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Glucocorticoids, including corticosterone (CORT), have been

suggested to provide a physiological link between ecological

conditions and fitness. Specifically, CORT, which is elevated

in response to harsh conditions, is predicted to be correlated

with reduced fitness. Yet, empirical studies show that CORT

can be non-significantly, positively and negatively linked

with fitness. Divergent environmental conditions between

years or study systems may influence whether CORT is

linked to fitness. To test this, we monitored free-living blue

tits (Cyanistes caeruleus) during breeding over 3 years. We

quantified foraging conditions during brood rearing, and

examined whether they were correlated with parental baseline

CORT and reproductive success. We then tested whether CORT

predicted fitness. Elevated parental CORT was associated with

lower temperatures, greater rainfall and lower territory-scale

oak density. Whereas asynchrony with the caterpillar food

peak was correlated with reduced nestling mass and fledging

success, but not parental CORT. Only low temperatures were

associated with both reduced nestling mass and elevated

parental CORT. Despite this, parents with elevated CORT

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons

Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted

use, provided the original author and source are credited.
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had lighter offspring in all years. Contrarily, in 2009 parental CORT was positively correlated with

the number fledged. The absence of a direct link between the foraging conditions that reduce nestling

quality and elevate parental CORT suggests that parental CORT may provide a holistic measure

of conditions where parents are working harder to meet the demands of developing young. As

the positive correlation between parental CORT and fledging success differed between years, this

suggests that contrasting conditions between years can influence correlations between parental CORT

and fitness. Ultimately, as CORT concentrations are intrinsically variable and linked to the prevalent

conditions, studies that incorporate environmental harshness will improve our understanding of

evolutionary endocrinology.

1. Introduction
Glucocorticoids (GCs) are steroid hormones that play a fundamental role in maintaining homeostasis

and energy balance [1–4]. GCs are elevated in response to a range of energetically challenging conditions,

including food shortage, poor habitat quality and inclement weather conditions [3,5–8]. As similar harsh

environmental conditions are linked to a decline in fitness proxies, including reproductive success [9–11],

elevated GCs have been suggested to provide a physiological link between challenging environmental

conditions and reduced reproductive success [12,13]. Consequently, elevated GCs within individuals

and populations are frequently considered to be an indicator of lower relative fitness [12], especially

within the context of conservation biology [12–14]. However, a review of the empirical evidence

demonstrates that corticosterone (CORT) the main GC in birds can be non-significantly, positively

and negatively linked with fitness proxies [12,13,15–17]. Therefore, whether inter-individual variation

in CORT provides a physiological link between environmental conditions and reproductive success,

and whether CORT titres can be employed to infer individual fitness remain outstanding questions in

evolutionary endocrinology.

There is accumulating evidence that the relationship between CORT and fitness is context-dependent.

For example, the direction of the correlation between CORT and fitness can vary between populations

[18,19], years [20,21], life-history stages [16,17], sexes [15] and reproductive strategies [22]. As baseline

CORT is intrinsically linked to an individual’s energetic state, variation in the prevalent conditions

experienced during breeding has the potential to influence the relationships between parental CORT

and reproductive success [12,13,23,24]. Therefore, to improve our understanding of how inter-individual

variation in CORT titres vary with fitness proxies, further studies that quantify environmental conditions,

parental CORT and reproductive success are required [24]. To date few studies have simultaneously

quantified the ecological conditions experienced during breeding, parental CORT and reproductive

success to investigate whether elevated CORT links challenging conditions with reduced reproductive

success (but see [25,26]). A notable exception to this are a series of studies conducted in seabirds

[5,20,21] (for a recent meta-analysis see [27]). These studies provide evidence that low food availability

during breeding is consistently associated with both elevated parental baseline CORT and reduced

reproductive success. Furthermore, elevated parental CORT was often directly correlated with reduced

reproductive success and adult survival [2,3,5,28]. These studies, however, are predominately from

seabird colonies that have experienced significant population declines caused by abrupt drops in prey

abundance [2,3,5,28]. Therefore, it is unclear whether similar results will be evident in stable populations,

which have not experienced similar deterioration of their breeding environment.

