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Abstract. Topographic variables such as slope and elevation partially explain spatial variations in above-
ground biomass (AGB) within landscapes. Human activities that impact vegetation, such as cattle grazing
and shifting cultivation, often follow topographic features and also play a key role in determining AGB
patterns, although these effects may be moderated by accessibility. In this study, we evaluated the potential
to predict AGB in a rural landscape, using a set of topographical variables in combination with indicators
of accessibility. We modeled linear and non-linear relationships between AGB, topographic variables
within the territorial boundaries of six rural communities, and distance to roads. Linear models showed
that elevation, slope, topographic wetness index, and tangential curvature could explain up to 21% of
AGB. Non-linear models found threshold values for the relationship between AGB and diffuse insolation,
topographic position index at 19 9 19 pixels scale and differentiated between groups of communities,
improving AGB predictions to 33%. We also found a continuous and positive effect on AGB with increased
distance from roads, but also a piecewise relationship that improves the understanding of intensity of
human activities. These findings could enable AGB baselines to be constructed at landscape level using
freely available data from topographic maps. Such baselines may be of use in national programs under the
international policy Reducing Emissions from Deforestation and Forest Degradation.
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INTRODUCTION

Aboveground biomass (AGB) patterns, and
hence carbon stocks, are unevenly distributed in
the space, even within the same forest ecotype
(Houghton 2005). These uneven patterns are
determined by multiple biophysical factors, such
as elevation, slope, and insolation, but also by
human factors (Galicia et al. 1999, Jaramillo et al.
2003, Lovett et al. 2006, Alves et al. 2010, Mar-
shall et al. 2012, Toledo-Garibaldi and Williams-
Linera 2014). Often referred to as perturbations,

the effects of human uses on forest which
remains forest include changes in the overall
amount of standing stock (AGB) and changes in
structure, through selective removal of certain
species, while others find the opportunity to
regenerate. The changes may be small, but they
may also be considerable, to the point where the
ecosystem may be considered secondary forest
(although this term is often also used to refer to
regrowth of forest following clearance). The mag-
nitude and the impact of human uses on forest
structure depend primarily on the particular type
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of use: Grazing, shifting cultivation, and harvest-
ing for firewood or for charcoal will all leave dis-
tinctly different footprints on the forest (Chazdon
et al. 2016).

Human factors may, however, be partially
dependent on the biophysical determinants
(M�endez-Toribio et al. 2016), or independent of
them, as in the case of accessibility from roads or
human settlements (Mon et al. 2012). While the
influence of human factors on AGB may be fluid,
varying over time and space as a result of differ-
ent human activities (Lovett et al. 2006, Alves
et al. 2010, Toledo-Garibaldi and Williams-Linera
2014), biophysical factors such as water availabil-
ity are strongly influenced by relatively perma-
nent topographic variables such as elevation,
slope, and aspect (Laurance et al. 1999, Lovett
et al. 2006, Marshall et al. 2012). The aim of this
paper was to explore the possibilities of modeling
the impacts of topographic and human variables
on vegetation structure and particularly on car-
bon stocks. One purpose of such modeling may
be to provide technical support to governments
in their planning for Reductions in Emissions
from Deforestation and forest Degradation
(REDD+), which involves reducing losses of bio-
mass and enhancing forest carbon stocks while
ensuring biodiversity conservation and sustain-
able development. If biomass and carbon stocks
can be predicted using a set of topographical vari-
ables in combination with indicators of accessibil-
ity, locally realistic targets for improvement in
carbon stock can be constructed.

Environmental factors that influence forest
biomass

Many studies have related variation in forest
structure and density to topographic variables,
which are used as proxies for the factors that are
believed to cause the variation. Water availability
is one of the main such factors in seasonally dry
tropical forest (SDTF; Galicia et al. 1999, Brienen
et al. 2010, Jaramillo et al. 2011, Maass and
Burgos 2011). For example, strong differences in
biomass associated with relative position and
water availability have been reported in decidu-
ous upland and the semi-deciduous floodplain
forests in Chamela (Jaramillo et al. 2003). Since
water availability is strongly affected by eleva-
tion above sea level, aspect, slope angle, and
terrain convexity, these variables are often used

as indirect measures (Pachepsky et al. 2001), usu-
ally in combination, since water availability may
be substantially modified over short distances in
response to the interplay of such topographical
factors (Leij et al. 2004).
Elevation and slope are the most commonly

considered topographic variables in relation to
forest structure (Appendix S1: Table S1). Eleva-
tion or factors related to it such as air tempera-
ture and solar radiation affect forest biomass
through evapotranspiration rates (Homeier et al.
2010, Sundqvist et al. 2013). Forest biomass may
relate to elevation to it both in a monotonic
(Lieberman et al. 1996) and in a hump-shaped
(Marshall et al. 2012) pattern. While the former
trend suggests that temperature decreases and
stress increases with elevation, the latter suggests
that there exist constraints that co-vary with ele-
vation. Slope angle has also been reported as an
explanatory variable of forest structure, particu-
larly of biomass and canopy height (Laurance
et al. 1999, Yanagisawa and Fujita 1999, Sawada
et al. 2015; Appendix S1: Table S1).
The effect of aspect on forest structure has been

well recognized, but in tropical areas this does
not usually play a key role in structuring vegeta-
tion (Gallardo-Cruz et al. 2009). However, results
from some studies performed in the Northern
Hemisphere have shown northern-facing slopes
having higher biomass levels (Kariuki et al. 2006)
than southern-facing ones. This is probably
linked to a number of other environmental fac-
tors that lessen or mask the effect of aspect (Kirk-
patrick et al. 1988). Solar radiation, that is, the
amount of radiant energy received at a certain
location, varies not only with the amount of sun-
shine but with slopes, aspect, and adjacent relief
(Wilson and Gallant 2000).

