of the prediction methods considered here as it does not feature
explicitly in their implementation. Nonetheless, its inclusion is warranted because it is an
important operational consideration and a useful characterisation metric.

The area:perimeter (AP) ratio is a well-established means of measuring compactness.
A significant drawback of this metric is that it has units of length, making it dependent
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on the scale of the region and grid squares and preventing comparisons across different
geographic regions. Furthermore, the value of the AP ratio is theoretically unbounded,
meaning its absolute value is hard to interpret.

In light of these drawbacks, we adapt an alternative measure of compactness called
the clumpiness index (CI) (Turner 1989). This metric is included in the spatial analysis
package FRAGSTATS (McGarigal et al. 2012). The CI gives the deviation of the proportion
of same-class adjacencies (i.e. grid square edges shared between like classes) from a
complete spatial randomness model. Intuitively, hotspots that are aggregated into a few
large clusters of grid cells will have many same-class adjacencies, resulting in a large
value of the CI. To compute the CI, we classify grid squares into two classes, (1) hotspots
and (2) cold spots. We compute the total number of shared edges between similar and
different classes, denoted gi;j , where i; j 2 1; 2f g are class label indicators. The CI of the
hotspot class is then given by

CI ¼
G1�P1
1�P1

;G1<P1; P1 � 0:5; orG1 � P1
G1�P1
P1

; otherwise;

(
(3)

where Gi ¼ g1;1= g1;1 þ g1;2
� �

and P1 is the proportion of the total area occupied by the
hotspot class. An example is shown in Figure 2. The CI is bounded between −1 (maximal
disaggregation corresponding to a checkerboard arrangement) and 1 (maximal aggre-
gation, corresponding to complete coverage by one class).

Use of the CI avoids the drawbacks of the AP ratio. It is independent of the spatial
scale of the domain, and has well-defined baseline values for randomly distributed,
maximally aggregated and maximally disaggregated hotspots. This makes it easier not
only to compare different hotspot maps to one another but also to interpret the results
relative to a common baseline.

3.3. Dynamic variability

Another major distinguishing feature between predictive methods is the level of varia-
tion in the spatial distribution of hotspots between consecutive forecasting time

Figure 2. Computing the clumpiness index (CI). Grey regions indicate hotspots, red lines denote
cross-class edges, blue lines denote within-class edges. The values shown here give a CI of 0.35,
corresponding to mild levels of aggregation.
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windows. Intuitively, we expect that some methods will produce very different hotspot
maps between any two days, while others will be relatively unchanging in their predic-
tions. We introduce a measure termed the dynamic variability index (DVI) to describe
this phenomenon. Figure 3 illustrates the process of computing the DVI. Considering the
predictive hotspot maps generated on two consecutive days, tn and tnþ1, we define
three classes of hotspot areas: repeating hotspots are those that appear in both hotspot
maps, emerging hotspots are those that are present on day tnþ1 but not tn, and
disappearing hotspots are present on day tn but not tnþ1. The total number of hotspots
in each category is denoted, R, E and D, respectively. Note that since the coverage
proportion is fixed for the hotspots, D ¼ E by symmetry, and E þ R ¼ 20% of the total
area. We now define the DVI as the proportion of all hotspot regions that are emerging,

DVI ¼ E= E þ Rð Þ: (4)

As with the previously described metrics, we repeatedly compute the DVI for every
consecutive pair of days in the case study.

3.4. Complementarity

Whilst metrics are highly informative summary statistics, they give little or no insight
into the underlying differences between predictive methods. In reality, whilst one
method may have a higher accuracy (or compactness) score than another, they may
provide complementary information by identifying spatially distinct hotspots and there-
fore detecting different crimes. In the field of machine learning, ensemble prediction
models – in which the outputs of multiple prediction models are combined – have
repeatedly shown better performance than their constituent elements (Opitz and Maclin
1999). We expect that in future a similar approach will lead to improved STPP-based
ensemble predictions, however this requires detailed investigation into the degree of
overlap between the constituent methods. We denote this property predictive comple-
mentarity, which quantifies the extent to which different methods detect the same

Figure 3. The components of the dynamic variability index for consecutive days tn and tnþ1. Grey
indicates repeated hotspots, blue indicates emerging hotspots and red indicates disappearing
hotspots.
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crimes in a dataset. To our knowledge, no studies to date have considered this property
for STPP data.

