
This is a repository copy of The Energy-Signaling Hub SnRK1 Is Important for 
Sucrose-Induced Hypocotyl Elongation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/124079/

Version: Accepted Version

Article:

Simon, NML, Kusakina, J, Fernández-López, Á et al. (3 more authors) (2018) The 
Energy-Signaling Hub SnRK1 Is Important for Sucrose-Induced Hypocotyl Elongation. 
Plant Physiology, 176 (2). pp. 1299-1310. ISSN 0032-0889 

https://doi.org/10.1104/pp.17.01395

© 2018 American Society of Plant Biologists. This is an author produced version of a paper
published in Plant Physiology. Uploaded in accordance with the publisher's self-archiving 
policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 

1 
 

The energy-signalling hub SnRK1 is important for sucrose-induced hypocotyl elongation 1 

 2 

Noriane M. L. Simon(1, 5), Jelena Kusakina(2, 5), Ángela Fernández-López(1), Anupama Chembath(3), 3 

Fiona E. Belbin(1), Antony N. Dodd(1, 4)* 4 

 5 

1. School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall 6 

Avenue, Bristol BS8 1TQ, U.K. 7 

2. Present address: Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, 8 

Leeds LS2 9JT, U.K. 9 

3. Present address: Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, 10 

Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K. 11 

4. Cabot Institute, University of Bristol, Bristol BS8 1UJ, U.K. 12 

5. Equal contribution. 13 

 14 

*Corresponding author: Antony Dodd, School of Biological Sciences, University of Bristol, Life 15 

Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, U.K 16 

antony.dodd@bristol.ac.uk, tel +44 (0)117 394 1176. 17 

 18 

Word counts: Summary: 211 Introduction: 1035 Methods: 600 Results: 2366 Discussion: 1668 19 

Acknowledgements 113 (Main text total: 5669). Figure legends: 666. 20 

 21 

Author Contributions:  A.D. and J.K. conceived the study; N.S, J.K., A.F.L., F.B. and A.C. 22 

performed experiments; N.S., J.K., A.F.L. and A.D. analyzed data; N.S., J.K. and A.D. interpreted 23 

data and wrote the paper. 24 

 25 

One-sentence summary: An energy signalling pathway, photoperiod and light intensity regulate sugar-26 
induced hypocotyl elongation. 27 
 28 

 29 

Running title:  Sucrose-induced hypocotyl elongation 30 

 Plant Physiology Preview. Published on November 7, 2017, as DOI:10.1104/pp.17.01395

 Copyright 2017 by the American Society of Plant Biologists

 www.plantphysiol.orgon November 16, 2017 - Published by Downloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

2 
 

Abstract 31 

Emerging seedlings respond to environmental conditions such as light and temperature to optimize 32 

their establishment. Seedlings grow initially through elongation of the hypocotyl, which is 33 

regulated by signalling pathways that integrate environmental information to regulate seedling 34 

development. The hypocotyls of Arabidopsis thaliana also elongate in response to sucrose. Here, 35 

we investigated the role of cellular sugar-sensing mechanisms in the elongation of hypocotyls in 36 

response to sucrose. We focused upon the role of SnRK1, which is a sugar-signalling hub that 37 

regulates metabolism and transcription in response to cellular energy status. We also investigated 38 

the role of TPS1, which synthesizes the signalling sugar trehalose-6-phosphate (Tre6P) that is 39 

proposed to regulate SnRK1 activity. Under light/dark cycles, we found that sucrose-induced 40 

hypocotyl elongation did not occur in tps1 mutants and overexpressors of KIN10 41 

(AKIN10/SnRK1.1), a catalytic subunit of SnRK1. We demonstrate that the magnitude of sucrose-42 

induced hypocotyl elongation depends on the day length and light intensity. We identified roles for 43 

auxin and gibberellin signalling in sucrose-induced hypocotyl elongation under short photoperiods. 44 

We found that sucrose-induced hypocotyl elongation under light/dark cycles does not involve 45 

another proposed sugar sensor, HEXOKINASE1, or the circadian oscillator. Our study identifies 46 

novel roles for KIN10 and TPS1 in mediating a signal that underlies sucrose-induced hypocotyl 47 

elongation in light/dark cycles. 48 

 49 

  50 
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Introduction 51 

Emerging seedlings monitor the environment to optimize their establishment and out-compete 52 

neighbouring plants (Salter et al., 2003; Weinig et al., 2007; Koini et al., 2009; Keuskamp et al., 53 

2010; Crawford et al., 2012). Seedlings grow initially through cell expansion within the hypocotyl, 54 

which elongates rapidly to optimize light capture by the cotyledons. Hypocotyl elongation is 55 

controlled by several signalling pathways that converge upon phytohormones to regulate cell 56 

expansion (Lincoln et al., 1990; Collett et al., 2000). Examples of signals that adjust hypocotyl 57 

elongation include phytochrome-mediated signals concerning the ratio of red to far red light 58 

(R:FR) (Casal, 2013), blue light (Liscum and Hangarter, 1991), UV-B light (Kim et al., 1998; 59 

Hayes et al., 2014), temperature (Koini et al., 2009; Wigge, 2013; Mizuno et al., 2014), 60 

photoperiod and the circadian oscillator (Dowson-Day and Millar, 1999; Más et al., 2003; Nusinow 61 

et al., 2011). These signals are integrated by the PHYTOCHROME INTERACTING FACTOR 62 

(PIF)-family of basic helix-loop-helix transcription factors. The PIFs are signalling hubs that 63 

control plant development through genome-wide transcriptional alterations. One outcome of these 64 

PIF-mediated transcriptional changes are the alterations in phytohormone signalling that regulate 65 

hypocotyl elongation (Lorrain et al., 2008; Leivar and Quail, 2011). 66 

Hypocotyl length is also increased by exogenous and endogenous sugars (Kurata and Yamamoto, 67 

1998; Takahashi et al., 2003; Zhang et al., 2010; Liu et al., 2011; Stewart et al., 2011; Stewart 68 

Lilley et al., 2012; Zhang et al., 2015; Zhang et al., 2016). Under light/dark cycles, exogenous 69 

sugars are proposed to cause hypocotyl elongation by inducing auxin signals through the PIF-70 

mediated gene regulation (Stewart et al., 2011; Stewart Lilley et al., 2012). Under extended 71 

darkness, brassinosteroid and GA phytohormones are involved in sugar-induced hypocotyl 72 

elongation, which may also involve the target of rapamycin (TOR) kinase regulator of energy- and 73 

nutrient-responses (Zhang et al., 2010; Dobrenel et al., 2011; Zhang et al., 2015; Zhang et al., 74 
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2016). This elongation phenotype in darkness is thought to form a response to the starvation 75 

conditions that arise when plants are cultivated under periods of darkness exceeding the length of 76 

the daily light/dark cycle (Graf et al., 2010; Zhang et al., 2016). In comparison to these known 77 

roles for phytohormones and transcriptional regulators, the contribution of sugar sensing 78 

mechanisms to sucrose-induced hypocotyl elongation remain unknown. 79 

Several sugar- or energy-signalling mechanisms underlie the metabolic and developmental 80 

responses of plants to sugars. One mechanism involves the Sucrose non-fermenting 1 (Snf1)-81 

related protein kinase SnRK1 (Baena-González et al., 2007; Baena-González and Sheen, 2008), 82 

and another involves HEXOKINASE1 (Jang et al., 1997; Moore et al., 2003). SnRK1 controls 83 

metabolic enzymes directly by protein phosphorylation (Baena-González and Sheen, 2008). It also 84 

regulates > 1000 transcripts in response to carbohydrate availability, for example by adjusting bZIP 85 

transcription factor activity (Baena-González et al., 2007; Smeekens et al., 2010; Delatte et al., 86 