Under mild fluctuations in environmental conditions, like a minor reduction in food availability,

parents may compensate through behavioural flexibility [29–31]. Functionally, the elevation of baseline

CORT in response to environmental challenges can mobilize fat reserves for energetically demanding

behaviours [32]. In birds, elevated baseline CORT has been associated with increased foraging duration

[33] and nestling provisioning rates [34,35]. Therefore, parental CORT elevation is predicted to promote

behaviours that prevent a mild decline in conditions from adversely affecting offspring survival [36].

In this case, low food availability may be associated with elevated parental CORT, but not result in

a negative correlation between parental CORT and offspring number [14,29]. However, while a mild

decline in environmental conditions during rearing may not influence offspring number, it could reduce

nestling condition [37], resulting in a negative correlation between parental CORT and nestling quality.

This would have important consequences for individual fitness, as fledging mass can influence future

survival and reproductive success of offspring [38–41]. Therefore, when investigated whether parental

CORT predicts reproductive success, it is important to assess multiple measures of breeding success [42].
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Additionally under relatively benign conditions, rearing offspring may present the greatest challenge

experienced by parents, and consequently elevated CORT concentrations may facilitate offspring care

[12]. In agreement with this, a number of studies provide evidence that parental CORT concentrations

can be positively correlated with offspring number during rearing [16–18,43–45]. There is also

evidence that a positive correlation between parental CORT and breeding success can be context-

dependent [12,18,24]. For example, between two geographically distinct populations of blue tit (Cyanistes

caeruleus), a positive correlation between brood size and baseline CORT was only evident in the

population that had comparatively higher ectoparasite loads [18]. Importantly, we would predict a

positive correlation between parental CORT and brood size, only when parents with larger broods

experience disproportionately high energetic demands but are still able to successfully raise their broods

to fledging.

To investigate whether variation in the prevalent conditions experienced during breeding has

the potential to influence the relationships between parental CORT and fitness proxies, a free-living

population of blue tits were studied over 3 years that differed in environmental conditions. The

blue tit provides an ideal model system, as the ecological variables that influence fitness are well

known, and ecological conditions often vary significantly between years creating a natural experiment

[46–48]. To quantify the foraging conditions experienced during brood rearing, we measured asynchrony

between breeding and the peak in caterpillar abundance, weather variables and territory-scale oak

density (inferred from the distance to the nearest oak from each nest), all of which can influence both

reproductive success and the energetic demands of breeding birds during brood rearing [37,49–51].

We investigated whether, (i) inclement foraging conditions were associated with elevated baseline

CORT; (ii) the same inclement foraging conditions were correlated with reduced reproductive success,

i.e. fledging number and nestling mass; and (iii) variation in parental baseline CORT predicted

reproductive success.

2. Material and methods

2.1. Field site and fitness proxies

Blue tits breeding in nest-boxes in oak-dominated woodland around Loch Lomond, Scotland (56°13′ N,

4°13′ W) were studied for 3 years from April to June 2008–2010. Nest-boxes were monitored regularly

from the onset of nest building to establish the first date an egg was laid (lay date), clutch size and

hatching date (n = 2008: 144, 2009: 83, 2010: 50). When more than 50% eggs had hatched, this was

considered day 1. To measure nestling condition, on day 14 after hatching all nestlings were weighed

to the nearest 0.05 g with a Pesola spring scale. To establish fledging number, nest-boxes were visited

after fledging to check for any unfledged offspring. There was no evidence of predation at the nests

included in this study. The smaller number of nests in 2009 and 2010 was because more than 50 nests

were used in a manipulative study [52].