We visualise the complementarity between members of a group of STPP-based pre-
dictive methods using a Venn diagram. This provides a graphical tool that is easy to
interpret. Key phenomena of interest are the number of unique detections, that is where a
single method in the group detects a crime, and significant overlap between all methods.

4. Case study

We now consider crime datasets from two case studies, namely the London Borough of
Camden, London, UK, and South-side, Chicago, IL (henceforth referred to as Camden and
South Chicago, respectively). We consider three crime types that together make up a large
proportion of all records in each dataset. In both cases, we include burglary and violent
assault crimes in our analysis. The similarity between matching crime types is approx-
imate, in the sense that different police departments may apply different definitions when
classifying crime. We elected to use matching crimes for consistency; a precise equiva-
lence is not required for our conclusions to hold. We also consider shoplifting crimes in
Camden and theft of vehicle crimes in South Chicago. The date range is the same in both
cases: 1st March 2011 to 6th January 2012, which is the full extent of the Camden dataset.
As discussed, crimes are aggregated daily and predictions are made one day ahead
(wt ¼ 1). We evaluate each prediction method on the final 100 days of the dataset (28
September 2011–6 January 2012).

Since the focus of this study is methodological, we have avoided consideration of how
the accuracy and success rate of geocoding each crime may affect our results. This is an
important issue that may have significant effects on the inferred hotspots (Brimicombe
et al. 2007), however a detailed investigation lies outside of the scope of this study.

Figure 4 shows the spatial distribution of crimes in the two case study regions. The
length of each grid square side is 250 m; this is the grid used to define hotspots.
Shoplifting crime in Camden is highly concentrated in a few regions near commercial
areas. In comparison, South Chicago has fewer areas with no crime; the majority of
crime-free squares lie over parks or transport infrastructure (not shown). Burglaries are
dispersed in Camden and more confined in South Chicago, while the opposite trend is
apparent for violent crimes.

A full summary of the evaluation metrics, recorded at a fixed hotspot coverage of
20%, is given in Tables 1 and 2 for Camden and South Chicago, respectively. The mean
and standard deviations are calculated by aggregating over the 100 prediction results.

4.1. Predictive accuracy

Figure 5 shows the mean hit rate of each method against coverage, averaged over the
100 days of predictions. The results differ significantly by region; the observed accuracy
is more variable in Camden, both by crime type and prediction method. The mean hit
rates are more similar in South Chicago, though PSTSS has relatively lower accuracy
compared with the other methods. The performance of PSTSS relies on providing
sufficient historical data to estimate the background parameters. South Chicago has
an area approximately 2.4 times larger than Camden, but a similar number of violent
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crime records. The density of burglaries is similar between the regions, but many of the
crimes are concentrated on a few small areas in South Chicago. These two factors may
lead to a poor background estimate and low accuracy in PSTSS.

Figure 4. Spatial distribution of crimes in Camden (top) and South Chicago (bottom), aggregated
over the study period. Numbers in brackets show the total number of crime records in the dataset.
White regions indicate that no crimes occurred in that area.

Table 1. Evaluation metrics for Camden at 20% coverage level.

Crime Type Method

Accuracy Hotspot compactness Variability

Hit rate PAI AP ratio CI DVI

Mean SD Mean SD Mean SD Mean SD Mean SD

Shoplift PSTSS 81.3 27.6 4.07 1.38 197.5 15.9 0.42 0.04 14.9 11.0
PKDE 74.3 29.8 3.72 1.49 264.0 26.8 0.55 0.04 2.7 1.7

SEPP 91.5 20.1 4.58 1.01 160.8 9.6 0.31 0.03 6.0 2.1

PHotspot 85.1 27.0 4.26 1.35 177.0 13.4 0.37 0.04 19.2 9.2

PSRA 81.6 27.3 4.08 1.37 95.5 3.6 0.02 0.04 23.4 1.9

Violence PSTSS 46.5 20.0 2.33 1.00 220.2 20.5 0.46 0.04 10.8 8.0
PKDE 51.7 19.5 2.59 0.98 274.9 25.2 0.54 0.04 2.6 3.9