2011; Matiolli et al., 2011; Mair et al., 2015). Both SnRK1- and hexokinase-mediated sugar 87 

signalling involve specific sugars functioning as signalling molecules that provide cellular 88 

information concerning sugar availability. For example, SnRK1 activity is thought to be regulated 89 

by trehalose-6-phosphate (Tre6P), whose concentration tracks the cellular concentration of sucrose 90 

(Lunn et al., 2006; Zhang et al., 2009; Nunes et al., 2013; Yadav et al., 2014). Tre6P is synthesized 91 

from UDP glucose and glucose-6-phosphate, which are derived from mobilized and transported 92 

sucrose, and also directly from photosynthesis. In Arabidopsis (Arabidopsis thaliana), Tre6P is 93 

synthesized by trehalose-6-phosphate synthase (TPS). Of 11 TPS homologs encoded by the 94 

Arabidopsis genome, TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) synthesizes Tre6P in 95 

plants (Gómez et al., 2010; Vandesteene et al., 2010), and TPS2 and TPS4 are catalytically active 96 

in yeast complementation assays (Delorge et al., 2015). Tre6P is believed to regulate SnRK1-97 

mediated signalling by suppressing the activity of SNF1-RELATED PROTEIN KINASE1.1 98 
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(KIN10/AKIN10/SnRK1.1), which is a catalytic subunit of SnRK1 that is fundamental to the 99 

signalling role of SnRK1 (Baena-González et al., 2007; Zhang et al., 2009; Nunes et al., 2013). 100 

Manipulation of Tre6P metabolism in plants alters developmental phenotypes. For example, tps1 101 

knockout mutants undergo seedling developmental arrest (Gómez et al., 2006), expression of 102 

bacterial Tre6P synthase (otsA) or phosphatase (otsB) affects leaf senescence (Wingler et al., 103 

2012), and Tre6P and KIN10 act within a photoperiod-response pathway that controls the induction 104 

of flowering (Baena-González et al., 2007; Gómez et al., 2010; Wahl et al., 2013). Signalling by 105 

Tre6P and KIN10 is also important for the regulation of growth rates. Growth is increased by 106 

sucrose in the presence of Tre6P (Schluepmann et al., 2003; Paul et al., 2010), but the lack of a 107 

quantitative (correlative) relationship between relative growth rates and [Tre6P] suggests that a 108 

threshold [Tre6P] is required for growth to occur (Nunes et al., 2013). Therefore, it has been 109 

suggested that control of KIN10/11 by [Tre6P] may ‘prime’ the regulation of growth-related genes 110 

to capitalize upon increased energy availability, rather than by inducing growth directly (Nunes et 111 

al., 2013). Remarkably, the impact of this pathway is sufficiently global that its manipulation can 112 

increase maize yields by almost 50% (Nuccio et al., 2015) and increase the yield and drought 113 

tolerance of wheat (Griffiths et al., 2016). 114 

Given the importance of Tre6P metabolism and SnRK1 for growth regulation under cycles of light 115 

and dark, we wished to determine whether this energy-signalling mechanism is important for the 116 

regulation of sucrose-induced hypocotyl elongation. Moreover, because Tre6P signalling is 117 

reported to act upon GA and auxin signalling genes (Paul et al., 2010; Li et al., 2014) and these 118 

phytohormones are involved in sucrose-induced hypocotyl elongation (Zhang et al., 2010; Stewart 119 

Lilley et al., 2012), we reasoned that SnRK1 might act upon these phytohormones to regulate 120 

sucrose-induced hypocotyl elongation. 121 
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Here, we identified a novel role for Tre6P and KIN10 in the mechanisms that cause sucrose-122 

induced hypocotyl elongation. We focused upon light/dark cycles rather than conditions of 123 

extended darkness (Zhang et al., 2010; Zhang et al., 2015; Zhang et al., 2016), because we wished 124 

to identify mechanisms that regulate growth and development under regimes more representative 125 

of real-world growing conditions that do not elicit prolonged starvation. We found that the 126 

sensitivity of hypocotyl elongation to sugars depends on the photoperiod and light intensity. We 127 

identified that KIN10 is important for expression of transcripts encoding auxin-induced expansins. 128 

Our data reveal a new mechanistic link between carbohydrate supply, energy sensing and 129 

phytohormone signalling during seedling emergence. 130 

Results 131 

KIN10 and TPS1 are required for sucrose-induced hypocotyl elongation in light/dark cycles 132 

We investigated whether KIN10 and TPS1 contribute to sucrose-induced hypocotyl elongation 133 

under light/dark cycles (Kurata and Yamamoto, 1998; Takahashi et al., 2003; Stewart et al., 2011; 134 

Stewart Lilley et al., 2012). We studied hypocotyl elongation in transgenic Arabidopsis where 135 

KIN10 activity was manipulated by overexpressing the catalytic subunit of KIN10 (KIN10-ox) 136 

(Baena-González et al., 2007). Although KIN10 activity is regulated post-translationally by Tre6P 137 

(Zhang et al., 2009), KIN10 overexpression alone alters the abundance of energy-response 138 

transcripts in protoplasts (Baena-González et al., 2007). We used KIN10 overexpression rather 139 

than knockouts, because KIN10/11 double knockouts disrupt pollen production and are lethal 140 

(Zhang et al., 2001; Baena-González et al., 2007). We also used hypomorphic TILLING (targeted 141 

induced local lesions in genomes) mutants with reduced TPS1 activity (tps1-11, tps1-12) (Gómez 142 

et al., 2006; Gómez et al., 2010), which is preferable to tps1 loss-of-function mutants that cause 143 

seedling developmental arrest (Gómez et al., 2006). 144 
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First, we investigated the effect of exogenous sucrose upon hypocotyl elongation in a variety of 145 

photoperiods (Fig. 1). Under 4 h and 8 h photoperiods, sucrose supplementation of wild type 146 

seedlings caused a significant increase in hypocotyl length relative to the sorbitol control (2.1-fold 147 

and 2.3-fold relative to sorbitol controls, under 4 h and 8 h photoperiods respectively) (Fig. 1A-E). 148 

In comparison, under 16 h photoperiods and constant light conditions exogenous sucrose did not 149 

promote hypocotyl elongation (Fig. 1A-E). 150 

Next, we investigated roles of KIN10 in sucrose-induced hypocotyl elongation under light/dark 151 

cycles. Under 8 h photoperiods, the hypocotyls of two KIN10-ox lines (Baena-González et al., 152 

2007) did not elongate significantly in response to exogenous sucrose relative to the MS control 153 

(Fig. 1B). Both KIN10-ox lines elongated 1.5-fold in response to sucrose relative to the sorbitol 154 

control (Fig. 1B). Exogenous sucrose caused no significant increase in the hypocotyl length of 155 

KIN10-ox seedlings under 4 h photoperiods (Fig. 1C). Hypocotyls of the L. er. background and 156 