Human factors that affect forest biomass
It is important to note, however, that almost

all studies that evaluate topographic variables as
determinants of forest biomass and forest struc-
ture have been carried out in preserved forests
(Appendix S1: Table S1), that is, in forests that
are hardly affected by human factors. In many
tropical forests, natural forest cover is being
reduced and forests are being modified by
human uses (FAO 2016), and it is precisely in
these forests that the potential for REDD+ is
greatest. Clearly, the addition of anthropogenic
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factors complicates the relationships between
environmental variables and biomass and makes
prediction of biomass levels over space even
more challenging. However, while human inter-
vention is an extra factor modifying carbon
stocks, these effects may not be random. They
may well follow a topographic template, since
human uses of forest such as shifting cultivation
and grazing tend to occur at specific elevations
and on specific types of slopes and may therefore
have relatively predictable effects (V�azquez and
Givnish 1998, Morales-Barquero et al. 2015,
M�endez-Toribio et al. 2016). For example, com-
mon uses of SDTF in Mexico include temporary
clearing of patches of trees for shifting cultiva-
tion on the lower slopes and on the shoulders of
hilly terrain (Borrego and Skutsch 2014, Morales-
Barquero et al. 2015), which is followed by
regrowth, resulting in a spatial mosaic of varying
biomass densities across these zones. Wet season
grazing by small farmers, which takes place lar-
gely on the steeper slopes between these two
zones, has the effect of lowering biomass stocks
slightly across these areas (Jardel et al. 2012,
Morales-Barquero et al. 2015). However, where
pressure is greater as a result of accessibility to
roads and human settlements, there is obviously
more likelihood of direct or indirect impact on
natural vegetation (Cincotta et al. 2000, Luoga
et al. 2002, Mon et al. 2012, Malhi et al. 2014,
Morales-Barquero et al. 2015). The effects of fire-
wood gathering also depend on the intensity of
this activity and may be very limited if much of
it dead wood. It is therefore to be expected that
there will be a response in forest structure due to
human activities, and that this may be partly
related to topography but to the gradient of
intensity, which may be expressed in terms of
accessibility (Luoga et al. 2002, Mon et al. 2012).

Policy context and setting of the study
This study has been carried out in the context

of Reducing Emissions from Deforestation and
forest Degradation in developing countries
(REDD+) and recent calls for this to follow a
“landscape” approach. Reducing Emissions from
Deforestation and Forest Degradation is a policy
framework under the United Nations Framework
Convention on Climate Change (UNFCCC). It
proposes a performance-based payment mecha-
nism to reduce the emissions of greenhouse gases

from tropical forest sources (Pelletier et al. 2016).
Although popularly considered a mechanism to
slow down the rate of deforestation, REDD+ also
aims to reduce forest degradation and promote
forest enhancement, and in this context, it is logi-
cal to target secondary forests. Strategies to
promote natural regeneration by removing the
human factors that cause degradation may in
some countries result in greater carbon savings
than reductions in deforestation, given the fact
that so much of the forest is degraded (e.g., Trejo
and Dirzo [2000] estimate that 80% of SDTF in
Mexico is degraded, while the rate of deforesta-
tion of SDTF was <0.4% per annum from 2002 to
2007, and has since been decreased even further)
(CONAFOR 2010). The rate of uptake of carbon
when secondary forest is allowed to recover natu-
rally may be substantial. For example, Pan et al.
(2011) explored the differences in sink activity
between intact and regrowth forests and found
that the absorption rates in anthropogenically
and naturally modified (i.e., degraded but regen-
erating) forests are more than three times higher
than those in intact forests across the tropics.
Poorter et al. (2016) have provided evidence of
carbon uptake rates in secondary forests across
the Neotropics, which are up to 11 times higher
than those in intact forests, at around 3 t C per ha
per year. Chazdon et al. (2016) have estimated
that secondary growth forests in Latin America
and the Caribbean have the potential over the
next 40 yr to absorb carbon equivalent to that
emitted by the region from all fossil fuel and
industrial sources between 1993 and 2014.
To deal effectively with the potential of sec-

ondary forests under REDD+, it is necessary to
better understand the drivers which cause degra-
dation and stand in the way of enhancement. For
this reason, a “landscape approach” has been
proposed with the idea that improved forest
management will depend on managing entire
rural production systems in more sustainable
ways (GLF 2013a, b, Minang et al. 2015). Particu-
larly in Mexico, REDD+ policy is moving toward
a landscape approach in which territorial plans
at the community level will be the basis for finan-
cial support for management activities (Madrid
and Deschamps 2014, Rantala et al. 2014, CON-
AFOR 2016).
Our study focused on SDTF, which is widely

distributed throughout Mexico (Trejo and Dirzo

 ❖ www.esajournals.org 3 January 2018 ❖ Volume 9(1) ❖ Article e02063

SALINAS-MELGOZA ET AL.



2000) in areas with strongly marked seasonal
rainfall (Murphy and Lugo 1986, Bullock et al.
1995, Dirzo et al. 2011). Aboveground biomass
in this forest type ranges from 45 to 390 Mg/ha
and belowground biomass from 26 to 66 Mg/ha
(Jaramillo et al. 2011). Seasonally dry tropical
forest is generally water, rather than nutrient,
limited (Murphy and Lugo 1986), so biomass in
sites with high soil water storage capacity may
be high (Jaramillo et al. 2003). This is thought to
be the primary explanation for the wide range of
AGB figures that have been observed within
Mexico (Jaramillo et al. 2011).

Almost all SDTF in Mexico has been affected
by anthropogenic activity. About half of the orig-
inal area covered by this vegetation type was
cleared in the 20th century and the majority of
the remaining part is used by rural populations
for shifting cultivation, grazing, and collection of
a variety of forest products including firewood
and fencing posts (Maass et al. 2005). Above-
ground biomass in the majority of Mexican SDTF
is well below that in the intact forest (Morales-
Barquero et al. 2015), which offers opportunities
for reversal under programs such as REDD+.

The paper explores the possibilities of model-
ing the impacts of topographic and human vari-
ables on AGB. Standing forest biomass levels
will be related to variables that describe the
physical form of landscape, such as elevation,
slope, curvature, based on empirical evidence
gathered in a case study site in a SDTF zone. If
forest biomass levels can be statistically
explained by combinations of such factors, this
could be used to estimate the carbon potential of
a given landscape and assist in the identification
of areas where levels are well below this, point-
ing to areas most appropriate for REDD+ inter-
ventions at the local level and thus filling an
important role for the implementation of this
policy at the local level. These relationships
would be expected to differ under different topo-
graphic landscape configurations, due more to
regional topographic controls on forest structure
than local ones.

