Ecosphere

Predicting aboveground forest biomass with topographic variables in human-impacted

tropical dry forest landscapes

M. Salinas-Melgoza, M. Skutsch and J.C. Lovett

Appendix S1

Table S1. Overview of studies that have analyzed the relationship between tropical forest structure variables and topography. AGB, aboveground biomass, BA= Basal area; DBH, diameter at breath height; SD=stem density; TH, Tree height; cited, literature cited; P, preserved forest, D, disturbed forest.

	Topographic			
	variable	Forest structure		
Cited	related to	variable used	Forest type and location	P/D
1			Mixed Dipterocarp forest,	
	Slope	TH and DBH	Borneo	Р
2	Relative			
	position on	AGB, BA and	Wet tropical forest, Puerto	
	the slope	SD	Rico	Р
3			Terra firme wet forest, Central	
	Slope	AGB	Amazon, Brazil	D
4	Elevation and			
	slope	AGB	Wet tropical forest, Costa Rica	Р
5	Relative			
	position on		Lowland moist tropical forest,	
	the slope	AGB	Central Panama	Р
6	Relative			
	position on			
	the slope	AGB and TH	Lower montane forest, Borneo	Р
7	Elevation and		Terra firme moist tropical	
	slope	AGB	forest, Amazon	Р
8	Relative			
	position on			
	the slope	AGB and SD	Wet tropical forest, Ecuador	Р
9	Elevation	AGB	Tropical forest, Hawaii	Р
10	Relative			
	position on		Lowland tropical forest,	
	the slope	AGB	French Guiana	Р

11	Elevation and Slope	AGB	Tropical moist forest, Atlantic coast, SE Brazil	Р
12	Slone	ACR	Lowland moist tropical forest,	D
13	Relative	AUD		Г
14	position on the slope Elevation and slope	AGB, SD and BA AGC	Hill dipterocarp forest, Sumatra Tropical montane cloud forest, puna, and	Р
15	Elevation, slope and aspect	AGC	transition zone, Peru inhumbane lowland forest, transitional/submontane forest and afromontane forest, Zanziber, Tanzania	D
16	Elevation, slope, aspect and a terrain ruggedness index	AGC	Multiple types of tropical forest, Colombian Amazon	D
17	Elevation, slope, aspect concavity and	TH	Lowland moist tropical forest, Central Panama	D
18 19	Elevation Elevation, aspect and relative position on	AGB AGB	Mauna Loa, Hawaiʻi tabonuco forest colorado forest, palm forest and cloud forest, Puerto Rico	P
20	the slope		Dain forest Damas	P
20	Elevation	AGB	Rain forest, Borneo	P P
$\frac{21}{22}$	Elevation and	BA	Evergreen broadleaf	1
23	aspect Elevation and	AGB	forest, Vietnam Hill dipterocarp forest,	Р
24	slope Relative position on	BA and DBH	Sumatra Tropical rainforests, Costa Rica	P
25	Relative position on	TH and SD	Lowland wet tropical forest, Costa Rica	r
76	the slope	ACD and SD	Old mixed hardwood forest	Р
20	Aspect		USA	Р
27	Aspect	AGB and SD	Evergreen sclerophyllous trees and semideciduous shrubs	D

			with herb associations) and dwarf shrublands, Israel	
28	Relative	AGB	Mount Zequalla Monastery,	
	position on		Ethiopia	
	the slope			Р
29	Relative	AGB and BA	Humid tropical montane,	
	position on		Ecuadorian Andes	
	the slope			Р
30	Relative	AGB	Atlantic Forest, Brazil	
	position on			
	the slope			Р
31	convexity and	AGB	Atlantic rainforest, Brazil	
	concavity			Р
32	convexity and	AGB	Montane Ombrophylus Dense	_
	concavity		Forest, Brazil	Р
33	convexity and	AGB	Subtropical mountain moist	-
. .	concavity		forest, China	P
34	Elevation	BA and SD	Dry deciduous woodland	D
35	Elevation	BA	Tropical montane forests,	_
	<u> </u>	-	Ecuador	Р
36	Elevation	BA	Coniferous forest, tropical	
			montane cloud forest and	
			seasonally dry	P
~-			tropical forest, México	Р
37	Elevation	TH, DBH and	Tropical montane forests,	P
20		SD	Ecuador	Р
38	Elevation	BA	Tropical seasonal dry forest,	
			temperate forest and montane	
			rain	D
20			torest	D
39	Relative	AGB	I ropical seasonal dry forest	
	position on			р
	ine slope	CITED		r
	LIIEKATUKE	UIED		

- Ashton, P.S., P. Hall, and S. Ashton. 1992. Comparisons of structure among mixed dipterocarp of north-western forests Borneo. Journal of Ecology 80: 459–481.
- Scatena, F.N. and A.E. Lugo. 1995. Geomorphology, disturbance, and the soil and vegetation of two subtropical wet steepland watersheds of Puerto Rico.