KIN10-ox appeared shorter when supplemented with exogenous sucrose in constant light and 16 h 157 

photoperiods. However, this could be an osmotic effect rather than a sucrose response because 158 

hypocotyl elongation responded identically to sucrose and the sorbitol control (Fig. 1B). 159 

Since KIN10 activity is thought to be regulated by Tre6P (Zhang et al., 2009), we investigated the 160 

role of the Tre6P biosynthetic enzyme TPS1 in sucrose-induced hypocotyl elongation under 161 

light/dark cycles. In two tps1 TILLING mutants under 8 h photoperiods, sucrose supplementation 162 

caused a significant 2.3-fold increase in hypocotyl length in the wild type relative to the sorbitol 163 

control, compared with 1.6-fold and 1.3-fold increases in hypocotyl length in tps1-11 and tps1-12 164 

respectively (Fig. 1D). Under 4 h photoperiods, sucrose caused a significant 2-fold increase in 165 

hypocotyl length of the wild type relative to the sorbitol control, compared with no significant 166 

increase in length in tps1-11 and a significant 1.5-fold increase in hypocotyl length in tps1-12 (Fig. 167 

1E). Together, these experiments with KIN10 overexpressors and tps1 mutants indicate that TPS1 168 
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and KIN10 are involved in one or more mechanisms that increase hypocotyl length in response to 169 

exogenous sucrose. This suggests that SnRK1-mediated energy signalling regulates hypocotyl 170 

elongation in response to sucrose supplementation. 171 

HEXOKINASE1 is not required for sucrose-induced hypocotyl elongation under light/dark cycles 172 

Hexokinase is thought to function as a sugar sensor that regulates development in response to the 173 

concentration of glucose (Jang et al., 1997; Moore et al., 2003), so we investigated whether 174 

hexokinase-based signalling also contributes to sucrose-induced hypocotyl elongation. For this, we 175 

measured the elongation of hypocotyls in response to exogenous sucrose in the glucose insensitive2 176 

(gin2-1) mutant of HEXOKINASE1. Overall, gin2-1 hypocotyls were slightly shorter than the wild 177 

type under all conditions tested (Fig. 1F). Exogenous sucrose caused a significant increase in 178 

hypocotyl length of wild type and gin2-1 seedlings, producing hypocotyls 63% and 67% longer 179 

than the osmotic control in the wild type and gin2-1, respectively (Fig. 1F). Therefore, sucrose 180 

caused a similar magnitude of hypocotyl elongation in gin2-1 and the wild type. This suggests that 181 

interconversion of sucrose to glucose, and therefore hexokinase-based glucose signalling, does not 182 

contribute to sucrose-induced hypocotyl elongation in short photoperiods. 183 

Relationship between day-length, light intensity and sucrose-induced hypocotyl elongation 184 

Our data suggest that the magnitude of the sucrose-induced increase in hypocotyl length depends 185 

upon the photoperiod or the quantity of light received. In the wild type, sucrose increased 186 

hypocotyl length under short (4 h or 8 h) but not long (16 h or constant light) photoperiods under 187 

photosynthetically active radiation (PAR) of 100 µmol m-2 s-1 (Fig. 1B-E, Fig. 2A). In addition, 188 

sucrose caused significantly greater hypocotyl elongation under 4 h photoperiods compared with 8 189 

h photoperiods of 100 µmol m-2 s-1 (Fig. 2A). We reasoned that these varying responses to sucrose 190 

might arise from differences in total daily PAR received under each of these conditions, or 191 
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alternatively from the sensing of photoperiod length. To investigate this we compared the 192 

magnitude of sucrose-induced hypocotyl elongation under the same total daily integrated PAR, 193 

under longer photoperiods (16 h at 40 µmol m-2 s-1 and 8 h at 80 µmol m-2 s-1) and under shorter 194 

photoperiods (8 h at 40 µmol m-2 s-1 and 4 h at 80 µmol m-2 s-1). Under a 16 h photoperiod at 195 

40 µmol m-2 s-1, sucrose caused a significant increase in hypocotyl length (Fig. 2B, C). This 196 

contrasts a 16 h photoperiod at 100 µmol m-2 s-1, where sucrose did not promote hypocotyl 197 

elongation (Fig. 1, Fig. 2A). This suggests that the quantity of light received influences the 198 

sensitivity of hypocotyl elongation to sucrose. Under 8 h photoperiods, sucrose caused greater 199 

hypocotyl elongation under 40 µmol m-2 s-1 (mean 4.1 mm increase) than under 80 µmol m-2 s-1 200 

(mean 3.3 mm increase), which also suggests that hypocotyl elongation is more responsive to 201 

sucrose under lower light conditions (Fig. 2B, D). When daily integrated PAR was the same under 202 

4 h and 8 h photoperiods, there was no difference in the increase in hypocotyl length caused by 203 

sucrose (Fig. 2D, E). These responses suggest that daily integrated PAR influences the magnitude 204 

of sucrose-induced hypocotyl elongation. However, the magnitude of sucrose-induced hypocotyl 205 

elongation was significantly less under 16 h photoperiods at 40 µmol m-2 s-1 than 8 h photoperiods 206 

at 80 µmol m-2 s-1 (Fig. 2B, C), suggesting that under long photoperiods, the magnitude of sucrose-207 

induced hypocotyl elongation could be also determined by a photoperiod-response mechanism 208 

acting independently from daily integrated PAR. These data provide the insight that the 209 

photoperiod-sensitivity of sucrose-induced hypocotyl elongation is determined by both the absolute 210 

photoperiod and the amount of light received. 211 

Interaction between hypocotyl elongation by exogenous sucrose and the circadian oscillator 212 

The circadian oscillator regulates hypocotyl elongation because the accumulation of PIF proteins is 213 

restricted to the end of the night (Nozue et al., 2007; Nusinow et al., 2011). Since the circadian 214 
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oscillator responds to exogenous and endogenous sugars (Dalchau et al., 2011; Haydon et al., 215 

2013) and KIN10 overexpression can lengthen circadian period (Shin et al., 2017), we investigated 216 

whether sucrose-induced increases in hypocotyl length under short photoperiods involve the 217 

circadian oscillator. First, we tested whether the circadian oscillator components CIRCADIAN 218 

CLOCK ASSOCIATED1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY) and TIMING OF 219 

CAB2 EXPRESSION1 (TOC1) are required for sucrose-induced hypocotyl elongation using the 220 

cca1-11 lhy-21 toc1-21 triple mutant (Ding et al., 2007). cca1-11 lhy-21 toc1-21 causes circadian 221 

arrhythmia under constant light and temperature, and disrupts rhythms of oscillator transcripts, 222 

including evening complex components that regulate hypocotyl elongation (Ding et al., 2007). 223 

Under 4 h photoperiods, the magnitude of the sucrose-induced increase in hypocotyl length was 224 

unaltered in cca1-11 lhy-21 toc1-21 (Fig. 3A; Fig. S1). Under 4 h photoperiods the hypocotyls of 225 

cca1-11 lhy-21 toc1-21 were of similar length to the wild type (Fig. 3A), whereas under 8 h 226 

photoperiods, cca1-11 lhy-21 toc1-21 has longer hypocotyls than the wild type (Ding et al., 2007). 227 

We also investigated whether two proteins that confer sugar sensitivity to the circadian oscillator, 228 