METHODS

Study area
The study was conducted in the central part of

the basin of the Rio Ayuquila, in Jalisco, a state in

west-central Mexico (Fig. 1), within an area
which falls under the Inter-municipal Associa-
tion of the Ayuquila River Basin (JIRA). This is a
group of 10 municipalities, which aims to coordi-
nate environmental management and has been
selected as an Early Action Area for REDD+. The
area is surrounded by uplands such as Sierra de
Manantlan, Sierra de la Amula, Sierra de Cacoma
y, and Sierra de Tapalpa and includes three dis-
tinct plains areas: Autl�an, El Grullo, and el Llano
en Llamas.
The study area is dominated by undulating

hills grading to steep slopes and narrow river
valleys with elevations ranging from 515 to
1711 m above sea level. The slopes range from 0
to 87%. Elevation and slope generate a gradient
in micro-climatic conditions, particularly with
regard to humidity and temperature. Mean rain-
fall is between 400 and 1600 mm (Vidal-Zepeda
1990), with a dry season from mid-November
through May; summer rains occur between June
and September (Jardel et al. 2012). Temperature
range is between 20° and 24°C (Garc�ıa 1998). The
eastern section of study area is warmer and drier
than the western.
Several forest types are found in the study area

(Jardel et al. 2012), but this study focused on
SDTF. In the study area, this type of vegetation is
used for a number of productive activities,
including extensive cattle ranching (Jardel et al.
2012) and shifting cultivation, which is locally
called coamil (Borrego and Skutsch 2014, Salinas-
Melgoza et al. 2017).
Six rural communities (ejidos) were included:

Agua Hedionda, Ayutita, Chiquihuitl�an, El Tem-
azcal, Tonaya, and Zenzontla (Fig. 1). These
communities show a wide range of topographi-
cal characteristics within the SDTF zone,
enabling relationships between forest structure
and topographical variables tested in this study
(Table 1).
Vegetation in the study area has been modified

by humans at least since Mexico’s colonial era for
productive purposes such as cattle, sugar cane
(Louette et al. 2001, Gerritsen and van der Ploeg
2006). Clear evidence of human disturbances has
been reported close to human settlements
(V�azquez and Givnish 1998, Morales-Barquero
et al. 2015). The agrarian communities in the
study area were set up between 1920 and 1950 in
a land reform process, which allocated land to
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groups of landless people on a communal basis.
After land rights were decreed, forest was cleared
for farming in communities, but agriculture can-
not be practiced on steep areas; such areas were
therefore allocated to forest-based uses. Gener-
ally, the flatter areas are used for permanent agri-
cultural systems (yuntas), some of which are
irrigated; crops grown in these systems include
maize, sorghum, and agave. The lower slope
areas are used for small plots of shifting agricul-
ture. These areas, like the yuntas, are considered
to belong to individual farmers. In addition, there
are common areas in many communities that
may be used by all members as unplanned silvo-
pastoral systems, where livestock graze freely.
These common forest areas are also the source of
building materials, poles for fences, and fuel
wood (Morales-Barquero et al. 2015).

Table 1. Characteristics of forest inventory datasets
used in the study.

Parcel
characteristics

1st
dataset†

2nd
dataset‡

3rd
dataset§

Number of sites 34 106 23
Shape plot Circular Circular Circular
Plots per site 4 1 1
Nested designee
(radius)

Yes (11.28 m
and 3 m)

Yes (12.62 m
and 4 m)

No

Plot size 400 m2 500 m2 400 m2

Minimum dbh
included

2.5 2.5 2.5

Range of elevation
(m a.s.l.)

515–1144 899–1711 778–1048

Range of slope
angle (°)

8–76 8–87 1–33

† Salinas-Melgoza et al. unpublished data.
‡ Jardel et al. (2012).
§ Salinas-Melgoza et al. (2017). dbh, diameter at breast

height.

Fig. 1. Geographical distribution of seasonally dry tropical forest (data: Jardel et al. 2012) and location of
agrarian communities in study area in Jalisco state, western Mexico (EPSG projection: 32613-wgs84/utm zone
13N). Note that some communities are made up of several polygons.
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Data sources
Two different sources of information were

used in this study. A forest survey was used to
obtain AGB levels, while data on physical condi-
tions of the sites were obtained by physical mea-
surements in the sampling sites and from digital
elevation models (DEM), that is, from existing
topographic maps.

Forest inventory data from 144 sampling sites
were obtained from three different datasets from
different sources; sites in these datasets cover a
wide range of topographical conditions. The
combination of these three datasets increased the
size of the sample used in analyses. Although
some of the communities are duplicated in differ-
ent datasets, plots are unique by community and
by dataset. All plots are circular. Plots in two of
the datasets used two concentric circles. Diame-
ter at breast height from each tree registered in
each dataset was used to infer dry AGB
(Table 1).

Different allometric equations give different
results (N�avar 2010), and it is difficult to know
which one is most reliable. In order to improve
the accuracy of biomass estimates, Chave et al.
(2014) suggest using locally developed equa-
tions. No allometry specific to our sites was
available, but we used an equation that had been
developed using destructive tree sampling in a
SDTF site characterized, like our area, by having
a large number of small stems; this site was only
about 60 km from our study area (Mart�ınez-
Yr�ızar et al. 1992) (see Eq. 1). Biomass of multi-
stemmed trees was calculated separately for each
stem and summed. Identification of individual
trees was done at the species, genera, or mor-
phospecies level. Aboveground biomass and
total basal area measurements are not indepen-
dent, because both are calculated from stem
diameters (Brown 1996).

log10 B ¼ �0:5352þ 0:9996 log BA, (1)

where B is aboveground dry biomass in kg and
BA is basal area (cm2).

Information by site includes basal area, which
was measured using diameter tapes, biomass (cal-
culated using Eq. 1), and total number of stems.
Slope was measured using a clinometer, elevation
estimates were taken using an altimeter, and

aspect was obtained with a compass; geographic
location was obtained with a handheld Global
Positioning System (GPS).

Data analysis
It is often difficult to obtain a strong signal

from complex non-linear relationships and the
methods of data analysis were designed to
explore a wide range of possible interactions
before focusing on those with the most influence.
An initial selection of 19 topographic explanatory
variables was made, based on current knowledge
of determinants of AGB (topographic variables
related to ecological processes). An analysis of
multi-collinearity reduced these to a set of 11
variables to analyze overall patterns (further
details in Appendix S2). Two variables that relate
to potential human impact on vegetation were
added to the topographical variables: distance to
roads and distance to human settlements
(Appendix S1: Table S2). Details of selection and
calculation of all variables are in Appendix S2.
The use of different scales for the topographic

position index (TPI) calculation is to provide a
measurement of plot-level topographic exposure
to shade, due to nearby hills. As TPI is deter-
mined by the neighborhood scale used in the
analysis, TPI with significant change (see Appen-
dices S1 and S2) with regard to change in scale of
analysis would indicate more favorably sheltered
areas for tree development (Fig. 2).

