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Summary 

1. The adaptability of species’ climatic niches can influence the dynamics of colonisation and 

gene flow across climatic gradients, potentially increasing the likelihood of speciation, or 

reducing extinction in the face of environmental change. However, previous comparative 

studies have tested these ideas using geographically, taxonomically and ecologically 

restricted samples, yielding mixed results, and thus the processes linking climatic niche 

evolution with diversification remain poorly understood. 
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2. Focusing on birds, the largest and most widespread class of terrestrial vertebrates, we 

test whether variation in species diversification among clades is correlated with rates of 

climatic niche evolution, and the extent to which these patterns are modified by underlying 

gradients in biogeography and species’ ecology. 

3. We quantified climatic niches, latitudinal distribution and ecological traits for 7657 (~75%) 

bird species based on geographical range polygons, and then used Bayesian phylogenetic 

analyses to test whether niche evolution was related to species richness and rates of 

diversification across genus and family-level clades.  

4. We found that the rate of climatic niche evolution has a positive linear relationship with 

both species richness and diversification rate at two different taxonomic levels (genus and 

family). Furthermore, this positive association between labile climatic niches and 

diversification was detected regardless of variation in clade latitude or key ecological traits. 

5. Our findings suggest either that rapid adaptation to unoccupied areas of climatic niche 

space promotes avian diversification, or that diversification promotes adaptation. Either way, 

we propose that climatic niche evolution is a fundamental process regulating the link 

between climate and biodiversity at global scales, irrespective of the geographical and 

ecological context of speciation and extinction. 

 

Key-words: Climate, diversification, ecological traits, latitudinal gradient, niche evolution, 

niche conservatism  

 

Introduction 

Environmental conditions (e.g. temperature and precipitation) have long been viewed as key 

predictors of species richness across spatial and temporal scales (Wallace 1876). These 

conditions are often considered to be extrinsic factors that primarily shape patterns of 

diversity indirectly, for instance through their effects on productivity and habitat complexity, 

both of which correlate with species richness (MacArthur 1964; Hawkins, Porter & Diniz-
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Filho 2003). In recent years, however, the focus has shifted away from examining the 

importance of particular environmental conditions (e.g. temperature), and towards 

understanding the role of intrinsic processes linked to climate, including the relationship 

between climatic niche evolution and species diversification (e.g. Kozak & Wiens 2007; 

Kozak & Wiens 2010; Cadena et al. 2012; Gómez-Rodríguez, Baselga & Wiens 2014; Title 

& Burns 2015). This link is intuitively appealing because it suggests that abiotic 

environmental factors influence patterns of diversity directly via deterministic evolutionary 

processes, such as local adaptation and the breakdown of gene flow. However, the role of 

climatic niches in diversification remains unclear, not least because contrasting hypotheses 

linking niche evolution and diversification have been proposed. 

 

One hypothesis, focusing on niche lability, predicts that species’ diversification is 

greatest among lineages in which climatic niches evolve rapidly (Moritz et al. 2000; Kozak & 

Wiens 2007; 2010). These labile climatic niches could facilitate colonisation of novel 

environments, leading to local adaptation in ecological or sexual traits, thereby reducing 

gene flow between populations and promoting reproductive isolation (Sobel et al. 2010; Hua 

& Wiens 2013). Similarly, lineages with wide environmental tolerances may have large 

geographic ranges that are more susceptible to vicariance events leading to speciation 

(Rosenzweig 1995) or be better able to resist extinction in periods of environmental change 

(Holt 1990). In contrast, a second hypothesis predicts that diversification may be greatest 

when climatic niches evolve slowly. This may occur when conserved climatic niches promote 

allopatric speciation by limiting dispersal across unsuitable habitats or climatic gradients, for 

example in lineages specialised to a particular climatic regime (Janzen 1967; Wiens 2004; 

Kozak & Wiens 2006; Cadena et al. 2012). If gene flow is consequently interrupted between 

previously contiguous populations, then diversification may be greatest in groups where 

climatic niche evolution is most constrained (Hua & Wiens 2013). The central tenet of both 

these hypotheses is that the dynamics of climatic niche evolution within lineages directly 
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influences species diversification, but they make contrasting predictions as to the direction of 

the correlation between diversification and rates of climatic niche evolution. 

 

A number of previous studies have tested these predictions indirectly by assessing 

whether specific speciation events are associated with shifts in climatic niche. This approach 

has revealed that amphibian sister species inhabit both similar (e.g. Kozak & Wiens 2006) 

and dissimilar (Kozak & Wiens 2007) climatic conditions, while recent speciation events in 

other taxa, such as insects, birds and mammals, are also associated with (e.g. Rice, 

Martínez-Meyer & Peterson 2003; Eaton, Soberón & Peterson 2008) and without (e.g. 