GIGANTEA (GI) and PSEUDO-RESPONSE REGULATOR7 (PRR7) (Dalchau et al., 2011; 229 

Haydon et al., 2013), contribute to sucrose-induced hypocotyl elongation under short photoperiods. 230 

We tested this because the prr7-11 mutation renders the oscillator insensitive to sugar signals that 231 

entrain the oscillator (Haydon et al., 2013), and the gi-11 mutation alters oscillator responses to 232 

long-term exposure to exogenous sucrose (Dalchau et al., 2011). In all cases, gi-11 had longer 233 

hypocotyls than the wild type (Fig. 3B), but the magnitude of the sucrose-induced increase in 234 

hypocotyl length was unaltered in gi-11 relative to the wild type (Fig. 3D). Likewise, the prr7-11 235 

mutant also did not alter the magnitude of sucrose-induced increases in hypocotyl length (Fig. 3C, 236 

D).  237 
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These experiments indicate that two mechanisms providing sugar inputs to the circadian oscillator 238 

(Dalchau et al., 2011; Haydon et al., 2013) and three core oscillator components do not contribute 239 

to sucrose-induced increases in hypocotyl length under short photoperiods. 240 

Phytohormone signalling and sucrose-induced hypocotyl elongation under light/dark cycles: auxin 241 

Sucrose-induced hypocotyl elongation in the light involves auxin and GA signalling (Zhang et al., 242 

2010; Stewart Lilley et al., 2012). We investigated the involvement of phytohormones in sucrose-243 

induced hypocotyl elongation under light/dark cycles, and their relationship with SnRK1-mediated 244 

signalling. First, we examined the effect of the inhibitor of polar auxin transport 1-N-245 

naphthylpthalamic acid (NPA) upon sucrose-induced hypocotyl elongation. NPA inhibited sucrose-246 

induced hypocotyl elongation in a concentration-dependent manner, such that 10 ȝM NPA 247 

completely abolished sucrose-induced elongation (Fig. 4A). Consistent with previous work 248 

(Stewart Lilley et al., 2012), this indicates that under light/dark cycles sucrose-induced hypocotyl 249 

elongation is auxin-dependent. Next, we examined the responses of auxin- and PIF-dependent 250 

expansin transcripts to sucrose. Expansins are a large family of cell-wall modifying enzymes that 251 

allow turgor-driven cell expansion, and some expansin transcripts are upregulated by auxins in a 252 

PIF-dependent manner during hypocotyl elongation (Li et al., 2002; Miyazaki et al., 2016; 253 

Gangappa and Kumar, 2017). We examined EXPANSIN A4 (EXPA4), EXPA8 and EXPA11 254 

transcripts, which are auxin-induced in seedlings (Goda et al., 2004; Esmon et al., 2006; Winter et 255 

al., 2007; Lee et al., 2009). EXPA8 and EXPA11 transcripts were upregulated by conditions of 256 

constant darkness, which also increases hypocotyl elongation (Fig. S2A) (Boylan and Quail, 1991), 257 

and downregulated by 10 µM NPA, which suppresses hypocotyl elongation (Fig. S2B) (Stewart 258 

Lilley et al., 2012). EXPA4 was unaltered by these conditions (Fig. S2). Therefore, EXPA8 and 259 

EXPA11 transcript abundance was increased by conditions that promote hypocotyl elongation, and 260 
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reduced by conditions that suppress hypocotyl elongation. Next, we monitored the change in 261 

abundance of these two expansin transcripts in response to sucrose under 4 h photoperiods. In the 262 

wild type, EXPA11 transcripts were upregulated by 3% sucrose, whereas EXPA8 transcripts were 263 

not upregulated by sucrose relative to the controls (Fig. 4B-E). In KIN10-ox, where sucrose does 264 

not promote hypocotyl elongation under light/dark cycles, EXPA8 and EXPA11 transcripts were 265 

not increased by sucrose (Fig. 4B-E). EXPA8 was sucrose-induced relative to the controls in tps1-266 

11, but not in tps1-12 (Fig. 4B, C). EXPA11 transcripts were sucrose-induced in both tps1-11 and 267 

tps1-12 (Fig. 4D, E). The induction of these two expansin transcripts by sucrose in tps1 mutants 268 

was unexpected, because both KIN10-ox and tps mutants suppress sucrose-induced hypocotyl 269 

elongation under short photoperiods (Fig. 1). We also examined several other transcripts associated 270 

with auxin biosynthesis or responses, but the osmotic controls caused substantial alterations in 271 

transcript abundance that prevented interpretation of their regulation by sucrose (Fig. S3). 272 

Phytohormone signalling and sucrose-induced hypocotyl elongation under light/dark cycles: 273 

gibberellins 274 

We tested whether GA signalling also contributes to sucrose-induced hypocotyl elongation under 275 

short photoperiods. After germination, wild type seedlings were transferred to media containing 276 

3% sucrose or an osmotic control, supplemented with combinations of the GA biosynthesis 277 

inhibitor paclobutrazol (PAC), GA, or a carrier control. Consistent with previous studies, wild type 278 

seedlings grown on media supplemented with PAC or PAC and GA had significantly shorter 279 

hypocotyls than controls (Fig. 5A) (Cowling and Harberd, 1999; Liu et al., 2011). PAC abolished 280 

sucrose-induced hypocotyl elongation, with a small hypocotyl length rescue occurring when GA 281 

was supplied in combination with PAC (Fig. 5A). We confirmed that the GA was active by 282 
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demonstrating that, consistent with previous reports (Cowling and Harberd, 1999), hypocotyl 283 

length is increased by GA supplementation (Fig. S4). 284 

GA increases growth by causing degradation of DELLA growth repressor proteins, and also 285 

through DELLA-independent mechanisms (Peng et al., 1997; Fu et al., 2002; Cheng et al., 2004; 286 

Cao et al., 2006). Therefore, we investigated the involvement of DELLA proteins in sucrose-287 

induced hypocotyl elongation under light/dark cycles. The gai-1 mutant harbours a deletion within 288 

the DELLA domain of GIBBERELLIC ACID INSENSITIVE (GAI), which prevents GA-induced 289 

proteasomal degradation of GAI (Peng et al., 1997; Fu et al., 2002). Under 4 h photoperiods, 290 

sucrose supplementation increased hypocotyl length in gai-1, but the magnitude of sucrose-induced 291 

elongation in gai-1 was reduced compared with the wild type (hypocotyls became 36.5% longer in 292 

gai-1 in response to sucrose, compared with 59.2% longer in the wild type) (Fig. 5B). Under 16 h 293 

photoperiods, sucrose did not induce hypocotyl elongation in the wild type or gai-1 (Fig. 5B), 294 

which is consistent with Fig. 1B, C. We also examined the effect of a mutant lacking all five 295 

DELLA proteins upon sucrose-induced hypocotyl elongation under light/dark cycles (Koini et al., 296 

2009). Under short photoperiods, sucrose-induced hypocotyl elongation was unaltered in this 297 

mutant (Fig. 5C). Interestingly, under long photoperiods sucrose promoted hypocotyl elongation in 298 

the DELLA global mutant, whereas sucrose was without effect upon wild type hypocotyls (Fig. 299 

5C). The partial attenuation of sucrose-induced hypocotyl elongation in gai-1 (Fig. 5B) combined 300 

with the derepression of sucrose-induced hypocotyl elongation under long photoperiods in the 301 