Data analysis strategy
The data analysis strategy to relate biomass to

the topographic variables encompassed two
approaches (Fig. 3). Firstly, in order to investigate
overall patterns, a number of linear models were
constructed using generalized linear model (GLM)
and generalized linear mixed model (GLMM).
Non-linear relationships were evaluated with
multivariate adaptive regression splines analysis
(MARS) and classification and regression tree anal-
yses (CART). Secondly, non-linear relationships
were used to identify breakpoint or threshold val-
ues where patterns change dramatically between
subgroups of data of AGB; to this end, CART and
piecewise-generalized linear model (PGLM) were
used. Furthermore, GLM and PGLM were used to
investigate overall linear and non-linear relation-
ships between human factors and AGB.
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GLM, PGLM, and GLMM analysis
In order to evaluate linear and non-linear rela-

tionships between AGB and the independent
variables, several linear models were estimated
using GLM, GLMM, and PGLM. The indepen-
dent variables used in these analyses were the
topographic and human factors. We obtained a
full model that included the 11 selected variables.
Then, we obtained optimal GLM and GLMM
that statistically explain the relationship between
independent topographic variables and AGB
using a simplification procedure suggested by
Crawley (2013). Generalized linear model and
GLMM for AGB were fitted for the entire dataset.
Furthermore, GLM and PGLM were used to

evaluate the effect of distance to roads and settle-
ments on AGB.
Generalized linear mixed model random inter-

cepts and random slope models were con-
structed to investigate whether differences in any
of the significant explanatory topographic vari-
ables within the territory of communities explain
AGB. This analysis identifies at the same time a
nested hierarchy of sites within communities
(Bates et al. 2014). This type of model allows
fitting a regression model to the individual com-
munities, while accounting for systematic unex-
plained variation among the six communities
with regard to topographic variables. In the
model, topographic variables were used as fixed

Fig. 3. Schematic representation of the analysis steps used in the study.

Fig. 2. Representation of topographic position index (TPI) for the same point (red point) at three different
scales (horizontal line above red point). (a) TPI is around zero because point elevation is about the same as the
whole analysis region, (b) TPI higher than zero means that point elevation is above analysis region mean eleva-
tion, and (c) TPI lower than zero means that point elevation is above analysis region mean elevation.
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factors, and two random structures were used, one
with communities as the grouping variable (ran-
dom intercept variable) and another with topo-
graphic variables as the random slope variables.
The former allows the intercept to deviate from
the mean intercept for each community, while the
latter allows slope of the linear regression to vary
for each community. In this way, the consistencies
of resulting effects were tested across both com-
munities and topographic variables. The signifi-
cance of the random intercept was evaluated at the
95% confidence interval. Statistical differences
would imply that variation in biomass patterns
comes from more than one source, in this case, the
character of the different rural communities (Bates
et al. 2014, Faraway 2016).

Two different proportions of variance gener-
ated by the GLMM were calculated using the
method explained in Nakagawa and Schielzeth
(2017): the proportion of variance explained by
the model as a whole and the proportion of vari-
ance explained by topographic variables (fixed
factor). Following the procedure developed by
these authors, the proportion of variance
explained by communities (as grouping factor)
was quantified, obtaining the intra-class correla-
tion coefficient. The best model was selected on
the basis of the proportion of variance explained
(pseudo-R2).

Further, GLM was used to investigate the rela-
tionship between topographic variables and a
subgroup of data on AGB obtained from a
CART, as explained in more detail below.

In order to specify the appropriate error distri-
bution to be used and the associated link in per-
forming GLM, PGLM, and GLMM for AGB,
several potential distributions were considered,
and eventually, a gamma error distribution with
log link was selected (Faraway 2016). For
GLMM, all numerical predictors were standard-
ized (so that they have a mean equal to zero and
variance equal to one) by centering them and
dividing by two standard deviations (Faraway
2016). This procedure alleviates computational
challenges of numerical stability of the GLMM
algorithm (Faraway 2016). Relative importance
(%) of each variable in the optimal GLM and
GLMM was obtained through a randomization
approach. These values then were normalized to
100; the stronger the influence on the response
variable, the higher the value.

Piecewise-generalized linear model evaluates
thresholds iteratively along the extent of varia-
tion in the independent variables, but a starting
threshold must be provided. In order to provide
this, changes in the slope of the GLM were per-
formed using the Davies test. This test chooses a
number of fixed thresholds along the x-axis and
looks for statistically significant differences in
regression slopes on each side of the threshold.
Piecewise models are statistically significant
when threshold estimates do not overlap the
95% confidence intervals (Muggeo 2008, further
details in Appendix S2).

MARS
Multivariate adaptive regression splines analy-

sis was conducted to evaluate whether AGB
follows more complex non-linear functions of
topographic predictable variables, and was used
to unravel high-dimensional data patterns. This
is a nonparametric analysis that produces sim-
pler and easier-to-interpret piecewise models.
They are fitted by several piecewise linear basis
functions (BFs) using a threshold value called a
knot (Friedman 1991). This technique allows for
the use of multiple variables that may not have
common effects across the sample (Faraway
2016, further details in Appendix S2).

CART
Classification and regression tree analyses is a

nonparametric approach for constructing classifi-
cation and regression tree models based on rules
(Faraway 2016). Classification and regression
tree analyses was used as an exploratory proce-
dure to find subgroups in the data, which were
then used to perform further parametric linear
regression models, as mentioned above. This
type of procedure uses a partitioning approach
on single variables to perform a binary split in a
recursive manner that continues until a terminal
node and a constant estimate of y is obtained
(Faraway 2016; see Appendices S1 and S2). Clas-
sification and regression tree analyses first splits
the dataset into homogeneous subsets based on
relationships between the dependent and predic-
tor variables, identifying breakpoint or threshold
values on the splitting variable to form a tree
structure (Faraway 2016). It then looks for the
relative importance of each of the variables
within different parts of the tree (Faraway 2016).

 ❖ www.esajournals.org 8 January 2018 ❖ Volume 9(1) ❖ Article e02063

SALINAS-MELGOZA ET AL.



As we will show, this analysis first divided the
data into two distinct groups, four of the com-
munities making up group A and two communi-
ties making up group B (further details in
Appendix S2).