Peterson, Soberón & Sánchez-Cordero 1999; Peterson & Nyári 2007) significant divergence 

in climatic niches. Similarly, more direct tests (i.e. those explicitly examining the relationship 

between rates of climatic niche evolution and species diversification) have also produced 

mixed results, finding either no association (Pyron & Wiens 2013) or positive associations 

(Kozak & Wiens 2010; Schnitzler et al. 2012; Title & Burns 2015) across taxa. However, 

such analyses have predominately focused on species diversification in the context of 

particular regions or clades, providing limited insight into the direction of relationships at 

larger spatial and temporal scales, and across groups with contrasting physiological traits. 

Moreover, comparative analyses have typically focused on linear relationships whereas 

species diversification may conceivably peak with intermediate levels of niche lability, 

producing non-linear associations.  

 

Theoretically, the variation in previous results may also be partly explained by 

latitudinal and ecological variation among clades or species. Latitude, in particular, 

correlates strongly with many aspects of climatic variation. Increased thermal stability and 

zonation towards the equator potentially leads to narrower thermal tolerance, and hence 

reduced dispersal across climatic gradients, in tropical organisms (Janzen 1967). Thus, 

allopatric speciation among subdivided populations with conserved climatic niches may be 

more prevalent in tropical than temperate systems, modifying the relationship between 
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climatic niche evolution and diversification (Kozak & Wiens 2007; Kozak & Wiens 2010; 

Cadena et al. 2012; Fisher-Reid, Kozak & Wiens 2012; Lawson & Weir 2014). Similarly, the 

association between niche evolution and diversification could be influenced by variation 

among species in ecological factors, such as habitat or dispersal ability (Gavrilets 2004; 

Cadena et al. 2012). The extent and direction of these associations is rarely considered 

because comprehensive data on phylogenetic history, climatic niche, latitudinal range and 

ecological traits have not been available for global samples of species. 

 

To address this issue, we compiled distributional, environmental and ecological data 

to assess the relationship between climatic niche evolution and patterns of diversification 

across ~75% of extant bird species worldwide. We first quantified species’ climatic niches 

using a suite of environmental variables extracted from mapped breeding range 

distributions. These geographical distributions do not provide direct insight into the 

environmental niche, yet their boundaries are predicted by climatic variables, even in 

migratory species (Pigot, Owens & Orme 2010). In line with many previous studies, we 

therefore assume that climatic variables extracted from breeding range distributions provide 

a valid estimation of the realised climatic niche of each species. We then used phylogenetic 

models to test for linear and non-linear associations between rates of niche evolution and 

lineage diversification. In addition, we investigated the mechanism driving rates of niche 

evolution by asking whether faster niche rates were positively or negatively associated with 

levels of climatic variance within species (estimated across the geographical range). Our 

assumptions were that intraspecific climatic variance will increase if diversification is 

predominantly driven by the colonisation of novel environments (niche expansion), but 

decrease if diversification reflects the splitting of wide-ranging parent lineages into daughter 

lineages with smaller ranges (niche subdivision). Finally, by incorporating latitudinal range 

and ecological traits into our models, we further considered whether the association between 

niche evolution and diversification was modified by major biogeographical or ecological 

factors, including habitat, behaviour, and migration.  



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

Birds provide a useful system for these analyses for three main reasons. First, 

comprehensive and relatively accurate data are available on geographical ranges, habitat 

preferences and ecological traits for all avian species, most of which are included in 

comprehensive phylogenetic analyses (Jetz et al. 2012). Second, since birds occur across 

an almost full spectrum of climatic conditions, latitudes and habitats, we are able to explore 

the link between climatic niche evolution and diversification in unprecedented detail and with 

much improved sample size. Finally, the combination of datasets available for birds allows 

us to examine the association between climatic niche evolution and diversification at 

contrasting taxonomic scales. Specifically, we ran models across both genus- and family-

level clades, which theoretically differ in their average age, offering two alternative 

perspectives on the role of climatic niche evolution over time. 

 

Materials and methods 

PHYLOGENETIC DATA AND CLADE SELECTION 

As a phylogenetic framework, we used species-level molecular phylogenies compiled by 

Jetz et al. (2012). These trees were constructed in a Bayesian framework, combining multi-

gene phylogenetic inference (6670 species) with a taxonomic placement approach (3323 

species), overlaid on the Hackett et al. (2008) family-level backbone. To account for 

phylogenetic uncertainty, we sampled 500 trees from the posterior distribution of complete 

trees provided by Jetz et al. (2012). Each tree in this sample then formed the basis for an 

independent run of all subsequent analyses.  