DELLA global mutant (Fig. 5C) suggests that DELLA-mediated GA signalling contributes to, but 302 

does not exclusively control, sucrose-induced hypocotyl elongation. 303 
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Phytohormone signalling and sucrose-induced hypocotyl elongation under light/dark cycles: 304 

abscisic acid 305 

ABA suppresses seedling development (Belin et al., 2009) and several studies have linked Tre6P 306 

and abscisic acid (ABA) signalling (Avonce et al., 2004; Ramon et al., 2007; Gómez et al., 2010; 307 

Debast et al., 2011). Therefore, we investigated whether ABA signalling contributes to sucrose-308 

induced hypocotyl elongation under light/dark cycles. Sucrose-induced hypocotyl elongation was 309 

unaffected by the ABA receptor quadruple mutant pyr1-1 pyl1-1 pyl2-1 pyl4-1, which is highly 310 

ABA-insensitive (Park et al., 2009) (Fig. S5). This suggests that PYR/PYL-mediated ABA 311 

signalling does not participate in the mechanisms underlying sucrose-induced hypocotyl elongation 312 

under light/dark cycles. 313 

Discussion 314 

KIN10 and TPS1 contribute to sugar-induced hypocotyl elongation under light/dark cycles 315 

Here, we make the new finding that a mechanism involving KIN10 activity and Tre6P metabolism 316 

regulates sucrose-induced hypocotyl elongation under light/dark cycles. Whilst hypocotyl 317 

elongation arises from cell expansion rather than growth through increases in cell number 318 

(Gendreau et al., 1997), our data are consistent with studies demonstrating that Tre6P metabolism 319 

is a crucial regulator of growth responses to sucrose. For example, Arabidopsis seedlings 320 

overexpressing the bacterial Tre6P phosphatase otsB, which reduces [Tre6P], accumulate less 321 

biomass compared with the wild type when supplemented with sucrose (Schluepmann et al., 2003). 322 

The converse is also true; otsA (TPS) overexpressors, in which [Tre6P] is increased, accumulate 323 

more biomass than the wild type when supplemented with sucrose (Schluepmann et al., 2003). 324 

Therefore, our data using tps1 mutants as a proxy for altered Tre6P metabolism provide new 325 
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evidence to support the notion that Tre6P promotes growth under conditions of increased sucrose 326 

availability (Schluepmann et al., 2003; Zhang et al., 2009). 327 

Overexpression in Arabidopsis of the bacterial Tre6P synthase otsA has been reported to produce 328 

seedlings having shorter hypocotyls than the wild type (Paul et al., 2010). The sucrose-insensitivity 329 

of hypocotyl elongation in tps1 mutants (Fig. 1) and the shorter hypocotyls in seedlings with 330 

increased [Tre6P] (otsA-ox) may appear to conflict with each other (Paul et al., 2010). However, 331 

the experiments are not directly comparable. We found that exogenous sucrose only caused 332 

hypocotyl elongation under short photoperiods or lower light conditions (Fig. 2). In comparison, 333 

the otsA-ox experiments involved 16 h photoperiods at higher PAR (150 µmol m-2 s-1) and shaking 334 

liquid culture (Zhang et al., 2009), both of which could mask the hypocotyl elongation response 335 

that we investigated. 336 

Our experiments suggest that increased KIN10 activity might attenuate the elongation response of 337 

hypocotyls to exogenous sucrose under light/dark cycles. The KIN10-ox lines that we used 338 

overexpress the catalytic subunit of SnRK1 (Baena-González et al., 2007). KIN10 overexpression 339 

downregulates transcripts associated with anabolic processes and upregulates transcripts associated 340 

with energy starvation (Baena-González et al., 2007). Therefore, in our experiments KIN10 341 

overexpression may have stopped seedlings from taking advantage of the greater energy 342 

availability caused by sucrose supplementation, so preventing sucrose-induced hypocotyl 343 

elongation in KIN10-ox (Fig. 1). 344 

Photoperiod-dependency of sugar-induced hypocotyl elongation 345 

We made the new finding that under relatively high light, exogenous sucrose increases hypocotyl 346 

length in photoperiods of 8 h and shorter, but not under long photoperiods or constant light (Fig. 1, 347 

Fig. 2). These data reconcile differences between previous studies of sucrose-induced hypocotyl 348 
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elongation. Previous studies reporting sucrose-insensitivity of hypocotyl elongation in the light 349 

were conducted in continuous light (Zhang et al., 2010), in which we also found sucrose to be 350 

without effect upon hypocotyls (Fig. 1B, Fig. 2A). In comparison, studies reporting that sucrose 351 

does promotes hypocotyl elongation in the light were conducted under 8 h photoperiods (Stewart et 352 

al., 2011; Stewart Lilley et al., 2012), where we likewise found that sucrose causes hypocotyl 353 

elongation (Fig. 1B, Fig. 2). Therefore, the sensitivity of hypocotyls to sucrose-induced elongation 354 

depends upon the photoperiod or the amount of light received each day. 355 

One explanation for this response could be that the daily quantity of light determines the magnitude 356 

of sucrose-induced hypocotyl elongation through the accumulation of photosynthetic metabolites. 357 

Our experiments indicate that under shorter photoperiods, the sensitivity of hypocotyl elongation to 358 

sucrose depends upon the total amount of daily light (Fig. 2A, D, E). Furthermore, sucrose-induced 359 

hypocotyl elongation under long photoperiods only occurred when the seedlings were under lower 360 

light conditions (Fig. 2A, B, C). One interpretation is that under long photoperiods and higher light, 361 

cells are replete with sugars (Sulpice et al., 2014) therefore supplementation with exogenous 362 

sucrose has a relatively small effect upon the hypocotyl length of already sugar-rich seedlings. In 363 

contrast, under short photoperiods or lower light the background level of endogenous sugar is 364 

lower (Sulpice et al., 2014), so supplementation with exogenous sucrose has a greater effect upon 365 

hypocotyl length. 366 

An alternative interpretation is that PIFs integrate light signals derived from photoreceptors with 367 

SnRK1-mediated sugar signals to modulate the sensitivity of elongating hypocotyls to sucrose, 368 

because PIFs are required for sucrose-induced hypocotyl elongation (Stewart et al., 2011; Stewart 369 

Lilley et al., 2012). This might explain the PAR-independent reduction in sucrose-induced 370 

hypocotyl elongation that occurred under long photoperiods (Fig. 2C). In the future, it will be 371 

informative to resolve the relative contributions of these mechanisms to sucrose-induced hypocotyl 372 
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elongation, given that Tre6P can regulate expression of both PIFs and auxin signalling genes (Paul 373 

et al., 2010). This could provide insights into the nature of the coupling of SnRK1-mediated sugar 374 

signalling and growth regulation by PIFs (Paul et al., 2010; Stewart et al., 2011; Stewart Lilley et 375 

al., 2012). 376 

Involvement of phytohormone signals in sucrose-induced hypocotyl elongation under light/dark 377 

cycles 378 

Auxin, GA and brassinosteroids are reported to mediate sucrose-induced hypocotyl elongation, 379 

with a role for auxin identified under light/dark cycles and roles for GA and brassinosteroids 380 

identified under extended darkness (de Lucas et al., 2008; Zhang et al., 2010; Liu et al., 2011; 381 