ANOVA
A one-way analysis of variance (ANOVA) was

also run to evaluate whether mean biomass was
equal across all the communities. Aboveground
biomass values were log-transformed to meet
ANOVA assumptions regarding homogeneity of
error variances and distribution of residuals.
Aboveground biomass was considered the
dependent variable, and rural community as the
independent variable. Tukey’s HSD tests were
used to identify differences between communi-
ties (Faraway 2016).

All the analyses were carried out in R 3.3.2 (R
Core Team 2016) using different packages for
specific analysis. Generalized linear mixed model
was performed with lme4 (Bates et al. 2014).
Piecewise-generalized linear model was obtained
with Segmented package (Muggeo 2008). Multi-
variate adaptive regression splines analysis was
performed using earth package (Milborrow
2017), while CART was conducted using the
rpart package (Therneau et al. 2015). The

potential distribution and associated link for
AGB was checked with fitdistrplus package
(Delignette-Muller and Dutang 2015). To graph
GLMM, the sjPlot package was used (L€udecke
2017). The relative variable importance was
calculated with the function varImpBiomod
(Thuiller et al. 2009).

RESULTS

Aboveground biomass variation within
communities
Analysis of variance indicates that there is a

significant variation within groups of communi-
ties (F5, 138 = 15.08, P < 0.0005). Tukey’s post hoc
tests showed that pairwise comparisons were
significantly different at P < 0.05 for the group of
communities that included Chiquihuitl�an,
Temazcal, and Tonaya and the group that
included Ayutita and Zenzontla. It was also
found that the former group has lower mean bio-
mass than the latter. Agua Hedionda does not
differ significantly from the other communities
(P > 0.05; Fig. 4).

Linear effects of topographic factors on biomass
The optimal GLM and GLMM for the entire

dataset showed evidence for the effect of

Fig. 4. Aboveground biomass variation by community. Boxes show the 25th and 75th percentiles. The whis-
kers of each plot extend to �1.5 of the interquartile range to detect very extreme outlying data points, which are
represented by dots. Letters above the whiskers indicate the communities, which are significantly different from
each other according to Tukey’s HSD test.
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elevation on AGB (Table 2). Optimal GLM
was positively statistically significant (F = 6.40,
df = 141, P < 0.05), explaining 19% of the varia-
tion in biomass (Table 2, column 1). For this
GLM optimal model, elevation above sea level
was the variable with the highest relative impor-
tance, followed by slope (Table 2, column 1;
Fig. 5). The piecewise form of this model
(Table 3) was statistically significant and slightly
improved the proportion of biomass variation
explained by the GLM (Table 2).

Four variables were significant (elevation, tan-
gential curvature, slope, and topographic wet-
ness index) in the optimal GLMM, which
accounted for the random effect of rural com-
munities while testing for the fixed effect of
topographic variables (X2 = 4.14, df = 1,
P < 0.05, Table 2). There is a positive effect on
predicted AGB of each of the four significant
variables, after adjusting for the other three vari-
ables. That is, AGB will be higher at sites with
the steeper terrain, with convergent flow of
water (higher values of tangential curvature),
with relatively more runoff (higher values of

topographic wetness index), and at higher ele-
vations (Fig. 6). These positive linear trends did
not differ among communities. The predicted
random intercept effect (�95% confidence inter-
vals) for this GLMM was statistically significant
for Ayutita = 0.36 (0.12–0.59), Temazcal = �0.24
(�0.46 to �0.03), and Zenzontla = 0.37 (0.23–
0.51), while it was not significant for Agua
Hedionda = �0.11 (�0.34 to 0.11), Chiqui-
huitl�an = �0.13 (�0.34 to 0.06), and Ton-
aya = �0.16 (�0.34 to 0.01). This means that
AGB follows two similar trends (Fig. 6). Over-
all, elevation above sea level, tangential curva-
ture, slope, and topographic wetness index
accounted for most AGB variability. This model
has the lowest residual deviance, better perfor-
mance (the best log-likelihood and Akaike Infor-
mation Criteria [AIC] scores), and the highest
proportion of the explained variation (Table 2,
column 2). Elevation has the highest relative
importance in this GLMM optimal model, fol-
lowed by tangential curvature. The proportion
of variation explained by community was
higher than the proportion explained by topo-
graphic variables (Table 2, column 2).

Non-linear effects of topographic factors on
biomass
The MARS interactions model performed for

the entire dataset showed more complex non-
linear relationships that best fit AGB. This model
is composed of three basis functions and interac-
tions that were found statistically significant
(BF1, BF2, and BF3; Table 4). These basis func-
tions combine diffuse insolation and two rural
communities, plus one function that relates to
knot threshold values. Function BF1 decreases
overall AGB (Table 4); this means that in general,
sites with diffuse insolation lower than 320 kWh/
m2 have lower biomass. Functions BF2 and BF3
increase overall AGB, that is to say, biomass at
sites in Ayutita with diffuse insolation of <320
kWh/m2 would be higher but not as high as in
sites in Zenzontla. Basis function BF1 is used in
basis function BF2 to express the interactions
between Ayutita community and diffuse insola-
tion (Table 4). The performance of this model
was 33%.
The CART for the entire dataset that includes

the relationships between AGB and each of the
11 topographic variables together found six of

Table 2. Results of different models for topographic
factors.

Model GLM GLMM

(Intercept) 7.711�� (1.766) 3.216��� (0.006)
Elevation 1.001��� (0.0003)

[73%]
0.138��� (0.006)

[33%]
Slope 1.001�� (0.0038)

[27%]
0.135��� (0.006)

[25%]
TWI NA 0.112��� (0.006) [13%]
ctan NA 0.135��� (0.006) [29%]
Pseudo-R2 R2

N1 = 0.19 R2
N2ðmÞ = 0.10

R2
N2ðcÞ = 0.21

ICCN2(Community) = 0.13
AIC 1199 1170.84
ΔAIC 22.3 50.5
Log-likelihood �595.51 (df = 4) �578.42 (df = 7)
RD 56.83 41.48

Notes: Values in each cell indicate the estimate. GLM, gen-
eralized linear model; GLMM, generalized linear mixed
model. R2

N, pseudo-R
2, indicates the proportion of the varia-

tion explained: R2
N1, using Nagelkerke (1991); R2

N2ðmÞ, by topo-
graphic variables (fixed factor); R2

N2ðcÞ, for model as a whole;
ICCN2(Community), intra-class correlation coefficient commu-
nity (grouping factor), using Nakagawa and Schielzeth
(2017). RD, residual deviance; ΔAIC, change in AIC; ctan, tan-
gential curvature; TWI, topographic wetness index; NA, not
applicable. In parentheses, standard error. In square brackets,
relative importance (%) of variables in models.