 

In the Jetz et al. (2012) phylogenies, both genus and family-level clades are 

frequently reconstructed as para- or polyphyletic, so we used a standardised procedure to 

test for monophyly, and restricted our sample to monophyletic clades (see online 

supplementary material). We also excluded clades containing fewer than four species with 

climatic data. The removal of small or data-poor clades can potentially bias analyses (e.g. 

Ricklefs & Jønsson 2014), but some thinning of the dataset is necessary to avoid the 
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problems associated with calculating rates of evolution in very small clades (Kozak & Wiens 

2010; Rabosky et al. 2013). We therefore attempt to strike a balance by including all but the 

very smallest clades (1–3 species). Applying this clade selection procedure across the 

distribution of trees provided 500 ‘pseudoreplicate’ samples of clades (Appendix; fig. S1) 

containing a median of 96 (range: 93–100) family-level clades and 507 (503–511) genus-

level clades (total n = 7657 species). On average across all datasets, family-level clades 

were substantially older (mean = 31.5 Myr) than genus-level clades (11.9 Myr; fig. S2; t-test, 

t601 = 17.83, P < 0.001) across all pseudoreplicate datasets, and thus differ markedly in the 

temporal scale of evolutionary history that they represent. For further details of phylogenetic 

methods and clade selection see electronic supplementary material. 

 

METRICS OF CLADE DIVERSIFICATION 

We opted not to use the most sophisticated methods available for exploring lineage 

diversification (e.g. Etienne & Haegeman 2012) because fitting such models to large 

datasets is challenging. Furthermore, parameter estimates derived from these models can 

be strongly interrelated and subject to bias according to clade age and relative extinction 

intensity (see Etienne et al. 2012), potentially making them difficult to interpret when applied 

to a wide sample of clades. Instead, we focused on two relatively simple and transparent 

methods for estimating clade diversification, following a number of recent studies (e.g. 

Rabosky & Matute 2013; Title & Burns 2015; Wiens 2015). One approach involved 

calculating net diversification rates, which in its simplest form can be estimated by dividing 

ln-transformed (extant) species richness by clade age. Another focused on variation in (ln-

transformed) clade richness, which captures the total time-integrated diversification 

experienced by a clade.  

 

The validity of both these approaches depends on the relationships between species 

richness, diversification rate and clade age (Rabosky 2010). To explore this issue, we used 

Bayesian phylogenetic mixed models (BPMMs; Hadfield 2010) to test the relationship 
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between both metrics of diversification and crown group age in our dataset. Although older 

clades were characterised by lower estimated diversification rates—indicative of non-

constant rates of species accumulation over time—we also found weakly positive 

relationships between clade age and species richness in both families and genera (fig. S3), 

suggesting that each approach provides some useful information about diversification (see 

online supplementary material). As there was no conclusive evidence favouring the use of 

one diversification metric over another, we ran our final analyses using both metrics. 

 

RATES OF CLIMATIC NICHE EVOLUTION 

Although birds are arguably the best-known class of organisms, detailed data on 

physiological tolerance and fine-scale occurrence records are not available for most species. 

Thus, to characterise species’ climatic niches, we used geographic range maps of species’ 

breeding distributions from BirdLife International and NatureServe (available from 

www.birdlife.org) linked to global climate layers (Hijmans et al. 2005). We overlaid range 

maps with a ~10 x 10 km equal area grid in Behrman projection and then used grid cell 

occurrence to extract environmental conditions at the same resolution. For each grid cell 

occupied by one or more species, we extracted values for 19 bioclimatic variables plus 

elevation from the WorldClim dataset, which together provide a comprehensive set of 

environmental variables frequently used to characterise species’ broad-scale climatic niches 

(e.g. Kozak & Wiens 2010; Pigot, Owens & Orme 2010; Cooper, Freckleton & Jetz 2011; 

Botero et al. 2014; Gómez-Rodríguez, Baselga & Wiens 2014).  

 

It is worth noting that our niche estimates may not accurately capture the full range of 

climatic conditions experienced by migratory species because environmental data are only 

extracted from breeding ranges. While incorporating additional information from non-

breeding ranges would be preferable in these cases, it is difficult to quantify the 

environmental conditions experienced by migratory birds over the course of a year because 

the timing of migrations and migratory stopovers are complex and often poorly documented, 
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as are the true extent of non-breeding distributions. For these reasons, we follow other 

global studies of avian climatic niches (e.g. Pigot, Owens & Orme 2010; Botero et al. 2014) 

by focusing on breeding ranges, which are generally more accurately documented and likely 

to play a more crucial role than wintering ranges in the context of gene flow, speciation and 

diversification. See online supplementary material for further explanation and justification of 

our approach. 