Geomorphology 13:199–213.

- Laurance, W., P. Fearnside, and S. Laurance. 1999. Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecology and Management 118(1):27–138.
- Clark, D. and D. Clark. 2000. Landscape-scale variation in forest structure and biomass in a tropical rain forest. Forest Ecology and Management 137: 185–198.
- Chave, J, R. Condit, S. Lao, J.P. Caspersen, R.B. Foster, and S.P. Hubbell. 2003. Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. Journal of Ecology 91: 240–252.
- 6) Takyu, M., S.I. Aiba, and K. Kitayama. 2003. Changes in biomass, productivity and decomposition along topographical gradients under different geological conditions in tropical lower montane forests on Mount Kinabalu, Borneo. Oecologia 134: 397– 404.
- Castilho, C. de, and W. Magnusson. 2006. Variation in aboveground tree live biomass in a central Amazonian forest: effects of soil and topography. Forest Ecology and Management 234: 85–96.
- Valencia, R., R. Condit, H.C. Muller-Landau, C. Hernandez, and H. Navarrete, 2009. Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical Ecology 25: 473–482.
- Asner, G.P., R.F. Hughes, T.A. Varga, D.E. Knapp, and T. Kennedy-Bowdoin.
 2009. Environmental and biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems 12: 261–278.
- 10) Ferry, B., F. Morneau, J. Bontemps, L. Blanc, and V. Feycon. 2009. Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest. Journal of Ecology 98: 106–116.

- 11) Alves, L.F., S.A. Vieira, M.A. Scaranello, P.B. Camargo, F.A.M. Santos, C.A. Jolyd, and L.A. Martinellic. 2010. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management 260: 679–691.
- 12) Mascaro, J., G. P. Asner, H.C. Muller-Landau, M. van Breugel, J. Hall, and K. Dahlin. 2011. Controls over aboveground forest carbon density on Barro Colorado Island, Panama. Biogeosciences 8: 1615–1629.
- 13) Laumonier, Y., A. Edin, M. Kanninen, and A.W. Munandar. 2010. Forest Ecology and Management Landscape-scale variation in the structure and biomass of the hill dipterocarp forest of Sumatra: Implications for carbon stock assessments. Forest Ecology and Management 259: 505–513.
- 14) Gibbon, A., M.R. Silman, Y. Malhi, J.B. Fisher, P. Meir, M. Zimmermann, G.C. Dargie, W.R. Farfan, and K.C. Garcia. 2010. Ecosystem Carbon Storage Across the Grassland–Forest Transition in the High Andes of Manu National Park, Peru. Ecosystems 13: 1097–1111.
- 15) Marshall, A.R., S. Willcock, P.J. Platts, J.C. Lovett, A. Balmford, N.D. Burgess, J.E. Latham, P.K.T. Munishi, R. Salter, D.D. Shirim, S.L. Lewis, S.L. 2012.
 Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Biological Conservation 154: 20–33.
- 16) Asner, G.P., J.K. Clark, J. Mascaro, G.A. Galindo, K.D. Chadwick, D.A. Navarrete, G. Paez-Acosta, E. Cabrera, T. Kennedy-Bowdoin, Á. Duque, A. Balaji, A., P. von Hildebrand, L. Maatoug, J.F. Phillips, A.P. Yepes, D.E. Knapp, M.C. García, J. Jacobson, and M.F. Ordóñez. 2012. High-resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosciences 9: 2683–2696.

- 17) Detto, M., H.C. Muller-Landau, J. Mascaro, and G.P. Asner. 2013. Hydrological networks and associated topographic variation as templates for the spatial organization of tropical forest vegetation. PLoS One 8:e76296.
- 18) Raich, J.W., A.E. Russell, and P.M. Vitousek. 1997. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawaii. Ecology 78: 707–721.
- Weaver, P.L. 2000. Environmental gradients affect forest structure in Puerto Rico's Luquillo mountains. Interciencia 25(5): 254–259.
- 20) Aiba, S. and K. Kitayama. 1999. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecology 140:139–157.
- 21) Kitayama, K. and S. Aiba. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90: 37–51.
- 22) Van Do, T., O. Kozan, and T.M. Tuan. 2015. Altitudinal changes in species diversity and stand structure of tropical forest, Vietnam. Annual Research and Review in Biology 6(3): 156—165.
- 23) Laumonier, Y., A. Edin, M. Kanninen, and A.W. Munandar. 2010. Landscape-scale variation in the structure and biomass of the hill dipterocarp forest of Sumatra:
 Implications for carbon stock assessments. Forest Ecology and Management 259: 505–513.
- 24) Lieberman, D., M. Lieberman, R. Peralta and G.S. Hartshorn. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology 84(2):137–152.

