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Appendix S1 

Table S1. Overview of studies that have analyzed the relationship between tropical forest 
structure variables and topography. AGB, aboveground biomass, BA= Basal area; DBH, 
diameter at breath height; SD=stem density; TH, Tree height; cited, literature cited; P, 
preserved forest, D, disturbed forest.  

Cited 

Topographic 
variable 

related to 
Forest structure 

variable used Forest type and location P/D 
1 

Slope TH and DBH 
Mixed Dipterocarp forest, 
Borneo P 

2 Relative 
position on 
the slope 

AGB, BA and 
SD 

Wet tropical forest, Puerto 
Rico P 

3 
Slope AGB 

Terra firme wet forest, Central 
Amazon, Brazil D 

4 Elevation and 
slope AGB Wet tropical forest, Costa Rica P 

5 Relative 
position on 
the slope AGB 

Lowland moist tropical forest, 
Central Panama P 

6 Relative 
position on 
the slope AGB and TH Lower montane forest, Borneo P 

7 Elevation and 
slope AGB 

Terra firme moist tropical 
forest, Amazon P 

8 Relative 
position on 
the slope AGB and SD Wet tropical forest, Ecuador P 

9 Elevation AGB Tropical forest, Hawaii P 
10 Relative 

position on 
the slope AGB 

Lowland tropical forest, 
French Guiana P 



11 Elevation and 
Slope AGB 

Tropical moist forest, Atlantic 
coast, SE Brazil P 

12 
Slope AGB 

Lowland moist tropical forest, 
Central Panama P 

13 Relative 
position on 
the slope 

AGB,  SD and 
BA 

Hill dipterocarp forest, 
Sumatra P 

14 Elevation and 
slope 

AGC Tropical montane cloud 
forest, puna, and 
transition zone, Peru D 

15 Elevation, 
slope and 
aspect 

AGC inhumbane lowland forest, 
transitional/submontane 
forest 
and afromontane forest, 
Zanzibar -Tanzania D 

16 Elevation, 
slope, aspect 
and a terrain 
ruggedness 
index 

AGC Multiple types of tropical 
forest, 
Colombian Amazon 

D 
17 Elevation, 

slope, aspect 
concavity and 
convexity 

TH Lowland moist tropical 
forest, Central Panama 

P 
18 Elevation AGB Mauna Loa, Hawai‘i P 
19 Elevation, 

aspect and 
relative 
position on 
the slope 

AGB tabonuco forest colorado 
forest, palm forest and cloud 
forest, Puerto Rico 

P 
20 Elevation AGB Rain forest, Borneo P 
21 Elevation AGB Rain forest, Borneo P 
22 Elevation and 

aspect 
BA Evergreen  broadleaf  

forest, Vietnam P 
23 Elevation and 

slope 
AGB Hill dipterocarp forest, 

Sumatra P 
24 Relative 

position on 
the slope 

BA and DBH Tropical rainforests, Costa 
Rica 

P 
25 Relative 

position on 
the slope 

TH and SD Lowland wet tropical forest, 
Costa Rica 

P 
26 Aspect AGB and SD Old mixed hardwood forest, 

USA P 
27 Aspect AGB and SD Evergreen sclerophyllous trees 

and semideciduous  shrubs D 



with herb associations) and 
dwarf shrublands, Israel 

28 Relative 
position on 
the slope 

AGB Mount Zequalla Monastery, 
Ethiopia 

P 
29 Relative 

position on 
the slope 

AGB and BA Humid tropical montane, 
Ecuadorian Andes 

P 
30 Relative 

position on 
the slope 

AGB Atlantic Forest, Brazil 

P 
31 convexity and 

concavity 
AGB Atlantic rainforest, Brazil 

P 
32 convexity and 

concavity 
AGB Montane Ombrophylus Dense 

Forest, Brazil P 
33 convexity and 

concavity 
AGB Subtropical mountain moist 

forest, China P 
34 Elevation BA and SD Dry deciduous woodland D 
35 Elevation BA Tropical montane forests, 

Ecuador P 
36 Elevation BA Coniferous forest, tropical 

montane cloud forest and 
seasonally dry 
tropical forest, México P 

37 Elevation TH, DBH and 
SD 

Tropical montane forests, 
Ecuador P 

38 Elevation BA Tropical seasonal dry forest, 
temperate forest and montane 
rain 
forest D 

39 Relative 
position on 
the slope 

AGB Tropical seasonal dry forest 

P 
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Table S2- Variables initially selected to characterize topographic heterogeneity in the study 
area. m, meters; m a.s.l., meters above sea level; kWh, kilowatts per hour. Letters in 
parenthesis: a) Wilson and Gallant (2000), b) De Reu et al. (2013), c) Moore et al. (1991), 
d) Sørensen et al. (2006) and e) Hengl and Reuter (2008).