 

All climatic variables were log-transformed and standardised (Cooper, Freckleton & 

Jetz 2011) before being subjected to a principal components analysis (PCA). This procedure 

identified two dominant PCs (fig. S4; table S1) explaining more variation in climatic variables 

than expected under a neutral broken stick model (Kozak & Wiens 2010). These two PCs 

were used in all subsequent analyses. To characterise climatic variation between species, 

we calculated species’ mean PC scores in each climatic axis, and then used these values to 

infer clade-level rates of niche evolution (see below). For each species, we estimated levels 

of within-species (intraspecific) variation in species’ climatic niche traits by calculating the 

range-wide variance in climatic PC scores (both axes) generated for all grid cells 

overlapping the geographical distribution. In total, we estimated climatic niche parameters 

for 7499 (98%) species in our dataset. 

 

To infer rates of climatic niche evolution, we followed established methodological 

approaches (e.g. Cooper, Jetz & Freckleton 2010; Cooper, Freckleton & Jetz 2011; Machac, 

Storch & Wiens 2013; Quintero & Wiens 2013; Title & Burns 2015) by using phylogenetic 

models of trait evolution in the R package geiger (Pennell et al. 2014) to estimate the 

Brownian rate parameter (ı2) under Brownian motion (BM) and Ornstein-Uhlenbeck (OU) 

models of evolution. We estimated rates of niche evolution for all clades in our dataset under 

each model, and then assessed relative model fit by calculating Akaike weights based on 

AIC scores. Using these scores, we then calculated a model-averaged estimate of ı2 for 

each PC within each clade using the weighted sum of ı2 estimates derived from each 
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model. However, we also studied the effects of (i) using rates derived from a single model 

only (BM or OU) and (ii) using rates estimated from clade trees pruned to include only those 

species represented in the Jetz et al. (2012) phylogenies by genetic data. It is worth noting 

that by estimating ı2 using phylogenetic methods, we assume that climatic variance within 

clades represents evolved differences among species rather than plasticity alone. Given that 

plasticity almost certainly contributes to climatic niche differences across our sample, the 

rates we calculate might best be viewed as climatic niche divergence. However, we refer to 

them as rates of climatic niche evolution, both for the sake of consistency with previous 

studies, and because evolutionary adaptation often plays a major role in setting bioclimatic 

limits at large spatial scales (e.g. transitions between biomes with contrasting vegetation). 

For further details and justification of our approach, see online supplementary material.  

 

LATITUDE AND ECOLOGICAL TRAITS 

To investigate the influence of geographical distribution and ecological traits on the 

relationship between climatic niche evolution and diversification, we quantified clade latitude 

and ecological traits for all species in our analysis. For clade latitude, we used range maps 

to calculate latitudinal centroid values for each species, and then generated mean (absolute) 

values as an estimate of the dominant latitudinal position of each clade. To capture 

ecological variation among clades, we quantified three key ecological attributeshabitat, 

territorial system, and migratory behaviourall of which are related to dispersal ability, with 

important implications for gene flow (Salisbury et al. 2012). For each ecological axis, species 

were assigned to one of three categories based primarily on information provided in The 

Handbook of the Birds of the World series (del Hoyo et al. 1992–2011; see supplementary 

online material). In total, we collated data on latitude and ecological traits for 7648 (99%) 

species in our dataset. To convert species-level data to clade-level indices, we averaged the 

species means for each ecological trait across all species within a clade. Further details, 
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including an expanded justification for the use and classification of ecological variables, are 

presented in the electronic supplementary material. 

 

PHYLOGENETIC COMPARATIVE ANALYSES 

We used BPMMs (Hadfield & Nakagawa 2010) to assess the correlation between climatic 

niche evolution and diversification. As in phylogenetic generalised least-squares (PGLS) 

regression models, the BPMM approach is capable of estimating both phylogenetic and non-

phylogenetic (i.e. residual) sources of variation, with the added benefit that it is possible to 

model data with alternative (i.e. non-Gaussian) error structures (see below). In the first set of 

analyses, we tested whether clade diversification was predicted by linear or non-linear 

(quadratic) relationships with model-averaged rates of climatic niche evolution. These 

analyses were performed across both family- and genus-level clades. To test the 

consistency of these relationships, we re-ran models using: (i) non-model-averaged niche 

rates estimated from single models (BM or OU), (ii) niche rates derived from clade trees 

pruned to contain only species placed by genetic data, and (iii) data restricted to clades 

containing 10 or more species. We also assessed whether rates of interspecific climatic 

niche evolution were positively or negatively correlated with levels of clade-averaged 

intraspecific variance in climatic conditions. 