2.2. Blood sampling

To control for effects of breeding stage, parental baseline CORT was measured at the same point during

brood rearing across all years. Birds were captured on their nest, during provisioning on day 5–7

after chicks hatched. A small blood sample was obtained (about 80–100 µl) with the aid of a standard

heparinized capillary tube after puncture of the brachial vein with a 25 gauge needle. All blood samples

were collected within 3 min of the initial blockage of the nest-box entrance [53]. CORT samples were

considered to be baseline as the time spent by researchers at the nest before capture, time between

sampling and initial disturbance of the nest and time of day were not related to CORT (n = 113; duration

at nest-box, t = 0.43; p = 0.67; sampling time, t = 0.80, p = 0.43; and time of day, t = −1.41, p = 0.16). Parents

were sexed based on the presence or absence of a brood patch [54].

2.3. Foraging conditions

The foraging conditions experienced by breeding birds were assessed in three ways. (i) The asynchrony

between breeding birds and the peak in caterpillar abundance was estimated by the collection of frass

from April to June each year. Asynchrony rather than absolute frass fall was used to assess food

availability, as it provides a higher resolution assessment of food availability for individual nests within

years, and is more robust to variation between trees, and rainfall between years ([55–58]; see also
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Figure 1. (a) Caterpillar abundancemeasured by frass fall collection (g m−2 day−1) in April to June 2008–2010 (Julian date, 1 April= 0).

Horizontal lines indicate the periodwhenblue tit nestlingswere 10 days old in each year. (b) Distance to the nearest oak treewas positively

correlatedwithparental baselineCORT inall years (greater distance fromthenest indicates a territorywith feweroak trees), (c) asynchrony

with the caterpillar food peak was negatively correlated with number fledged and (d) nestling mass in all years.

electronic supplementary materials, S1). For example, 2009 had significantly higher rainfall than the

other years, and lower absolute frass fall (figure 1a). Owing to this, it is not possible to say whether

there were fewer caterpillars, or if the heavier rainfall dissolved a greater proportion of the frass. As the

woodland is oak-dominated (more than 95% trees), and caterpillars are at their highest densities in oak

foliage [11,59,60], frass fall was collected from 20 mature oak trees and assessed by measurement of the

dry weight. To calculate the asynchrony between breeding birds and the peak in caterpillar abundance,

the number of days between the date of maximum frass abundance (mean calculated from all trees)

and the date when nestlings were 10 days old was calculated for each nest (figure 1a). At 10 days of

age, nestlings are growing at their fastest rate, so their nutritional requirements are at their highest [61].

To allow for comparisons between years, dates were converted to Julian with 0 = 1 April. For the full

methodology, see electronic supplementary materials, S1. (ii) Territory-scale oak density was assessed

by measuring the distance (m) between each nest and the nearest oak tree. This time-efficient method

was used because, in agreement with previous studies [62], we found for a subset of territories that

the number of oak trees within a 25 m radius of the nest was negatively correlated with the distance to

the nearest oak (Pearson’s correlation; r = −0.94, n = 20, p < 0.01). (iii) Weather conditions were assessed

using data collected at a meteorological station less than 10 miles from the field site. Total rainfall (mm)

and max temperature (°C) were collected every 24 h throughout the breeding season for all years. To

assess the impact of prolonged weather conditions upon CORT, the mean rainfall and max temperatures

experienced 72 h following blood sample collection were calculated for each individual [63]. Weather

conditions 24–48 h prior to blood sampling were not related to parental CORT. To investigate the impact

of weather conditions upon fitness proxies, the mean rainfall and max temperatures experienced during

the majority of chick development, i.e. day 4–14 after hatching, were calculated for each nest.
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2.4. Hormone assays

Corticosterone was extracted from 5–20 µl aliquots of plasma using diethyl ether and concentrations

measured using a double antibody radioimmunoassay [64]: primary antibody (Esoterix B183), secondary

antibody (Sigma goat anti-rabbit) and [3H]-corticosterone label (GE Healthcare, UK). The extraction

efficiency was 85–100%. Recoveries were measured for each sample to allow calculation of individual

plasma CORT concentrations. Pooled plasma samples were used in all assays as standards to assess

inter-assay variation. The detection limit of the assays (n = 3) averaged 0.03 ng/ml and the intra- and

inter-assay coefficients of variation were 9 ± 6% and 10 ± 4%, respectively.