Variable Description 
Elevation above 
sea level (m) 

Indicator for progressive change in climate. Expressed in meters 
above sea level (m a.s.l.) (a, e) 

Aspect 
(N,S,E,W) 

Compass direction of slope exposure. Indicates topographic 
shading, due to northern location, highlighted by nearby hills. It has 
been used to indicate more favorably sheltered areas (c, e). 

Profile curvature 
(Degrees/m) 

Determines the downhill or uphill rate of change in slope in the 
gradient direction. Negative values are upwardly convex and 
indicate accelerated flow of water over the surface. Positive values 
are upwardly concave and indicate slowed flow over the surface (a, 
e). 

Planar curvature 
(Degrees/m) 

Also called contour curvature. It measures the rate of change 
transverse to the direction of maximum slope, in the horizontal 
plane. It measures converging or diverging flow of water. Negative 
values indicate divergent water flow over the surface, and positive 
values indicate convergent flow (a, e). 

Tangential 
curvature 

Has the same significance as the planar curvature (controls the 
acceleration and convergence of surface water flow across land 
surface), but highlights differences in measurement of flow 
convergence and divergence in flat areas, to avoid extremely large 
values when slope is small (a, c, e). 

Total insolation 
(kWh/m2) 

Describes the relationship between the topographic surface and 
incoming solar radiation. It is the sum of direct, diffuse, and 
reflected radiation components (a, e). 

Diffuse insolation 
(kWh/m2) 

The scattered radiation that reaches the ground (a, e) 

Direct insolation 
(kWh/m2) 

The radiation that reaches the ground under clear skies (a, e) 

Slope (%) Slope in the steepest downslope direction. Ranging from 0 to 100 
(a, c) 



Topographic 
position indices 
using different 
scales (number of 
pixels in the 
immediately 
surrounding area 
included in 
calculation: 
1) 5 pixels
2) 11 pixels
3) 15 pixels
4) 19 pixels
5) 25 pixels
6) 35 pixels
7) 45 pixels
8) 61 pixels

A measure of the micro elevation of the sample point, compared to 
the immediately surrounding area. It is a measurement, in relative 
terms, of the position of the pixel along the slope. For each pixel in 
the raster map TPI compares the pixel elevation to the mean 
elevation of the surrounding cells. 
TPI values near-zero or zero indicate flat locations. The more 
positive the TPI, the higher the topographic exposure of the pixel. 
The more negative the TPI, the lower the topographic exposure of 
the pixel. 
The lower the topographic exposure, the more sheltered the area is 
from sunlight (a, c). 

Topographic 
wetness index 

Used to quantify topographic control on hydrological processes. It is 
a parameter describing the redistribution of water in the landscape 
and indicates the tendency of a pixel to accumulate water (a, b, c, d, 
e). 

Distance to road 
(m) 

Measure of human impact, distance from sites to the closest roads 
was estimated. 

Distance to 
human settlement 
(m) 

See above, distance to human settlements. 
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Table S3– Relative importance (%) of each of the topographic variables on aboveground 
biomass as calculated in the regression tree analysis for the entire dataset (first column) and 
for groups of communities A (second column) and B (third column). cplan, planar 
curvature; cprof, profile curvature; ctan, tangential curvature; difinsol, diffuse insolation; 
dirinsol, direct insolation; elevation, elevation above sea level; slope: slope; tpi19, 
topographic position index 19 x 19 pixels scale; tpi25, topographic position index 25 x 25 
pixels scale; tpi61, topographic position index 61 x 61 pixels scale; TWI, topographic 
wetness index; NA, not applicable. 
 

Variable Overall A B 
community 52 NA NA 
cplan NA NA 10 
cprof NA 10 NA 
ctan NA 10 NA 
difinsol 10 NA 20 
dirinsol 11 NA 5 
elevation 8 NA 52 
slope 10 10 NA 
tpi19 NA 35 NA 
tpi25 NA NA 5 
tpi61 9 10 7 
TWI NA 25 NA 



 

Figure S1– GLM for biomass in Group B as a function of Elevation. 
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