 

In a second set of analyses, we focused on the effect of latitude and ecology on the 

relationship between climatic niche evolution and diversification. We began by fitting models 

containing our niche rate variable plus latitude and all four ecological variables. We then 

examined whether the relationship between niche rate and diversification varied with latitude 

or ecology by fitting models in which diversification was predicted by the interaction between 

climatic niche rate and each latitudinal/ecological variable. We chose not to run models 

containing all variables and their interactions with climatic niche evolution to avoid problems 

associated with over-parameterisation and interpretation of highly complex models including 

multiple interactions. For clarity, therefore, we tested the interaction between niche rate and 
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each ecological variable separately. This second set of analyses focused specifically on 

genera because geographic and ecological variables are likely to provide a more accurate 

index of species’ traits within genera than families because data are averaged across fewer 

species. 

 

In all cases, we incorporated phylogenetic uncertainty in our parameter estimates by 

running each model set over the entire range of pseudoreplicate datasets. We inferred the 

overall significance of predictors using the median PMCMC value across these datasets, and 

also by counting the frequency of models (ƒ) in which the predictor was statistically 

significant (PMCMC < 0.05), following Botero et al. (2014). Diversification rate models and 

models of (ln-transformed) family-level species richness were run using a Gaussian error 

structure, whereas for genus-level species richness we assumed a quasi-Poisson error with 

a ln-link because richness values were highly right-skewed (Botero et al. 2014). Rate 

variables were ln-transformed and all predictor variables were centered and standardised 

prior to analysis to aid interpretation of relative effect sizes (Schielzeth 2010). To account for 

any region-specific effects, we also included ‘Continent’ as a random effect in all our models, 

with each clade being unambiguously assigned to a particular continent based on the 

position of the majority of occupied grid cells. BPMMs were run using the R package 

MCMCglmm and each model was run for 110000 iterations with a burn-in of 10000 iterations 

and thinning interval of 25 iterations, using flat uninformative priors and uniformly low levels 

of belief (Hadfield 2010). 

 

Results 

RATES OF CLIMATIC NICHE EVOLUTION 

Using PCs describing two major axes of variation in avian climatic niches (Fig. 1, table S1), 

we estimated model-averaged rates of climate niche evolution for each clade in our analysis 

(>300000 clades tested across 500 pseudoreplicate trees). In general, across both families 

and genera, climatic niche evolution in both PC axes was best characterised by an OU 
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model of trait evolution (fig. S5), in which climatic niches evolve randomly within bounds. 

However, an unbounded BM model received slightly higher levels of support among genera 

than family-level clades (fig. S5), possibly because climatic niche evolution is less 

constrained in genus-level clades. We note however that this pattern could also reflect 

reduced statistical power to reject BM models among genera simply because they typically 

contain a smaller sample of species. 

 

CLIMATIC NICHE EVOLUTION AND DIVERSIFICATION 

We found strong evidence of a positive linear relationship between diversification and rates 

of climatic niche evolution across both families (Fig. 2A,C) and genera (Fig. 2B,D), 

regardless of whether we used (ln-transformed) species richness values (i.e. total 

diversification) or net diversification rates as our metric of clade diversification (table S2). 

However, we detected no significant non-linear (quadratic) relationships between either 

family- or genus-level diversification (table S2). In general, these findings were highly 

consistent across pseudoreplicate datasets (table S2) and alternative analytical approaches, 

including those based on (i) niche rates derived from either BM or OU models separately 

(tables S3 and S4), (ii) niche rates estimated using only those species in clades represented 

by genetic data (table S5), and (iii) only clades containing 10 or more species (tables S6). 

 

 When we assessed whether intraspecific variance in climatic conditions was 

correlated with rates of climatic niche evolution, we found that these two variables were 

significantly albeit weakly positively correlated across both family- and genus-level clades, 

irrespective of the dataset used (Table S7). In other words, across both families and genera, 

clades exhibiting the fastest rates of climatic niche evolution also had, on average, higher 

levels of within-species climatic variance (Fig. 3). 
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THE ROLE OF LATITUDE AND ECOLOGY  

Habitat, territoriality and migration were uncorrelated with genus species richness, and thus 

do not explain the link between rates of climatic niche evolution and total diversification 

(table S8). Latitude was correlated with genus species richness, which increased moderately 

towards the tropics, but again this had little effect on the strong positive relationship between 

rates of niche evolution and total diversification (table S8). Similarly, we found that the 

association detected between climatic niche evolution and diversification rates across 

genera was not explained by the same set of biogeographic and ecological variables (table 

S8). 