��P < 0.01 ���P < 0.001.
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these variables to be significantly non-linearly
related to biomass (Appendix S1: Table S3, col-
umn 2). The most important variable explaining
variation in biomass was community, since bio-
mass levels varied more between individual
rural communities than with any of the biophysi-
cal variables individually. This analysis created
two groups of communities, as suggested by the
GLMM, group A (four communities) and group
B (two communities). Using just this as the
breakpoint, more than 30% of the variation in
AGB of the root node error is explained. This
CART then split the A and B branches on
the basis of variables relative importance
(Appendix S1: Table S3, columns 3 and 4), result-
ing in a tree with two terminal nodes each group
(Fig. 7).

The tree for group A accounts for about 28% of
the variance in overall biomass, and the break-
point variable in this branch of the tree was tpi19

at 17.41 (Fig. 7). This variable together with topo-
graphic wetness index contributed with 60% of
the explanatory value within this branch

Fig. 5. Mean predicted aboveground biomass variation over the observed range of each of the topographic
variables: (a) elevation above sea level and (b) slope, for communities together. The fitted lines are generalized
linear model estimates. Gray area around the black line shows confidence region.

Table 3. Results of PGLMmodel for elevation and slope.

Parameter PGLMmodel

Breakpoints Elevation =
1400 (1078–1722)

Slope =
47.28 (35.02–59.55)

b0a 1.79 1.791
b0b 4.35 0.43
b1a 0.0013

(0.0005–0.0021)
�0.0009

(�0.0104–0.0085)
b1b �0.0004

(�0.0037–0.0028)
0.0276

(0.0068–0.0483)

Notes: Breakpoints refer to sudden and sharp change in
directionality of the linear relationships. b0a, estimate of the
intercept for first piece; b0b, intercept for second piece; b1a, esti-
mate of the slopes for first piece; b1b, estimate of the slopes for
second piece. The 95% confidence intervals are shown in paren-
theses for breakpoints and slope. Pseudo-R2 = 24, (indicates
the proportion of the variation explained using Nagelkerke
(1991)); AIC = 1198.7; Log-Likelihood = �591.35; Residual
deviance = 53.82.
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(Appendix S1: Table S3, column 3). The tree for
group B accounts for about 17% of the overall
biomass variance. The breakpoint variable for
group B was elevation, with a threshold at
1248 m a.s.l. (Fig. 7). Together with two other
variables (diffuse insolation and planar curva-
ture), this accounts for 82% of the explanatory
value within this branch.

After identifying the complex non-linear rela-
tionships for the entire dataset, rather than bin-
ary splitting, the two splitting explanatory

variables identified as having most influence
within each of the groups (tpi19 and elevation)
were assessed to determine their relative linear
and non-linear influence on biomass by means of
a GLM and a PGLM.
For group A of communities, both linear

(F1,78 = 9.58, P < 0.005) and non-linear (Davies
test P = 0.003) relationships were found between
biomass and tpi19 (Fig. 8). Piecewise-generalized
linear model found a significant negative trend
at values of tpi19 lower than 11.8, and positive

Fig. 6. Relationships between mean predicted aboveground biomass and each topographic variable within the
rural community’s territory: (a) elevation above sea level, (b) slope, (c) tangential curvature, and (d) topographic
wetness index. The fitted lines are generalized linear mixed model estimates for each community.
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above this breakpoint (Table 5, Fig. 8). This indi-
cates that biomass decreases slowly at sites
which are lower than the average elevations
within the immediate neighborhood; above this
threshold, biomass increases rapidly. The PGLM
analysis explains 27% of the variation in biomass,
while GLM explained only 12% (Table 5). This
result matches the AIC values, which indicates
that PGLM using tpi19 has the best trade-off
between the goodness of fit and the complexity
of the model (Table 5).

For the communities in group B, there is also a
statistically significant linear relationship bet-
ween AGB and elevation (F1,62 = 9.93, P > 0.005),
explaining around 14% of the variation of AGB
in this group of communities (Appendix S1:
Fig. S1). The slope of the non-linear relationship
was not statistically significantly different from
zero (Davies test P > 0.05).

In short, five models were constructed and
their results compared to determine which topo-
graphic factors best explain the variation in AGB.
The overall optimal linear model was the GLMM
which allowed the individual weighting of vari-
ables to be applied in the different communities;
this performed better than the other linear mod-
els including GLM, in which such weighting was
not applied. Generalized linear mixed model also
performed better than the non-linear models
(PGLM, CART, MARS) in this sense. However,
the MARS model achieved higher levels of expla-
nation (33%) but only under particular condi-
tions, for example, in specific sites in specific
communities, which experience higher levels of
diffuse insolation.

Effect of accessibility on biomass
No statistically significant linear (F1, 142 = 0.40,

P > 0.05) nor non-linear (Davies test P-value =
0.19) relationship between biomass and distance
from settlements was found. There is a statisti-
cally significant linear (F1, 142 = 18.92, P < 0.0005)
and non-linear (Davies test P-value = 0.023) rela-
tionship between biomass and distance from
roads. The slope of this non-linear relationship
was statistically significant: positive at low dis-
tances from road and negative after breakpoint
(2273 m; Fig. 9, Table 6). The threshold also pro-
vides an empirical means of separating signals of
human impact into two pieces. That is, between
0 and 2273 m, there is great human impact; this
means that sites closer to roads have less AGB.
The second part of the line shows higher biomass
figures at distance to roads greater than 2273,
which subsequently steeply decreases (Fig. 9).
We also found that PGLM has a better fit than
GLM; it attributed 20% of variation in biomass
to road accessibility, compared to 13% in the
GLM (Table 6).

DISCUSSION

This study differs from others in that it
focuses on the explanators of biomass variation
in human-modified SDTF landscapes rather
than in natural, undisturbed SDTF. This is
highly relevant in the context of REDD+ policy.
Overall, the results suggest that in these modi-
fied landscapes, AGB is correlated not only
with a number of regional and local topo-
graphic variables including elevation, slope,
topographic wetness index, tangential curva-
ture, diffuse insolation, and the topographic
position on the slope, but also with human fac-
tors. While GLM places primary importance on
regional topographic variables such as eleva-
tion, mixed GLM, CART, and MARS models
show that elevation and the details of micro-
topography in different communities may have
important effects in explaining differences in
biomass density. This was shown in particular
by the MARS model for the sites with scattered
sun radiation, at the highest elevations. This
was also revealed by piecewise regression
where AGB of communities at lower elevations
was shown to be affected by shading from

Table 4. Basis functions (BF) of the multivariate adap-
tive regression splines analysis for aboveground bio-
mass, including their knot threshold value (h) and
their corresponding magnitude of effect of the basis
function.