SEPP 59.7 19.8 2.99 0.99 113.0 6.1 0.12 0.03 4.5 1.6

PHotspot 52.2 19.9 2.61 1.00 163.6 15.1 0.32 0.05 21.1 6.7

PSRA 26.3 18.5 1.32 0.93 82.3 3.2 −0.30 0.10 71.0 4.1

Burglary PSTSS 34.4 22.0 1.72 1.10 243.5 30.5 0.51 0.05 3.7 5.6

PKDE 38.8 24.2 1.94 1.21 252.5 41.7 0.50 0.07 2.3 1.9

SEPP 47.4 26.3 2.37 1.32 97.9 5.3 0.02 0.05 1.4 1.2

PHotspot 34.9 23.0 1.75 1.15 160.4 19.2 0.30 0.06 5.3 4.4

PSRA 23.9 21.8 1.20 1.09 81.0 3.1 −0.34 0.10 72.2 4.2

Bold indicates the greatest mean value, excluding the PSRA. SD denotes standard deviation.
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With the exception of lower coverage levels in South Chicago burglaries, SEPP is the
most accurate method in both case studies irrespective of crime type. The SEPP correctly
identifies around 50% more shoplifting crimes than PKDE at coverage levels of around
6%. In South Chicago the difference is considerably more minor.

As the coverage approaches 30%, the mean hit rate of all of the methods for shoplifting
converges due to the spatial confinement of the data. A similar effect is expected for the
other crime types, but at coverage levels greater than those shown here. This is also the
reason why the PSRA performs so well on the shoplifting data. Figure 5 also suggests that,
with the exception of shoplifting, our conclusions about relative accuracy would vary little
were the fixed coverage level varied in the range of 10–30%.

TheWSR test results shown in Figure 6 provide additional insight that cannot be gained
from the mean predictive accuracy results. In the case of Camden burglary, SEPP outper-
forms PKDE with a lower statistical significance (p � 0:05) than the other methods
(p � 0:001 in all cases), despite exhibiting similar mean values. Conversely, PHotspot is
significantly more accurate than PSTSS for Camden violence data (p � 0:05Þ, while PKDE is
not. This would be impossible to determine simply using the mean and standard devia-
tions listed in Table 1. In the South Chicago assault data the SEPP outperforms PKDE,
despite it performing very similarly to the PHotspot method. These results illustrate the
value of treating prediction accuracy results as paired time series.

Table 2 indicates that all methods are approximately 25%more accurate in South Chicago
when applied to burglary data, relative to the other crime types. However, the PRSA does not
change. This suggests that the improvement in accuracy is due to the increased spatiotem-
poral clustering of the burglary crimes, making themgenerally easier to predict. The PAI of the
PRSAmay be interpreted as the improvement gained simply by restricting the spatial domain
in which hotspots may be defined. In South Chicago, this improvement is around 50% for all
crime types. In Camden it varies considerably, from300% in the case of shoplifting to only 20%
for burglary.

Table 2. Evaluation metrics for South Chicago at 20% coverage level.

Crime type Method

Accuracy Hotspot compactness Variability

Hit rate PAI AP ratio CI DVI

Mean SD Mean SD Mean SD Mean SD Mean SD

Motor vehicle theft PSTSS 32.0 21.1 1.59 1.05 235.3 22.3 0.52 0.04 14.0 7.70
PKDE 39.1 20.5 1.96 1.03 409.8 22.4 0.76 0.02 4.34 2.00

SEPP 39.8 20.0 1.99 1.00 240.0 0 0.54 0 0 0

PHotspot 37.8 21.6 1.89 1.08 158.8 9.90 0.33 0.03 14.0 5.22

PSRA 29.8 19.6 1.49 0.98 81.72 1.96 −0.31 0.06 70.4 2.88

Assault PSTSS 29.5 17.6 1.48 0.88 238.2 17.7 0.53 0.04 14.2 7.11
PKDE 37.0 17.7 1.85 0.88 357.6 16.8 0.72 0.02 3.87 1.42