 

When we fitted separate models with interaction terms to explore these associations 

in more detail, we found no evidence that the slope of the relationship between climatic 

niche evolution and genus diversification varied deterministically with variation in either 

latitude or ecology (Table 1). In all cases, models containing an interaction term between 

niche rate variables and clade latitude or ecology provided no significant increase in 

explanatory power (interaction terms PMCMC >> 0.05; Table 1), a pattern found irrespective of 

the metric used (table S9). Taken together, these results imply that the linear association 

between rapid rates of niche evolution and genus-level diversification is largely consistent 

across both major clades of the avian tree (passerines and non-passerines), and regardless 

of differences in geography and ecology. 

 

Discussion 

We have shown that positive relationships between rates of climatic niche evolution and 

diversification are pervasive at global scales in birds: labile climatic niches are associated 

with greater species richness and faster rates of diversification across both avian genera 

and families. Moreover, the same linear relationships were also detected regardless of the 

methods used to quantify niche evolution and diversification. These findings are consistent 

with the view that rapid adaptation to novel climatic regimes drives diversification, and that 
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this coupling between fast rates of niche evolution and diversification is maintained over a 

range of evolutionary timescales.  

The link we identify between rapid shifts in climatic regimes and the build up of clade 

diversity is opposite to the pattern predicted by the niche conservatism hypothesis, and 

instead supports a positive association between niche lability and diversification. Similar 

relationships have now been reported in plants (Schnitzler et al. 2012), ectothermic 

vertebrates (Kozak & Wiens 2010), and endothermic vertebrates (Title & Burns 2015). 

However, while each of these previous studies was focused on restricted geographic or 

taxonomic sampling (the Cape Flora of South Africa, the plethodontid salamanders of the 

New World, and the thraupid tanagers of the Neotropics, respectively), our results confirm 

that the relationship holds for an entire globally distributed class of organisms, implying a 

much more general link between niche lability and diversification. 

 

One possible explanation for this association is that climatic niche evolution has a 

direct effect on the likelihood of speciation and extinction, for example when populations 

inhabiting contrasting environments speciate as a result of reduced gene flow (Kozak & 

Wiens 2007; Sobel et al. 2010). In the most commonly postulated form of this scenario, 

niche evolution facilitates range expansion and larger ranges are then more likely to be 

subject to vicariance events than smaller ranges (Pigot et al. 2010). When populations 

colonise new environments they may be subjected to different environmental conditions, 

which in turn drive divergence in ecological traits and mating signals (Schluter 2001; Hua & 

Wiens 2013). This may apply either to geographically isolated populations, or to contiguous 

populations under the gradient model of speciation (Moritz et al. 2000), in which reproductive 

isolation evolves as a result of local adaptation across steep environmental gradients (Rice, 

Martínez-Meyer & Peterson 2003; Eaton, Soberón & Peterson 2008). Regardless of spatial 

context, the adaptability of individual lineages to divergent climatic conditions may directly 

promote speciation, potentially driving the positive relationship between rates of climatic 

niche evolution and diversification.  
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An alternative explanation is that the relationship is a by-product of indirect 

processes. For instance, when diversification occurs through vicariance events, a link 

between diversification and fast rates of climatic niche evolution could emerge if descendent 

species are forced to diverge rapidly into novel environments due to range expansion, or 

through competition among daughter species (Weir & Price 2011). Under this scenario, fast 

rates of climatic niche evolution are a consequence, rather than a cause, of species 

diversification. Nonetheless, range expansion is necessary for repeated rounds of speciation 

in birds (Rosenzweig 1995; Weir & Price 2011), and thus the ability to adapt rapidly to 

divergent climatic conditions may promote diversification, either because it permits range 

expansion directly through colonisation of novel environments, or indirectly through the 

displacement of competing species to unoccupied areas of climatic niche space. For similar 

reasons, climatic niche lability theoretically reduces the risk of extinction (Title & Burns 

2015). Thus, although it is not possible to determine the direction of causality underlying the 

correlations we detect, the most likely interpretation is that climatic niche lability promotes 

species diversification through direct and indirect effects on speciation and extinction.  