Id Basis function Estimate SE T

Int (Intercept)��� 3.28 0.087 37.52
BF1 h(difinsol-320.62)��� �0.01 0.004 �3.80
BF2 Ayutita 9 h(320.62-difinsol)��� 0.07 0.021 3.75
BF3 Zenzontla��� 0.52 0.104 5.06

Notes: SE, standard error; t, t value; difinsol, diffuse insola-
tion. Null deviance = 67.40, df = 143. Residual deviance = 46.37,
df = 140. R-squared of the mode = 0.33.

���<0.0005.
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nearby hills. We expected that human factors in
the landscape would impact biomass levels,
and analysis performed in this study supports
this. We found that AGB increases not just in a
linear monotonic relation with increasing dis-
tance to roads, but also in a non-linear way. The
monotonically increasing density of biomass
with elevation may also in part be explained in
terms of human uses such as shifting cultivation,
grazing, and poles extraction, which are them-
selves highly selective as regards elevation.

Effects of specific indicators on biomass
In this study, four topographic variables were

shown to be potential predictors of AGB when
combined: elevation, slope, topographic wetness
index, and tangential curvature. On the one hand,
the first two variables together using a GLM
approach enabled the inference of biomass over
the entire study area. On the other hand, our best
model that includes all the four variables
together in a GLMM enabled the inference within
each community individually. Elevation had the

Fig. 7. Regression tree for biomass for total dataset and for community groups A and B. MSE, mean squared
error; l, mean aboveground biomass (Mg/ha); n, number of plots in that particular terminal node. The boxplots
at bottom section show the biomass variability in each of the terminal nodes. Boxes show the 25th and 75th per-
centiles. The whiskers of each plot extend to �1.5 of the interquartile range to detect very extreme outlying data
point, which are represented by dots.
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greatest relative importance in both models,
while tangential curvature was indicated as a sec-
ond major explanator in the GLMM. It was possi-
ble to obtain 21% predictive power using GLMM
to improve our understanding of how environ-
mental and human-based variables affect stand-
ing carbon. Generalized linear mixed model was
also able to show that different AGB/topography
patterns exist in lower-lying communities com-
pared to communities at higher elevations.

No differences in slope of the regression equa-
tion but marked differences in the interceptor (y-
axis) between two groups of communities were
found, so that the monotonic positive trend of
biomass with elevation for each community is
similar. A possible reason for the difference in
interceptors is that terrains Ayutita, Zenzontla,
and Temazcal have a distinctly different topo-
graphic form from those Agua Hedionda,
Chiquihuitl�an, and Tonaya with regard to eleva-
tion, terrain curvature, and the amount of diffuse
insolation received, as indicated by CART. As
noted in the results section already, the MARS

model enables us to explain 33% of the AGB level
variation relating to diffuse insolation values in
sites above average elevations and particularly at
the highest elevations.
This finding suggests that diffuse insolation

may modify the effect of topography on soil water
availability (corroborating Galicia et al. 1999),
which impacts positively on AGB. Moreover, in
Ayutita and Zenzontla, the plot-level topographic
exposure to shade from nearby hills would be
more favorable to biomass growth (see
Appendix S1: Table S3). The average AGB for the
four remaining communities (Agua Hedionda,
Chiquihuitl�an, Tonaya, and Temazcal) is lower,
with water availability related simply to elevation.
The findings reported here support general trends
concerning the link between soil water availability
and AGB (Bullock et al. 1995, Jaramillo et al.
2003, 2011, D’Odorico and Porporato 2006), and
concur with those of studies from within the same
region of Mexico (Maass 1995, Maass and Burgos
2011), which indicates the importance of inter-
and intra-annual rainfall distribution on biomass.
Our findings are in complete contrast, however,

to many studies that show a unimodal decrease in
biomass with elevation in tropical forests (Raich
et al. 1997, Marshall et al. 2012, Sundqvist et al.
2013). This negative relationship is usually

Fig. 8. Generalized linear model (GLM) and piece-
wise-generalized linear model (PGLM) for biomass in
Group A as a function of tpi19. GLM, gray solid line;
PGLM, solid black lines. Vertical dashed line shows
threshold for PGLM. Continuous dashed line, PGLM
confidence intervals for tpi19 at 95%. Equations shown
in the graph for each segment in base of the threshold
from PGLM.

Table 5. Results of GLM and Piecewise GLM models
for the relationship between tpi19 and aboveground
biomass GLM for group A of communities.

Parameter PGLMmodel GLMmodel

Breakpoints tpi19 = 11.81 (2.88–20.74) NA
Intercept NA 2.931318***
b0a 2.855 NA
b0b 2.331 NA
Slope NA 0.010921*
b1a �0.004 (�0.016–0.007) NA
b1b 0.045 (0.012–0.063) NA
R2
N 27 12

AIC 588.01 597.31
LL �289.00 �295.65
RD 22.75 26.65

Notes: Breakpoints refer to sudden and sharp change in
directionality of the linear relationships. b0a, estimate of the
intercept for first piece; b0b, intercept for second piece; b1a,
estimate of the slopes for first piece; b1b, estimate of the slopes
for second piece. The 95% confidence intervals are shown in
parentheses for breakpoints and slope. R2

N, Pseudo-R
2, that is,

the proportion of the variation explained using Nagelkerke
(1991); AIC, Akaike Information Criteria; LL, Log-Likelihood;
RD, residual deviance. NA, not applicable.