SEPP 42.2 19.7 2.11 0.99 136.0 2.71 0.24 0.01 0.84 0.57

PHotspot 39.7 20.3 1.99 1.02 156.5 7.90 0.31 0.03 18.4 5.30

PSRA 30.5 16.8 1.52 0.84 81.9 1.85 −0.30 0.06 69.4 2.79

Burglary PSTSS 36.4 18.2 1.82 0.91 226.0 14.3 0.51 0.03 12.60 7.80
PKDE 48.8 17.9 2.44 0.89 402.0 25.8 0.75 0.02 2.57 1.16

SEPP 51.5 18.5 2.57 0.93 156.0 3.62 0.31 0.01 0.77 0.48

PHotspot 48.4 16.9 2.42 0.85 171.5 9.67 0.37 0.03 18.3 6.66

PSRA 30.1 16.5 1.51 0.83 83.7 2.21 −0.24 0.07 68.6 2.63

Bold indicates the greatest mean value, excluding the PSRA. SD denotes standard deviation.
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4.2. Compactness

Compactness is interpreted as the ease with which the hotspots generated by each
predictive method can be patrolled and is summarised in Tables 1 and 2. The AP ratio
and CI are ranked in the same order throughout, except for a very minor discrepancy in
the Camden burglary dataset. However, the AP ratio cannot be compared between the
two regions. It is generally higher in the larger South Chicago region, which is expected
since the AP ratio has units of length. In contrast, the CI is normalised and consistent
across case studies. The consistently greater CI in South Chicago relative to Camden is
therefore reflective of the underlying crime data.

The compactness results differ dramatically from the accuracy, with the less accurate
PKDE and STSS methods achieving the highest compactness values for all crime types.
The most accurate method, SEPP, achieves consistently poor compactness scores across
all crime types. Whilst accurate, the predicted hotspots of the SEPP may therefore be too

Shoplifting Violence (assault) Burglary

% Area covered % Area covered % Area covered

M
e
a
n
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Theft of motor vehicle Assault Burglary

% Area covered % Area covered % Area covered

M
e
a
n
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a
t
e

Figure 5. Variation of mean hit rate with area coverage for the three crime types and five predictive
methods in Camden (top) and South Chicago (bottom). The dashed line shows the fixed coverage
level used throughout.
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diffuse to cover by police patrol. The sole exception, motor vehicle theft, is discussed
below, in the section on DVI.

The variation between crime types in CI is highly dependent on the predictive
method. PKDE, PSTSS and PHotspot show similar values across all crime types for a
given region. In contrast, the CI of SEPP varies significantly by crime type. In the case of
shoplifting, this is likely to be the result of the high concentration of shoplifting crimes
within small regions. In this situation, the background and triggering components of the
SEPP coincide very closely, producing several highly compact hotspot regions. In con-
trast, for burglary and assaults, there are more opportunities for the components to be
spatially disparate, resulting in lower compactness.

4.3. Dynamic variability

The DVI is interpreted as the percentage of grid squares identified as hotspots that
change between consecutive days. Tables 1 and 2 demonstrate that the PHotspot and
PSTSS methods are highly variable, while the SEPP and PKDE methods remain almost
constant over consecutive predictions. For example, the DVI of PHotspot when applied
to Camden violent crimes is almost double that of the next highest method and results
in an average of 16 hotspots changing between consecutive predictions. Conversely, the
PKDE DVI equates to an average change of only two to four hotspot grid squares for all
crime types and regions.

The DVI reveals that SEPP is completely invariant with respect to time when applied
to TMV crimes in South Chicago. In this case, the SEPP has no triggering component; the
background is purely spatial and computed using all data from before 28th September
2011. It is remarkable, therefore, that the predictive accuracy of the SEPP remains the
highest over a period of 100 day-long predictions by a narrow margin. This suggests that

Figure 6. Results of the Wilcoxon Signed Rank (WSR) test at a fixed 20% coverage, showing the
significance of any differences between predictive accuracy of the methods. Pink shades indicate
that the row method is more accurate, blue shades indicate that the column method is more
accurate.
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TMV crimes arise primarily due to purely spatial heterogeneity, and exhibit little spatio-
temporal clustering.