- 25) Lieberman, M., D. Lieberman, G.S. Hartshorn, and R. Peralta. 1985. Small-scale altitudinal variation in lowland wet tropical forest vegetation. Journal of Ecology 73: 505–516.
- 26) Desta, F., J.J. Colbert, J.S. Rentch, and K.W. Gottschalk. 2004. Aspect induced differences in vegetation, soil, and microclimatic characteristics of an Appalachian watershed. Castanea 69(2): 92–108.
- 27) Sternberg, M. and M. Shoshany. 2001. Influence of slope aspect on Mediterranean woody formations: Comparison of a semiarid and an arid site in Israel. Ecological Research 16: 335–345.
- 28) Girma, A., T. Soromessa, and T. Bekele. 2014. Forest Carbon Stocks in woody plants of Mount Zequalla Monastery and it's variation along altitudinal gradient: implication of managing forests for climate change mitigation. Science, Technology and Arts Research Journal 3(2): 132–140.
- 29) Leuschner, C., A. Zach, G. Moser, J. Homeier, S. Graefe, D. Hertel, B. Wittich, N. Soethe, S. Iost, M. Röderstein, V. Horna, and K. Wolf. 2013. The carbon balance of tropical mountain forests along an altitudinal transect. Pages 117–139 *in* Bendix, J., E. Beck, A. Bräuning, F. Makeschin, R. Mosandl, S. Scheu, and W. Wilcke (Eds.). Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of south Ecuador. Springer, Heidelberg.
- 30) Vieira, S.A., L.F. Alves, P.J. Duarte-Neto, S.C. Martins, L.G. Veiga, M.A.
 Scaranello, M.C. Picollo, P.B. Camargo, J.B. do Carmo, E.S. Neto, F.A.M. Santos,
 C.A. Joly, and L.A. Martinelli. 2011. Stocks of carbon and nitrogen and partitioning
 between above- and belowground pools in the Brazilian coastal Atlantic Forest
 elevation range. Ecology and Evolution 1(3): 421–434.

- 31) Casarin, R E.L. 2008. Heterogeneidade ambiental, diversidade e estrutura da comunidade arbórea de um trecho da floresta ombrófila. MC Thesis, Universidade estadual de Campinas, Instituto de Biologia. Brazil. 126 Pp.
- 32) Oliveira, A.C. 2013. Fatores abióticos influenciando a vegetação em floresta ombrófila densa montana, parque estadual da Serra do Mar (Ubatuba, SP). MC Thesis, Secretaria de Agricultura e Abastecimento. Instituto Agronômico. Brazil. 92 Pp.
- 33) Xu, Y., S.B. Franklin, Q. Wang, Z. Shi, Y. Luo, Z. Lu, J. Zhang, X. Qiao, and M. Jiang. 2015. Topographic and biotic factors determine forest biomass spatial distribution in a subtropical mountain moist forest. Forest Ecology and Management 357: 95–103.
- 34) Lovett, J.C., A.R. Marshall, and J. Carr. 2006. Changes in tropical forest vegetation along an altitudinal gradient in the Udzungwa Mountains National Park, Tanzania. African Journal of Ecology 44: 478–490.
- 35) Homeier, J., S.W. Breckle, S. Günter, R.T. Rollenbeck, C. and Leuschner 2010.Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42: 140–148.
- 36) Toledo-Garibaldi, M. and G. Williams-Linera. 2014. Tree diversity patterns in successive vegetation types along an elevation gradient in the Mountains of Eastern Mexico. Ecological research 29: 1097–1104.
- 37) Leuschner, C., G. Moser, C. Bertsch, M. Röderstein, and D. Hertel. 2007. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador.
 Basic and Applied Ecology 8: 219–230.

- 38) Vázquez, J.A. and T.J. Givnish. 1998. Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. Journal of ecology 86: 999–1020.
- 39) Jaramillo, V.J., J.B. Kauffman, L. Rentería-Rodríguez, D.L. Cummings, and L.J. Ellingson. 2003. Biomass, carbon, and nitrogen pools in Mexican tropical dry forest landscapes. Ecosystems 6: 609–629.

Table S2- Variables initially selected to characterize topographic heterogeneity in the study area. m, meters; m a.s.l., meters above sea level; kWh, kilowatts per hour. Letters in parenthesis: a) Wilson and Gallant (2000), b) De Reu et al. (2013), c) Moore et al. (1991), d) Sørensen et al. (2006) and e) Hengl and Reuter (2008).