2.5. Statistical analysis

To investigate how foraging conditions differed between years, Kruskal–Wallis tests were employed, as

transformations could not normalize the distribution or variance of the data. A GLM with a binomial

error structure was used to compare the number of days it rained between years (hereafter referred to

as rain days). All CORT data were square root transformed because of non-normality.

To assess the influence of foraging conditions upon parental CORT, GLMs were used. Two-way

interactions between foraging conditions, sex and year were fitted. Only one parent was used from each

nest, and when parents were captured in more than 1 year, they were only used in the analysis in the

first year they were caught. This was to avoid pseudo-replication, and because we captured few pairs

(n < 4), and captured few birds in more than 1 year (n < 6). There was evidence of autocorrelation in some

of the foraging conditions. Maximum temperature and rainfall were significantly negatively correlated

(Spearman’s rho: r = −0.38, n = 150, p < 0.001). Therefore, models were run twice, once with rainfall and

once with temperature. As rainfall was run in separate models, if rainfall was significant, it is reported in

the results section; models that included temperature are reported in tables. Lay date was not included in

these models as it was not correlated with parental CORT (GLM t = −0.11, p = 0.91), but was correlated

with asynchrony with the caterpillar peak (GLM t = 6.15, p < 0.01).

Lay date was a significant predictor of brood size (GLM t = −4.89, p < 0.01) and asynchrony with the

caterpillar peak (GLM t = 6.15, p < 0.01). Therefore, to control for this, we used the residuals of a linear

regression between number fledged or nestling mass and lay date, as the dependent variables in the

GLMs investigating whether parental CORT or foraging conditions explained variation in the breeding

success. Not all parents were sampled for baseline CORT, so models investigating number fledged and

nestling mass have a larger sample size than those investigating parental CORT. Also we were not able

to measure nestling mass in all nests where we captured parents for baseline CORT, therefore nestling

mass models have a smaller sample size than number fledged.

Models were optimized using backward elimination of non-significant terms (p > 0.05), and models

were compared using ANOVA. Terms remained in the model if their deletion caused a significant

increase in deviance (p < 0.05) [65]. Models were validated to verify that underlying statistical

assumptions were not violated; normality was assessed by plotting theoretical quantiles versus

standardized residuals (quantile–quantile plots); homogeneity of variance was evaluated by plotting

residuals versus fitted values, and nonlinearity was evaluated by plotting residuals versus explanatory

variables [65]. All statistical analyses were conducted using R v. 2.12.2 [66].

3. Results

3.1. Foraging conditions

In 2008 and 2010, birds were more asynchronous with the peak in caterpillar abundance than 2009

(table 1, figure 1a, H = 45.85, p < 0.001). In 2009, there were significantly more rain days than in the other

2 years of the study (table 1, t = 2.16, p = 0.03); and in 2008, maximum temperatures were higher than in

the other 2 years (table 1, H = 6.29, p = 0.04). Despite differences in the nest-boxes used by birds between

years, our proxy of territory-scale oak density, the distance from the nest to the nearest oak tree, did not

differ between years (H = 2.39, p = 0.30).

3.2. Corticosterone and foraging conditions

Temperature was negatively correlated with parental CORT (table 2a), and rainfall was positively

correlated with parental CORT in all years (GLM t = 2.09, p = 0.04). Parents breeding in territories
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Table 1. Inter-annual variation in asynchrony between breeding birds and the caterpillar food peak, rainfall, max temperature, parental

baseline CORT, number fledged and nestling mass for free-living blue tits (2008–2010). Mean± s.e. are shown; values in italics differ

significantly from the other years; * denotes significance at p< 0.05; and ** denotes significance at p< 0.001.