�<0.05; ���<0.0005.
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explained in terms of limited soil nutrient/slower
litter decomposition and lower water availability
at higher elevations (Galicia et al. 1999, Brienen
et al. 2010, Jaramillo et al. 2011, Maass and Bur-
gos 2011). However, these studies have almost all
been carried out on undisturbed forests (Aiba and
Kitayama 1999, Leuschner et al. 2007, Homeier
et al. 2010), where there are no human factors at
play. Human perturbation is markedly stronger in
low-lying areas (Lovett et al. 2006, Alves et al.
2010, Toledo-Garibaldi and Williams-Linera
2014). These areas have the best production
potential (Maass 1995) and are where the majority
of the human productive activities take place
(Maass et al. 2005). Large-scale human distur-
bance (deforestation) characterizes these areas,
where the forest coverage may be almost com-
pletely removed. Extractive practices that have
less impact, as well as cyclical shifting cultivation,
are normally performed on slopes with less fertile
soils (Morales-Barquero et al. 2015, Salinas-Mel-
goza et al. 2017). Human disturbance in these
areas is mainly on a small scale with continuous
removal of a small fraction of AGB for, for exam-
ple, posts and firewood (Morales-Barquero et al.

2015), and vegetation changes may also be caused
by grazing cattle in the forests (V�azquez and
Givnish 1998, M�endez-Toribio et al. 2016).
As expected, human activities have a continu-

ous and negative effect on AGB, which increased
with distance from roads. This finding is in agree-
ment with Mon et al. (2012) and Luoga et al.
(2002). This trend can be explained in part by the
human tendency to utilize the more accessible
areas in preference to those that are more difficult
to reach, as the remaining patches of SDTF are in
remote places (Trejo and Dirzo 2000). One unan-
ticipated finding was the threshold at which the
negative effect reverses. A possible explanation
for this might be a dual relation between the
extractive activities and the distance to roads;
some activities are carried out between the road
and the threshold of 2273 m, but beyond that,
other activities may be implicated. It is possible,
for example, that illegal activities such as charcoal
production might be deliberately hidden from
view. More studies are needed to address and
understand this interesting pattern.
These findings add another dimension to the

so-called REDD+ landscape approach to emission
reduction (GLF 2013a, b, Minang et al. 2015). The
method we present could enable the identification
of areas which are well below their potential bio-
mass levels, for targeting REDD+ activities

Fig. 9. Linear and non-linear relationship for above-
ground biomass as function of distance from roads.
GLM, gray solid line; PGLM, solid black lines. Vertical
dashed line shows threshold for piecewise-generalized
linear model (PGLM). Continuous dashed line shows
PGLM confidence intervals for tpi19 at 95%. Equations
shown in the graph for each segment on basis of the
threshold derived from the PGLM.

Table 6. Results of GLM and Piecewise GLM for the
relationship between distance to roads and AGB.

Parameter PGLMmodel GLMmodel

Breakpoints 2273 (1758–2787) NA
Intercept NA 21.29 (1.7940)***
b0a 2.98 NA
b0b 5.66 NA
Slope NA 1.0003 (0.0001)***
b1a 0.0004 (0.0002–0.0005) NA
b1b �0.0007 (�0.0015–0.000002) NA
R2
N 0.20 0.13

AIC 1199.49 1205.17
LL �594.74 �599.58
RD 56.26 59.92

Breakpoints, refers to sudden and sharp change in direc-
tionality of the linear relationships. b0a, estimate of the inter-
cept for first piece; b0b, intercept for second piece; b1a,
estimate of the slopes for first piece; b1b, estimate of the slopes
for second piece. The 95% confidence intervals are shown in
parentheses for breakpoints and slope. R2

N , Pseudo-R
2, that is,

the proportion of the variation explained using Nagelkerke
(1991); AIC, Akaike Information Criteria; LL, Log-Likelihood;
RD, residual deviance. NA, not applicable.

*** <0.0005.
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designed to halt further degradation and promote
forest enhancement through natural regrowth,
increasing overall carbon stocks. This could be
done across the entire landscape of communities
using only data from DEM (i.e., from existing
topographic maps that are freely available from
the national statistical institute of Mexico, INEGI
[2017]), without the need for extensive ground
forest surveys or for high-resolution remote sens-
ing images, which are costly. The differential
forest biomass response along environmental
gradients will be a critical information input for
the design of locally appropriate REDD+ interven-
tions. Although the models presented in this
study explain only part (19–33%) of the variation
in AGB, their level of accuracy is similar to that
of other exercises based on expensive remote
sensing inputs (Sol�orzano et al. 2017). For this
reason, this approach could be an attractive and
cost-effective alternative.

CONCLUSIONS

The main goal of the current study was to
determine causal relationships between the
geometry of the landscape and standing AGB in
order to model AGB based on a quantitative
description of the form of the land surface, which
can be derived simply from topographical maps.
As explained in the discussion, we find that the
GLMM is the most effective overall in explaining
variations in AGB and that four topographical
variables (elevation, tangential curvature, slope,
and topographic wetness index) together explain
21% of the variation. One of the more significant
findings to emerge is that elevation was the most
important variable among these, and that in
SDTFs that are subject to human disturbance,
this relationship is positive (higher biomass
levels at higher elevations), which is contrary
to patterns found in undisturbed forests. The
second major finding was that topographic con-
figuration (i.e., all four variables) of rural com-
munities as a whole defined average AGB, in
such a way that Ayutita and Zenzontla have
more biomass than Agua Hedionda, Chiqui-
huitl�an, Temazcal, and Tonaya, although eleva-
tion still plays the greatest role. It was also
shown that human activities affect AGB and that
the intensity of human activities is related to dis-
tance from roads in a non-linear way.

The study has implications in terms of REDD+.
It indicates the possibility of estimating AGB
levels in similar areas of SDTF without the need
for a forest survey or high-resolution remote
sensing, using just quantitative land surface
information, derived cheaply from topographic
maps. This may be particularly useful in the con-
text of the so-called landscape approach to
REDD+, which aims at treating emission reduc-
tions not merely in full forest areas but across
landscapes in which agricultural and other
human activities are integrated within forests,
where they form dynamic mosaic patterns and
shifting locations of carbon stocks. Reducing
Emissions from Deforestation and Forest Degra-
dation policy in Mexico is moving toward a land-
scape approach in which territorial plans at the
community level will be the basis for financial
support for landscape management activities
which will hopefully result in reduced emissions
and increased sequestration (CONAFOR 2016).
In this context, our study provides a feasible tool
by which it is possible to predict from 19% to
34% of current biomass levels in rural communi-
ties with SDTF landscapes within the study area,
just from the DEM data. This information could
be used to set targets for potential carbon stocks
in different parts of the landscape, that is, to sug-
gest where in the landscape REDD+ activities
should best be targeted. While the calibration of
these models is specific to this region and vegeta-
tion type, the method itself could be extended for
use in other areas and other types of forest.
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