Variabla	Description		
Floration above	Indicator for progressive change in elimete. Expressed in meters		
see level (m)	above see level (m a s 1) (a, a)		
Acrest	above sea level (m a.s.i.) (a, e)		
Aspect (N.C.E.W)	Compass direction of slope exposure. Indicates topographic		
(N,S,E,W)	been used to indicate more favorably sheltered areas (c, e).		
Profile curvature	Determines the downhill or uphill rate of change in slope in the		
(Degrees/m)	gradient direction. Negative values are upwardly convex and		
	indicate accelerated flow of water over the surface. Positive values		
	are upwardly concave and indicate slowed flow over the surface (a,		
	e).		
Planar curvature	Also called contour curvature. It measures the rate of change		
(Degrees/m)	transverse to the direction of maximum slope, in the horizontal		
	plane. It measures converging or diverging flow of water. Negative		
	values indicate divergent water flow over the surface, and positive		
	values indicate convergent flow (a, e).		
Tangential	Has the same significance as the planar curvature (controls the		
curvature	acceleration and convergence of surface water flow across land		
	surface), but highlights differences in measurement of flow		
	convergence and divergence in flat areas, to avoid extremely large		
	values when slope is small (a, c, e).		
Total insolation	Describes the relationship between the topographic surface and		
(kWh/m^2)	incoming solar radiation. It is the sum of direct, diffuse, and		
	reflected radiation components (a, e).		
Diffuse insolation	The scattered radiation that reaches the ground (a, e)		
(kWh/m^2)			
Direct insolation	The radiation that reaches the ground under clear skies (a, e)		
(kWh/m^2)			
Slope (%)	Slope in the steepest downslope direction. Ranging from 0 to 100		
1	(a, c)		

Topographic	A measure of the micro elevation of the sample point, compared to			
position indices	the immediately surrounding area. It is a measurement, in relative			
using different	terms, of the position of the pixel along the slope. For each pixel in			
scales (number of	the raster map TPI compares the pixel elevation to the mean			
pixels in the	elevation of the surrounding cells.			
immediately	TPI values near-zero or zero indicate flat locations. The more			
surrounding area	positive the TPI, the higher the topographic exposure of the pixel.			
included in	The more negative the TPI, the lower the topographic exposure of			
calculation:	the pixel.			
1) 5 pixels	The lower the topographic exposure, the more sheltered the area is			
2) 11 pixels	from sunlight (a, c).			
3) 15 pixels				
4) 19 pixels				
5) 25 pixels				
6) 35 pixels				
7) 45 pixels				
8) 61 pixels				
Topographic wetness index	Used to quantify topographic control on hydrological processes. It is a parameter describing the redistribution of water in the landscape and indicates the tendency of a pixel to accumulate water (a, b, c, d, e).			
Distance to road	Measure of human impact, distance from sites to the closest roads			
(m)	was estimated.			
Distance to	See above, distance to human settlements.			
human settlement				
(m)				

LITERATURE CITED

De Reu, J., J. Bourgeois, M. Bats, A. Zwertvaegher, V. Gelorini, P. De Smedt, W. Chu, M.

Antrop, P. De Maeyer, P. Finke, M.V. Meirvenne, J. Verniers, and P. Crombe. 2013.

Application of the topographic position index to heterogeneous landscapes.

Geomorphology 186:39-49.

Hengl, T. and H.I. Reuter (Eds.). 2008. Geomorphometry: Concepts, software, applications.

Developments in Soil Science, vol. 33, Elsevier, 772 Pp.

Moore, I.D., R. Grayson, and A. Ladson. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological processes 5:3–30.

Sorensen, R., U. Zinko, and J. Seibert. 2006. On the calculation of the topographic wetness

index: evaluation of different methods based on field observations. Hydrology and Earth

System Sciences 10: 101–112.

Wilson, J.P., and J.C. Gallant. 2000. Terrain analysis: principles and applications. John

Wiley & Sons. 520 Pp.

Table S3– Relative importance (%) of each of the topographic variables on aboveground biomass as calculated in the regression tree analysis for the entire dataset (first column) and for groups of communities A (second column) and B (third column). cplan, planar curvature; cprof, profile curvature; ctan, tangential curvature; difinsol, diffuse insolation; dirinsol, direct insolation; elevation, elevation above sea level; slope: slope; tpi19, topographic position index 19 x 19 pixels scale; tpi25, topographic position index 25 x 25 pixels scale; tpi61, topographic position index 61 x 61 pixels scale; TWI, topographic wetness index; NA, not applicable.

Variable	Overall	Α	B
community	52	NA	NA
cplan	NA	NA	10
cprof	NA	10	NA
ctan	NA	10	NA
difinsol	10	NA	20
dirinsol	11	NA	5
elevation	8	NA	52
slope	10	10	NA
tpi19	NA	35	NA
tpi25	NA	NA	5
tpi61	9	10	7
TWI	NA	25	NA

Figure S1– GLM for biomass in Group B as a function of Elevation.