Stewart et al., 2011; Stewart Lilley et al., 2012; Zhang et al., 2015; Zhang et al., 2016). Consistent 382 

with this, our data indicate that auxin signalling has a major role in sucrose-induced hypocotyl 383 

elongation under light/dark cycles (Fig. 4A), with GA signalling also contributing to this process 384 

(Fig. 5B, C). We suggest two possible reasons why paclobutrazol completely abolished sucrose-385 

induced hypocotyl elongation (Fig. 5A), whereas the gai-1 mutant only led to partial inhibition of 386 

this phenotype (Fig. 5B). One possibility is that DELLA-independent GA signalling contributes to 387 

sucrose-induced hypocotyl elongation, since DELLA proteins control around 40-60% of GA-388 

regulated transcripts (Cao et al., 2006). An alternative possibility is that these were off-target or 389 

ectopic effects of paclobutrazol, because the paclobutrazol-induced attenuation of hypocotyl 390 

elongation was not rescued fully by GA supplementation (Fig. 5A). 391 

Auxin-induced expansins that are upregulated during hypocotyl elongation were also induced by 392 

sucrose supplementation (Fig. 4B-E; Fig. S2). Whilst EXPA11 was induced strongly by sucrose, 393 

the small response of EXPA8 to sucrose in the wild type makes it difficult to interpret the responses 394 

of EXPA8 to sucrose in KIN10-ox and the tps1 mutants (Fig. 4B, C). Interestingly, sucrose 395 
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induction of EXPA11 was abolished in KIN10-ox, suggesting a role for KIN10 in expansin gene 396 

expression within elongating hypocotyls. In comparison, these expansins were sucrose-inducible in 397 

tps1-11 and tps1-12 (Fig. 4B-E). One possible explanation is that KIN10-ox causes a much greater 398 

level of SnRK1 activity compared with the tps mutants, which are hypomorphic alleles that 399 

harbour reduced Tre6P concentrations (Gómez et al., 2010) and are not completely deficient in 400 

sucrose-induced hypocotyl elongation (Fig. 1D, E). 401 

An alternative and speculative explanation for the different behaviour of expansin transcripts in 402 

KIN10-ox and tps mutants could relate to Tre6P-KIN10 regulating growth through two broad 403 

processes- firstly, though direct signalling effects upon growth (e.g. by regulating auxin signals), 404 

and secondly through metabolic effects, such as growth constraints due to altered nocturnal 405 

catabolism. This could point to TPS1 and SnRK1 making independent contributions to sucrose-406 

induced hypocotyl elongation under light/dark cycles, potentially through separate signalling and 407 

metabolic effects, rather than acting in series. Our data suggest that sucrose-induced hypocotyl 408 

elongation under light/dark cycles includes a signalling effect, previously proposed to occur 409 

through PIF-regulated auxin signals (Stewart et al., 2011; Stewart Lilley et al., 2012). On the other 410 

hand, the unexpected behaviour of expansin transcripts in tps1 mutants (Fig. 1D, E) suggests that 411 

mechanisms additional to auxin/GA signalling might contribute to sucrose-induced hypocotyl 412 

elongation under light/dark cycles. These additional mechanisms could involve brassinosteroid 413 

and/or TOR signalling, which are required for sucrose-induced increases in hypocotyl length under 414 

extended darkness (Zhang et al., 2015; Zhang et al., 2016). It would be informative in future to 415 

investigate the crosstalk between SnRK1 and TOR energy signalling during hypocotyl elongation, 416 

to gain insights into the relative importance of these energy management pathways to the below-417 

ground (darkness) and above-ground (light/dark cycles) stages of seedling establishment. 418 

Conclusions 419 
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We identified a novel role for the SnRK1 energy signalling hub in the regulation of sucrose-420 

induced hypocotyl elongation under light/dark cycles. We propose that KIN10 could be positioned 421 

upstream from the auxin and GA signals that lead to sucrose-induced hypocotyl elongation in the 422 

light (Liu et al., 2011; Stewart et al., 2011; Stewart Lilley et al., 2012). A question for future 423 

investigation concerns the functional organization of this pathway. In one scenario, KIN10-424 

mediated energy signalling regulates hypocotyl elongation by acting upon phytohormone 425 

signalling, potentially through PIFs (Stewart Lilley et al., 2012). In a different and non-exclusive 426 

scenario, SnRK1-mediated alterations in metabolic enzyme activity and growth-related transcripts 427 

prime hypocotyls to capitalize upon increased sucrose availability (Nunes et al., 2013a). This is an 428 

interesting question in the case of hypocotyl elongation, which arises from cell expansion rather 429 

than growth through cell division and biomass accumulation per se (Gendreau et al., 1997). These 430 

two possibilities are non-exclusive, because the phenotypic differences that we report between 431 

KIN10-ox lines and tps1 mutants (e.g. expansin transcript accumulation; Fig. 4) could implicate 432 

more than one mechanism in sucrose-induced hypocotyl elongation. 433 

A further question for future investigation is of the nature of the interplay between KIN10/Tre6P, 434 

TOR and brassinosteroids in the regulation of hypocotyl elongation in response to sugars. One 435 

speculative hypothesis is that under conditions of starvation, such as when a developing below-436 

ground seedling is exhausting its seed-based energy store, brassinosteroid signalling produces a 437 

strong elongation cue to drive seedling emergence into the light (Zhang et al., 2015; Zhang et al., 438 

2016). Then, once the seedling has emerged into the daily cycles of light and dark, KIN10/Tre6P 439 

adjusts the elongation of hypocotyls to allow optimal seedling establishment under local light 440 

conditions (Fig. 1, Fig. 2). It is possible that increased SnRK1 activity under conditions of 441 

transiently low light, for example due to unpredictable changes in the weather, operates alongside 442 

phototransduction pathways to prevent inappropriate etiolation following seedling emergence. 443 
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Therefore, one potential function of the mechanism that we identified might be to adapt the rate of 444 

seedling development to optimize the use of seed and photosynthetic resources under fluctuating 445 

light environments. 446 

 447 

Materials and Methods 448 

Plant material and growth conditions 449 

Arabidopsis (Arabidopsis thaliana (L.) Heynh.) seeds were surface-sterilized and sown on half-450 

strength Murashige & Skoog basal salt mixture (Duchefa, Netherlands) (0.5 MS) with 0.8% (w/v) 451 

agar (Noordally et al., 2013). Seeds were then stratified (3 days at 4 °C) and germinated and grown 452 

for 7 days under 100 µmol m-2 s-1 of white light at 19 °C, except Fig. 2B-E where PAR was 453 

reduced. Media was supplemented with either 3 % (w/v) sucrose (87.6 mM) or 87.6 mM sorbitol as 454 

an osmotic control, according to the experiment. For experiments investigating gibberellin 455 

signalling, media was supplemented with 20 ȝM paclobutrazol (PAC) and 100 ȝM gibberellic acid 456 

(GA3 form) (both Sigma-Aldrich) with a methanol carrier. Paclobutrazol is effective for studies of 457 

GA signalling during development at the concentration of 20 ȝM (Penfield et al., 2004; MacGregor 458 

et al., 2015). For experiments investigating auxin signalling, media was supplemented with 1-N-459 

naphthylphthalamic acid (NPA, Sigma-Aldrich) at up to 10 ȝM with a dimethylsulfoxide (DMSO) 460 

carrier. Controls were supplemented with the appropriate carrier at the same concentration as 461 

treatment media (0.1% (v/v) DMSO for NPA; 0.12% (v/v) methanol for PAC and GA). 462 