 

Because of the global scale of our sampling, we are able to test whether the positive 

associations identified between climatic niche evolution and diversification are mediated by 

underlying correlations with latitude and ecology. When we tested for these effects across 

genera, we found no evidence that the relationship is altered towards the equator. This is 

contrary to the prediction that increased climatic zonation in the tropics will facilitate greater 

specialisation to climatic conditions, thereby reducing gene flow and increasing speciation 

when populations with conserved climatic niches are separated by regions of unsuitable 

climate (Janzen 1967; Cadena et al. 2012). We also find no evidence that climatic niche 

lability and species diversification are more strongly coupled among high latitude genera, 

despite greater opportunities for climate-mediated divergent selection in the temperate zone 

and the observation that rates of climatic niche evolution among recently diverged species 

peaks at high latitudes (Lawson & Weir 2014). Furthermore, the niche evolution–



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

diversification relationship does not appear to be regulated by key ecological traits (habitat, 

territorial system, migration), despite their association with species’ differences in dispersal 

ability (Moore et al. 2008; Salisbury et al. 2012). This is perhaps unexpected given that 

speciation occurs over a smaller geographic scale in non-dispersive organisms (Kisel & 

Barraclough 2010), frequently involving narrow geographic barriers that separate 

populations in essentially uniform climatic environments, particularly in the tropics (Kozak & 

Wiens 2006; Peterson & Nyári 2007; Cadena et al. 2012). The message of our analyses is 

that, while niche conservatism may drive speciation in some clades, it does not explain 

overall patterns of diversification. 

 

Theoretically, the link between climatic niche lability and species diversification 

should weaken if clades reach the limits of accessible climatic niche space (e.g. those set by 

impermeable biogeographic barriers, such as oceans), as new species must then originate 

within areas of niche space already occupied by existing members of the clade. After this 

stage is reached, continued lineage diversification may become more strongly regulated by 

mechanisms facilitating species coexistence though ecological (e.g. MacArthur 1972) or 

reproductive (e.g. Gröning & Hochkirch 2008) isolation, rather than bioclimatic limits. 

However, our findings are consistent with the idea that many avian families have not yet 

reached limits of accessible niche space, supporting the notion that niche lability influences 

patterns of species richness and diversification rates in older clades (Title & Burns 2015), 

presumably because they continue to accumulate new species by expanding their ‘adaptive 

zone’ and thus by filling unoccupied areas of climatic niche space (Vermeij 1973; Rabosky & 

Adams 2012; Rabosky et al. 2013).  

 

A major caveat in large-scale comparative studies of climatic niche evolution is that 

results are partly contingent on the method used to characterise species’ climatic tolerances. 

Given the lack of unbiased fine-scale distributional data for most species at global scales, 

we used standard methods based on geographical range polygons (e.g. Pigot, Owens & 
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Orme 2010; Cooper, Freckleton & Jetz 2011; Botero et al. 2014). This approach is based on 

the assumption that the spatial range of each species reflects their fundamental climatic 

nichethat is, the full combination of climatic variables in which that species could exist 

(Soberón 2007). However, the coarse grain sizes of such analyses, combined with the fact 

that geographical distributions may be shaped by other factors including competitive 

exclusion (Pigot & Tobias 2013) and dispersal limitation (Pigot & Tobias 2015), mean that 

they realistically provide only an imperfect approximation of species’ realised climatic niches 

(Wisz et al. 2013). Nonetheless, broad-scale geographical distributions can provide a 

reasonable estimate of physiological tolerances or the maximum extent of the environmental 

niche, even in endothermic organisms like birds (Tingley et al. 2009; Pigot, Owens & Orme 

2010; Khaliq et al. 2014; Khaliq et al. 2015). Moreover, although it can be argued that the 

approach increases error, there is no reason to suspect that this issue should consistently 

bias our results towards detecting a positive effect, and thus if anything it merely weakens 

the relationship between climatic niche evolution and diversification. Our results therefore 

represent a conservative test of climatic niche–diversification relationships.  

 

The error introduced in climatic niche estimation provides one explanation for the 

relatively low explanatory power of our analyses, but there are at least two other possible 

interpretations. First, the relationship between climatic niche evolution and diversification 

may be relatively weak in birds because they are endotherms, and thus geographical ranges 

are less tightly constrained by climatic tolerances (Buckley & Jetz 2008; Araújo et al. 2013). 

Second, the relationship may be strong but offset by an opposing effect. For example, niche 

lability and niche conservatism may both be driving speciation in different contexts, thereby 

weakening the inferred relationship between these variables at broad scales. However, 

given that our analyses revealed only positive associations between rates of niche evolution 

and diversification, we suggest that any such positive effect of niche conservatism on 

speciation is outweighed to a large extent by the strong diversifying effect of niche lability. 

Further support for this conclusion is provided by our finding that clades characterised by 
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faster rates of climatic niche evolution between species also exhibited greater average levels 

of climatic variance within species.  