The pattern of DVI scores observed in both case studies encapsulates the primary
differences between the methods. In the case of the PKDE, roughly 1/60th of the data in
the time aggregation window change with each prediction day, equivalent to around 8
crimes in a pool of 500 in the case of assaults. This has a very limited effect on the PKDE,
so predictions are highly consistent between consecutive days. In contrast, the PHotspot
method is highly sensitive to newly added crime data, since it weights recent crimes
most highly when computing risk values. The SEPP lies somewhere between these
extremes; the triggering component is equivalent to the PHotspot method while the
background process is similar to the PKDE. The DVI of STSS is consistently high, indicat-
ing that clusters change significantly between consecutive days. Considering this infor-
mation along with the CI, we see that the PSTSS method varies a great deal, but
generally forms cohesive hotspot clusters in the process. This is as expected based on
the selection of hotspot squares from contiguous circular regions (see Figure 1).

4.4. Complementarity

Analysing complementarity involves quantifying the degree of overlap between the sets
of crimes identified by each method. As before, we use a fixed coverage of 20% for our
analyses. The results are summarised in Figure 7.

In the case of shoplifting, the SEPP places hotspots over all but 10 of the 223 crimes
identified by all methods combined. Here, ensemble methods are unlikely to lead to
more accurate predictions. In contrast, for violent and burglary crimes in Camden the
spread across all methods is much greater. Each method is successful at identifying,
exclusively, a substantial number of crimes outside the ones jointly captured by the
other methods. This demonstrates the utility of the complementarity: the WSR test
revealed that the SEPP is significantly more accurate than the other three methods at
99.9% significance level in five of the six cases, yet all the methods identify a unique
subset of crimes. In this case, an ensemble of methods might be expected to have
significantly higher accuracy than its constituent parts.

In South Chicago, crimes are distributed more equally among the methods. In the
case of burglary, of the 1037 crimes in total the SEPP, PHotspot and PKDE methods
jointly identify 16% that the PSTSS method failed to capture. However, the PSTSS
identified a further 7% of crimes that no other method captured. Despite being the
least accurate method overall, around 20% of the crimes identified by PSTSS are
detected exclusively by that method. Considering that PSTSS has some of the highest
DVIs after PHotspot, we conclude that PSTSS is able to capture more emerging hotspots
than any other method in South Chicago, though it performs more poorly with estab-
lished hotspots.

5. Summary and conclusions

The primary motivation for this study is the need for greater insight into predictive
methods for sparsely observed STPPs in terms of their evaluation and comparison. This
addresses an increasingly pressing need in certain domains such as criminology and
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epidemiology in which the absence of systematic methodological assessments of pre-
dictive hotspot methods hinders analysts from making the best selection from the
available methods and prevents researchers from demonstrating conclusively the con-
tribution of their novel methods. Furthermore, the relative paucity of approaches to
evaluation, primarily limited to the assessment of accuracy, limits the insight researchers
may gain into the nature of prediction methods.

We tackled this problem by developing a toolkit of assessment metrics that can be
applied routinely to any predictive method that generates forecasts based upon sparse
STPP observations. We used crime prediction as our case study, however the methods
developed here are applicable to any similar STPP prediction problem. In formalising the
evaluation framework, we have combined four assessment measures, namely: accuracy,
compactness, dynamic variability and complementarity. To demonstrate our evaluation
toolkit thoroughly, we tested it on four different prediction methods, SEPP, PHotspot,
PKDE and PSTSS. The PSTSS method has not previously been applied to predict crime
hotspots and one important contribution of this study is the detailed assessment of its
performance. In order to test the robustness of this evaluation framework, we applied it
to crime data from two very different regions, one in London, UK and one in Chicago,
IL, USA.

As the mean value of predictive accuracy does not permit statistically rigorous
inference, we developed a novel hypothesis-based approach to identify methods with
significantly higher accuracy. Treating predictive accuracy results as paired time series,

Shoplifting Violence Burglary

Undetected: 165Undetected: 155Undetected: 9

Theft of motor vehicle

Undetected: 260Undetected: 230Undetected: 194

Violence (assault) Burglary

Figure 7. Venn diagrams showing the total number of crimes correctly identified by each method at
a fixed coverage of 20% in Camden (top) and South Chicago (bottom).
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our approach is based on the established WSR test. This added much-needed detail
about the confidence we may place in the results, highlighting two instances in the
Camden region in which the apparently obvious superiority of the SEPP is less significant
than might be assumed. In the opinion of the authors, a statistically derived test such as
this should be carried out in all future evaluations of STPP prediction methods to avoid
spurious inferences.