To transfer growing seedlings to media containing GA or PAC, surface sterilized and stratified 463 

seeds were pipetted onto 1 ȝm pore-diameter nylon mesh (Normesh, UK), on top of 0.5 MS 0.8% 464 

(w/v) agar, and allowed to germinate for 3 days. Seedlings were then transferred to 0.5 MS 465 

supplemented with either 3% (w/v) sucrose (87.6 mM) or 87.6 mM sorbitol, plus 20 ȝM PAC, 100 466 
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ȝM GA or both PAC and GA. Hypocotyls were measured after 5 days growth on treatment plates. 467 

For experiments with circadian oscillator mutants, we did not use arrhythmic CCA1-ox plants 468 

because overexpression of CCA1 causes very long hypocotyls (Wang and Tobin, 1998), which 469 

would confound investigation of the role of sugars in hypocotyl elongation. 470 

Genotypes used were tps1 TILLING mutants (Gómez et al., 2010), KIN10-ox (Baena-González et 471 

al., 2007), gin2-1 (Moore et al., 2003), gai-1 (Koorneef et al., 1985), DELLA global mutant (Koini 472 

et al., 2009), pyr1 pyl1 pyl2 pyl4 (Park et al., 2009), cca1-11 lhy-21 toc1-21 (Ding et al., 2007), gi-473 

11 (Richardson et al., 1998) and prr7-11 (Yamamoto et al., 2003; Nakamichi et al., 2005). In the 474 

KIN10-ox lines, KIN10 transcript abundance was 17-fold greater than the wild type in elongating 475 

hypocotyls (Fig. S6A). In the tps1-11 and tps1-12 alleles, TPS1 transcript abundance was 476 

unchanged (tps1-11) or slightly increased (tps1-12) compared with the wild type (Fig. S6B). This 477 

result for the tps1 alleles was unsurprising because these are mis-sense mutants rather than 478 

insertion mutants (Gómez et al., 2010). 479 

Hypocotyl measurement 480 

Seedlings were grown on square petri dishes within temperature-controlled growth chambers 481 

(Panasonic MLR-352). Plates were angled at about 45 degrees to allow hypocotyls to elongate 482 

without touching lids. Hypocotyls were measured by positioning 7 day-old seedlings on the surface 483 

of 1% (w/v) agar for photography (Nikon D50) and subsequent measurement using the ImageJ 484 

software (https://imagej.nih.gov/ij/). 485 

RNA extraction and qRT-PCR 486 

RNA was extracted according to (Noordally et al., 2013), using the Machery-Nagel Nucleospin II 487 

plant RNA extraction kit incorporating DNase I treatment (Thermo-Fisher), except approximately 488 

60 seedlings were used per RNA sample. cDNA was synthesized using the High Capacity cDNA 489 
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Reverse Transcription Kit with RNase Inhibitor (Applied Biosystems), according to manufacturer’s 490 

instructions. cDNA was analyzed using an MXPro 3005 real time PCR system (Agilent) with 491 

Brilliant III Ultra-Fast SYBR qPCR mastermix (Agilent) (primers in Table S1). At least two 492 

technical repeats were performed for each qRT-PCR reaction. Data were analyzed using the ǻǻCt 493 

method, with PROTEIN PHOSPHATASE 2A SUBUNIT A3 (PP2AA3) as a reference transcript. 494 

Accession numbers 495 

Arabidopsis Genome Initiative identifiers for the genes mentioned in this study are: KIN10 496 

(At3g01090), TPS1 (At1g78580), HEXOKINASE1 (At4g29130), CCA1 (At2g46830), LHY 497 

(At1g01060), TOC1 (At5g61380), GI (At1g22770), PRR7 (At5g02810), EXPA4 (At2g39700), 498 

EXPA8 (At2g40610), EXPA11 (At1g20190), YUCCA8 (At4g28720), YUCCA9 (At1g04180), 499 

CYP79B3 (At2g22330), IAA29 (At4g32280), SAUR15 (At4g38850). 500 

 501 

Supplemental Material 502 

Figure S1. The cca1-11 lhy-21 toc1-21 triple mutant does not alter sucrose-induced hypocotyl 503 

elongation (direct repeat of Figure 3A). 504 

Figure S2. Selection of expansin transcripts for experimentation. 505 

Figure S3. Sucrose supplementation of growth media did not alter abundance of auxin biosynthesis 506 

transcripts or auxin-responsive transcripts relative to osmotic controls. 507 

Figure S4. Efficacy of GA3 used for study. 508 

Figure S5. ABA signalling is not required for sucrose-induced hypocotyl elongation under short 509 

photoperiods. 510 

Figure S6. KIN10 and TPS1 transcript abundance in KIN10-ox and tps1 TILLING mutants. 511 

Table S1. qRT-PCR primer sequences. 512 
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 523 

Figure legends 524 

Figure 1. KIN10 and TPS1 participate in sucrose-induced hypocotyl elongation. (A) 525 

Representative images of L. er. wild type, KIN10-ox and tps1 seedlings cultivated under a variety 526 

of photoperiods, with and without supplementation with 3% sucrose. All panels scaled identically. 527 

Images are a subset of seedlings used to generate data in (B-E). (B-E) Lengths of hypocotyls of 528 

seedlings grown under (B, D) constant light, 16 h and 8 h photoperiods, and (C, E) 4 h 529 

photoperiods. Photoperiods are indicated underneath graphs. (F) Effect of sucrose supplementation 530 

upon gin2-1 hypocotyl length. S.E.M. is small under continuous light (0.03 – 0.05 mm), so not 531 

visible on graphs. Data were analysed with ANOVA and Tukey’s post-hoc tests (n = 10 (B-E) or n 532 

= 20 (F) seedlings in three independent experiments, ± S.E.M). Different letters indicate 533 

statistically significant differences between means, specifically within each light condition (p < 534 

0.05). (B-E); MS is half-strength MS media, and Suc and Sor are 0.5 MS supplemented with 3% 535 

(w/v) sucrose or equimolar sorbitol (87.6 mM osmotic control), respectively. 536 
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 537 

Figure 2. Day-length dependency of sucrose-induced hypocotyl elongation in wild type seedlings. 538 

(A) Increase in hypocotyl length caused by sucrose under range of photoperiods (data derived from 539 

Fig. 1, plotted relative to sorbitol control). (B-E) Comparison of (B, D) absolute hypocotyl length 540 

and (C, E) proportional increase in hypocotyl length caused by sucrose supplementation under 541 

specified photosynthetically active radiation (PAR) and photoperiod. Mean ± S.E.M; (A, C-E) 542 

n = 10 seedlings in two independent experiments (B) n = 20 seedlings. Data analysed using 543 

ANOVA followed by post-hoc Tukey test. Different letters indicate statistically significant 544 

differences between means (p < 0.05). 545 

 546 

Figure 3. The circadian oscillator does not participate in sucrose-induced hypocotyl elongation 547 

under short photoperiods. Sucrose-induced change in hypocotyl length of (A) a circadian oscillator 548 

triple mutant (cca1-11 lhy-21 toc1-21, background Ws-2) and (B, C) two oscillator components 549 

participating in sucrose regulation of the circadian oscillator. (D) Change in hypocotyl length 550 

caused by sucrose supplementation in gi-11 and prr7-11, expressed relative to 0.5 MS control. MS 551 

is 0.5 MS media, and Suc and Sor are 0.5 MS supplemented with 3% (w/v) sucrose and sorbitol 552 