2008 2009 2010

asynchrony with caterpillar peak (days) 8.28± 0.25 2.68± 0.24** 5.28± 0.40**
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rain days (%) 40 62* 50
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

temperature (°C) 17.39± 0.39* 16.16± 0.42 16.42± 0.47
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

adult CORT (ng ml−1) 2.93± 0.25 3.14± 0.25 1.02± 0.15**
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number fledged 7.38± 0.34 7.16± 0.50** 8.20± 0.46
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nestling mass (g) 11.05± 0.10 11.34± 0.09 11.39± 0.12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. The results of GLMs investigating whether parental sex, year or foraging conditions were correlated with (a) parental CORT

(n= 113), (b) number fledged (n= 258) and (c) nestling condition (n= 164). Values in italics denote statistically significant factors.

factor d.f. effect s.e. t p

(a) baseline CORT
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

year 2 1.12 −5.33 <0.001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sex 1 0.10 −3.45 <0.001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

oak density 1 0.02 2.92 0.004
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

temperature 1 0.03 −2.00 0.048
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) number fledged
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

year 2 0.33 −4.35 <0.001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

asynchrony 1 0.04 −2.90 0.003
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) nestling mass
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

year 2 0.21 −1.11 0.268
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

asynchrony 1 0.02 −3.31 0.001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

temperature 2 0.06 2.08 0.039
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

with fewer oak trees had higher baseline CORT than those breeding in oak-dense territories (table 2a,

figure 1b). However, asynchrony with the caterpillar peak was not correlated with parental CORT.

Baseline CORT was significantly lower in 2010 compared to the other years (tables 1 and 2a), and CORT

concentrations were significantly lower in males compared with females (table 2a).

3.3. Reproductive success and foraging conditions

In all years, nests that were more asynchronous with the caterpillar peak fledged fewer offspring

(figure 1c, table 2b) and contained lighter nestlings (figure 1d, table 2c). Temperature was positively

correlated with nestling mass in all years (table 2c). Rainfall and territory-scale oak density was unrelated

to number fledged and nestling mass. Nestling mass did not differ between years, but the number

fledged was lower in 2009 (tables 1 and 2b). In all years, parents with earlier lay dates had larger broods

(figure 2a, GLM t = −4.89, p < 0.01). In 2008 and 2010, parents with earlier lay dates were also more

synchronous with the caterpillar peak (figure 2b). But this was reversed in 2009, as parents with earlier

lay dates were less synchronous with the caterpillar peak (figure 2b, GLM Year × Asynchrony: t = −6.31,

p < 0.01).

3.4. Corticosterone and fitness proxies

The relationship between parental CORT and number fledged varied between years, shown by the

significant effect of the interaction ‘CORT × Year’ on the number of chicks fledged (table 3a). This was

driven by a significant positive correlation between CORT and number of chicks fledged in 2009 only
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Table 3. The results of GLMs investigating whether variation in (a) number of fledglings (n= 113) or (b) nestling mass (n= 86) was

explainedby year, parental CORTor the interactionbetweenparental CORTandyear. Values in italics denote statistically significant factors.

factor d.f. effect s.e. t p

(a) number fledged
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

year 2 0.92 −2.51 0.014
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CORT 1 0.38 −0.77 0.445
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

year× CORT 2 0.53 2.11 0.037
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) nestling mass
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CORT 1 0.14 −2.60 0.011
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(figure 3a, 2009: GLM t = 2.20, p = 0.03). Nestling mass was negatively correlated with parental CORT

in all years (table 3b, figure 3b).

4. Discussion
Our results add to evidence that baseline CORT is elevated in response to energetically challenging

conditions in free-living birds [6,63,67,68]. Prodigious rainfall, cold temperatures and fewer oak trees

 on November 14, 2017http://rsos.royalsocietypublishing.org/Downloaded from 



8

rsos.royalsocietypublishing.org
R.Soc.open

sci.4:170875
................................................

within a territory were correlated with elevated parental CORT. However, over the 3 years of our study

the foraging conditions that elevated parental CORT did not consistently predict reproductive success.