Regarding measures of compactness, we assume that layouts with a high CI are more
easily to patrol by police (Bowers et al. 2004). In reality, further work is required to
determine the complex relationship between measures such as the CI and the ease of
patrolling a region. Furthermore, it is likely that methods in which predictions are
generated on road networks (Shiode and Shiode 2014) will resolve this open question,
as police patrols generally follow these networks. Such approaches require similar
metrics to those used here, adapted for application to a network. Network prediction
and assessment is the subject of ongoing work by the authors. A further insightful
characterisation of predictive performance is the DVI, which measures the extent to
which the predicted hotspots change from day to day. Whilst this value is clearly linked
to the variability of the underlying crime data, comparing the DVI between methods
reveals hitherto unseen properties. Notably, the DVI indicates that the hotspot predic-
tions of PHotspot and PSTSS are significantly more changeable from day to day than
SEPP and PKDE. This is an important operational consideration; for example, in some
situations it may not be possible to respond to these substantial changes sufficiently
rapidly.

Moving beyond single score metrics, we quantified the predictive complementarity of
the four predictive methods. This novel approach demonstrates that the SEPP has the
potential of achieving a high level of accuracy especially for crimes that are tightly
clustered in space. This is demonstrated in the Camden shoplifting dataset, where the
SEPP correctly predicted all but 10 of the 223 crimes identified by all of the methods. In
all other cases, however, the predictive complementarity was much smaller, with all
methods uniquely identifying a substantial number of crimes. An ensemble predictive
method might give accuracy gains in those cases. In particular, the complementarity
results of all crime types in South Chicago suggest that PSTSS – despite fairly disap-
pointing predictive accuracy – might complement one of the other methods, as it
uniquely identified a large percentage of crimes. To our knowledge, ensemble methods
– in which multiple prediction hotspots are combined to give a new hotspot map – have
not previously been attempted. Further work is required to determine how best to
combine multiple hotspot maps.

The metrics considered in this study are not exhaustive. For example, the software
package FRAGSTATS (McGarigal et al. 2012) offers multiple alternatives to the CI. Further
work is required to determine which measures are most effective for characterising pre-
dictive methods. However, it is likely that the findings will be domain-specific. A further
metric not considered here is the recapture rate index (RRI), which was applied to crime
prediction by Levine (Levine 2008). This measures predictive precision, in terms of the
relative variability of the PAI over successive prediction windows, standardised to take
temporal variation in crime density into account. In Levine’s study, the time window is a full
year. It is not immediately apparent how to adapt this measure for our purposes, where the
crime density varies a great deal more from day to day, though this is the focus of future
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work. The WSR test and reported standard deviations of the PAI (Tables 1 and 2) partially
address the issue of precision, albeit whilst ignoring the question of standardisation.

The evaluation framework developed here is widely applicable to the prediction of
hotspots with spatio-temporal point data. Whilst we opted to use crime data to demon-
strate its utility, the framework can be used to assess predictions in fields such as
ecology (Tuia et al. 2008), geophysics (Marzocchi et al. 2012) and civil engineering
(Ertekin et al. 2015). Predictive accuracy measures such as hit rate or PAI have a similar
meaning and interpretation irrespective of domain and can therefore be applied directly.
The concept of compactness is also readily interpretable when viewed in the context of
other STPP datasets. For example, in epidemiology the concept of compactness will also
enable health organisations to understand how a proactive intervention against an
infectious disease might be realised. The notion of dynamic variability can be used to
study how hotspot surfaces change over time, providing a novel and powerful means of
distinguishing the types of forecasts generated by different methods and useful insight
into the underlying mechanism responsible for temporal variations in predictions.
Finally, the ability to measure predictive complementarity paves the way to future
research into combining hotspot methods for improved prediction of STPPs.
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