(87.6 mM, osmotic control), respectively. Data are mean ± S.E.M (n = 10 – 16), analysed with (A-553 

C) ANOVA and post-hoc Tukey tests and (D) two-sample t-test comparing mutant with wild type 554 

for each treatment. Data show one of three independent repeats of the experiment, conducted under 555 

4 h photoperiods. Different letters indicate statistically significant differences between means (p < 556 

0.05). 557 

 558 

Figure 4. Auxin signalling underlies sucrose-induced hypocotyl elongation and KIN10 regulates 559 

expansin gene expression. (A) Hypocotyl length of seedlings cultivated with a range of 560 
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concentrations of the inhibitor of polar auxin transport 1-N-naphthylphthalamic acid (NPA), under 561 

4 h photoperiods (mean ± S.E.M; n = 20). (B-E) Sucrose-induced changes in expansin transcript 562 

abundance in elongating wild type, tps1 and KIN10-ox seedlings under 4 h photoperiods. (B, D) 563 

Indicate EXPA8 and EXPA11 transcript abundance relative to PP2AA3 (mean ± S.E.M; n = 3). (C, 564 

E) Indicate the magnitude of sucrose-induced change in transcript abundance in each genotype 565 

relative to the osmotic control. Data analysed with ANOVA and post-hoc Tukey tests, and with 566 

statistical significance indicated using starring (N.S. = not significant p > 0.05; * = p <= 0.05; ** = 567 

p < 0.01; *** = p < 0.001). 568 

 569 

Figure 5. Gibberellin signals contribute to sucrose-induced hypocotyl elongation under short 570 

photoperiods. (A) The GA biosynthesis inhibitor paclobutrazol (PAC) at 20 ȝM inhibits sucrose-571 

induced hypocotyl elongation. Seedlings were germinated on MS agar and transferred to treatment 572 

media after germination; carrier control was 0.12% (v/v) methanol. (B) Sucrose-induced hypocotyl 573 

elongation was attenuated in gai-1 mutant seedlings. (C) Sucrose-induced hypocotyl elongation 574 

was unaltered in a DELLA global knockout mutant. Experiments performed under 4 h 575 

photoperiods. Data are mean ± S.E.M (n = 20) from one of two independent repeats, analysed with 576 

ANOVA and post-hoc Tukey tests. Different letters indicate statistically significant differences 577 

between means (p < 0.05). Osmotic control was 87.6 mM sorbitol. 578 

 579 

Supplemental Figure Legends 580 

 581 

Figure S1. The cca1-11 lhy-21 toc1-21 triple mutant does not alter sucrose-induced hypocotyl 582 

elongation under light/dark cycles. This is a direct repeat of the experiment in Figure 3A where 583 

data approach statistical significance. (A) Comparison of hypocotyl length of Ws-2 background 584 
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and cca1-11 lhy-21 toc1-21 grown on 0.5 MS media (MS) and 0.5 MS media supplemented with 585 

3% (w/v) sucrose (Suc); (B) Increase in hypocotyl length of wild type and cca1-11 lhy-21 toc1-21 586 

caused by exogenous sucrose, relative to 0.5 MS control. Data are mean ± S.E.M; n = 10; statistical 587 

significance from two-sample t-tests comparing mutant and wild type for each treatment; N.S. = no 588 

significant difference (p >= 0.05). 589 

 590 

Figure S2. EXPA8 and EXPA11 transcripts were (A) up-regulated by conditions that promote 591 

hypocotyl elongation (constant darkness) and (B) down-regulated by the auxin transport inhibitor 592 

NPA (mean ± S.E.M.; n = 3). Transcript abundance was relative to PP2AA3 reference transcript 593 

and used 7-day old L. er. seedlings. Data analysed with ANOVA followed by post-hoc Tukey test. 594 

Different letters indicate statistically significant differences between means (p < 0.05). 595 

 596 

Figure S3. Sucrose supplementation did not alter the abundance of auxin biosynthesis transcripts 597 

or auxin-responsive transcripts relative to osmotic controls, due to responses of osmotic controls. 598 

Data indicate relative abundance of three auxin biosynthesis transcripts (YUCCA8, YUCCA9, 599 

CYP79B3) and two auxin-responsive transcripts (IAA29, SAUR15) in two backgrounds, using 600 

PP2AA3 as the reference transcript. Seedlings (60 per replicate) were grown on 0.5 MS, 3% (w/v) 601 

sucrose, or 87.6 mM sorbitol as osmotic control, and harvested for RNA 4 days and 7 days after 602 

germination (indicated on x axis). Two background lines were used to evaluate whether there were 603 

ecotype-specific phenotypes. Data are mean ± S.E.M; n = 2 independent biological repeats. 604 

Analyzed by ANOVA (p >= 0.05 in all cases, i.e. not significant). 605 

 606 

Figure S4. Confirmation of activity of GA3. 100 µM GA3 increased hypocotyl length relative to 607 

the carrier control in both L. er. and Col-0 backgrounds, under 4 h and 16 h photoperiods. 608 
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Seedlings were germinated and grown in presence of GA. Data were collected during methods 609 

development and are not directly comparable with other experiments. Data expressed as mean ± 610 

S.E.M. (n = 20) and analysed with ANOVA followed by post-hoc Tukey test. Different letters 611 

indicate statistically significant differences between means (p < 0.05). 612 

 613 

Figure S5. ABA signalling is not required for sucrose-induced hypocotyl elongation under short 614 

photoperiods. The pyr1-1 pyl1-1 pyl2-1 pyl4-1 quadruple mutant incorporates Col-0 and L. er. 615 

backgrounds (Park et al., 2009), both of which are included as controls. Data indicate mean 616 

hypocotyl lengths of seedlings grown on 0.5 MS supplemented with 3% sucrose or an osmotic 617 

control (87.6 mM sorbitol), under 4 h photoperiods. Data are mean ± S.E.M.; n = 20 (background 618 

lines); n = 3 – 9 depending on treatment for pyr1-1 pyl1-1 pyl2-1 pyl4-1 (low replicate numbers 619 

due to poor mutant germination). Data are from one of two independent repeats. Statistical 620 

significance from independent-samples Kruskal-Wallis analysis of variance on ranks and post-hoc 621 

Dunn tests comparing mutant and wild type for each treatment; *** = p < 0.001; N.S. = no 622 

significant difference (p >= 0.05). 623 

 624 

Figure S6. KIN10 and TPS1 transcript abundance KIN10-ox and tps1 TILLING mutants. (A) 625 

KIN10 transcript abundance in two independent KIN10-ox lines (Baena-González et al., 2007), its 626 

L. er background, and also Col-0. Transcript abundance is relative to PP2AA3 reference. (B) TPS1 627 

transcript abundance in tps1-11 and tps1-12 (Gómez et al., 2010), alongside the L. er and Col-0 628 

backgrounds. Transcript abundance was measured in 7 day old seedlings and is relative to the 629 

PP2AA3 reference transcript. Data expressed as mean ± S.E.M (n = 3) and analyzed with ANOVA 630 

followed by post-hoc Tukey test. Different letters indicate statistically significant differences 631 

between means (p < 0.05). 632 
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