 Although our results do not identify the extent or direction of causality, they indicate 

that climatic niche lability is an important correlate of avian diversification across a 

comprehensive span of latitudes and contrasting ecological settings. These findings are 

consistent with the hypothesis that rapid adaptation to novel climatic niches promotes 

speciation and/or impedes extinction. The generality of this pattern across both avian genera 

and families highlights the importance of evolutionary processes in regulating the link 

between climate and biodiversity across broad temporal and spatial scales. 
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Figure captions 

 

Figure 1. Climatic niche variation across 7499 bird species plotted in relation to the global 

extent of available environmental conditions, depicted in grey. Coloured points show the 

position of each occupied ~10 x 10 km grid cell in bivariate climatic niche space, as 

quantified by the first two principal components (PCs) derived from 19 climatic variables, 

plus elevation (see table S1); colours indicate variation in species richness. Grey points 

show unoccupied grid cells and thus unexploited regions of climatic niche space, occurring 

primarily at the coldest and wettest extremes (e.g. polar regions). 

 

Figure 2. The relationship of total diversification (i.e. ln-transformed species richness; A, B) 

and diversification rate (İ = 0.45; C, D) with model-averaged climatic niche rates derived 

from BM and OU models across avian family- and genus-level clades. For clarity, plotted 

points are from one pseudoreplicate dataset whereas regression lines indicate significant 

relationships between variables based on median parameter values (solid black line) from 

BPMM models fitted to 500 pseudoreplicate datasets (grey lines). Median sample size of 

clades: 96 at family level and 507 at genus level. 
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Figure 3. The relationship of between-species (i.e. interspecific) climatic niche rate with 

levels of within-species climatic variance for family (A) and genus-level (B) clades. Shown 

are clade-averaged intraspecific variance estimates and model-averaged climatic niche 

rates derived from BM and OU models fit to both climate PC axes. For clarity, plotted points 

are from one pseudoreplicate dataset whereas regression lines indicate significant 

relationships between variables based on median parameter values (solid black line) from 

BPMM models fitted to 500 pseudoreplicate datasets (grey lines). Median sample size of 

clades: 96 at family level and 507 at genus level.  
Table 1. Summary of results of BPMM models of genus diversification including interactions 

with latitudinal and ecological variables, using model-averaged climatic niche rates derived 

from BM and OU models. Results shown are median values for models fitted to 500 

pseudoreplicate datasets, and the frequency of models (ƒ) in which the predictor was 

statistically significant (PMCMC < 0.05). Total diversification, diversification rate and niche rate 

were ln-transformed and predictor variables were standardised prior to analysis. 
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 Total diversification  Diversification rate (İ = 0.45) 

Parameter ȕ (95% CI) PMCMC ƒ  ȕ (95% CI) PMCMC ƒ 

        

Niche rate 1.44 (1.19, 1.70) <0.001 1.00  0.39 (0.29, 0.49) <0.001 1.00 

Latitude –0.67 (–0.95, –0.40) <0.001 1.00  –0.11 (–0.24, 0.02) 0.112 0.27 

Niche rate * latitude –0.05 (–0.54, 0.44) 0.680 0.00  0.12 (–0.07, 0.31) 0.228 0.12 

        

Niche rate 1.40 (1.14, 1.67) <0.001 1.00  0.38 (0.28, 0.48) <0.001 1.00 

Habitat  –0.35 (–0.62, –0.09) 0.010 0.93  0.01 (–0.12, 0.15) 0.694 0.00 

Niche rate * habitat  0.17 (–0.33, 0.66) 0.490 0.01  0.09 (–0.11, 0.30) 0.364 0.03 

        

Niche rate 1.32 (1.06, 1.57) <0.001 1.00  0.37 (0.27, 0.47) <0.001 1.00 

Territoriality –0.05 (–0.31, 0.20) 0.684 0.00  0.15 (0.01, 0.30) 0.037 0.60 

Niche rate * territoriality 0.17 (–0.31, 0.65) 0.479 0.03  0.08 (–0.11, 0.28) 0.392 0.05 

        

Niche rate 1.36 (1.12, 1.62) <0.001 1.00  0.38 (0.28, 0.48) <0.001 1.00 

Migration –0.41 (–0.69, –0.14) 0.004 1.00  –0.01 (–0.14, 0.12) 0.706 0.00 

Niche rate * migration 0.06 (–0.44, 0.56) 0.679 0.00  0.12 (–0.07, 0.30) 0.224 0.11 

        

Niche rate 1.32 (1.07, 1.57) <0.001 1.00  0.38 (0.28, 0.49) <0.001 1.00 

Passnonpass:pass 0.13 (–0.19, 0.45) 0.399 0.00  0.36 (–0.29, 1.01) 0.284 0.00 

Niche rate * passnonpass 0.29 (–0.19, 0.77) 0.246 0.12  –0.09 (–0.29, 0.11) 0.380 0.04 
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