Only low temperatures were associated with both reduced nestling mass and elevated parental CORT.

Furthermore, asynchrony with the caterpillar peak strongly predicted nestling mass and number fledged,

but was not correlated with parental CORT. Importantly, the variation in foraging conditions within

and between years was mild, demonstrated by the high breeding success across years. Under mild

variation in environmental conditions, we may not predict a negative correlation between parental CORT

and offspring survival. This is because parents can increase provisioning and brooding behaviours in

response to a mild decline in food abundance or weather conditions [3,49], which in turn can be facilitated

by elevated baseline CORT [33–35].

Yet, parental CORT was negatively correlated with nestling mass in all years. As parental CORT

was unrelated to nestling mass on day 4 after hatching (GLM t = −1.29, p = 0.20), our results do not

provide evidence that parents with elevated CORT laid lighter offspring. Rather this result suggests that,

in breeding blue tits, parental CORT provides a physiological link between conditions during rearing

and nestling quality close to fledging. Hence, parental CORT may provide a holistic measure of how

challenging parents perceive their environment, and be indicative of conditions where parents are unable

to provide adequate resources for their young [3,19,33]. In female tree swallows (Tachycineta bicolor),

experimentally reducing flight efficiency during provisioning was associated with both elevated baseline

CORT and reduced nestling provisioning rates [26]. Our results highlight the importance of measuring

multiple measures of breeding success, when investigating whether CORT titres can be employed to

infer individual fitness. Ultimately, our results show that hormonal measures can be consistently linked

to nestling quality across multiple years that differ in foraging conditions.

Parental CORT was positively correlated with number of chicks fledged in one year. This result

supports previous studies that show that parental CORT can be positively correlated with reproductive

success, and therefore not consistently linked to a decline in fitness proxies [18,43–45]. As this

relationship differed between years, this suggests that contrasting environmental conditions between

years influenced the correlations between parental CORT and fitness. In our study population, parents

with earlier lay dates had larger broods. In addition, in 2008 and 2010 parents with earlier lay dates were

also more synchronous with the caterpillar peak. But this was reversed in 2009, as parents with earlier lay

dates were less synchronous with the caterpillar peak. In blue tits, the degree of mismatch between peak

caterpillar abundance and chick demand can greatly increase parental foraging costs [9,49,69]. Therefore,

while parents were overall more synchronous with the caterpillar peak in 2009; the mismatch between

chick demand and caterpillar abundance for parents with larger broods, probably resulted in greater

foraging effort. Additionally, in 2009 there was significantly more rainfall, and fledging success was lower

compared to the other years of the study. This suggests that foraging conditions were more challenging

in this year.

Overall, our results show that a positive correlation between brood size and parental CORT can occur

when parents with larger broods experience disproportionately high energetic demands, but are still

able to successfully raise their broods to fledging. In addition, birds with earlier lay dates are probably

superior-quality individuals [58,61], capable of increasing workloads to provide for young [16,44]. For

example, in tree swallows, females that had greater increases in baseline CORT in response to brood

enlargement were able to provision their offspring at a higher rate [44]. Our results provide evidence

that measuring the environmental conditions experienced by breeding birds will more accurately predict

the context dependence of correlations between parental CORT and fitness. Furthermore, experimental

studies that manipulate ecological conditions, within a biologically relevant range during brood rearing,

would provide causal evidence that the prevalent conditions can influence the relationship between

CORT titres and fitness proxies.

Previous studies have suggested that a positive correlation between parental CORT and fledging

number indicates that individuals with elevated CORT have higher relative fitness [12,17]. However,

there may be costs associated with elevating CORT in response to brood rearing that may trade off against

future reproduction and survival [28,70,71]. For example, in giant petrels (Macronectes spp.) mothers

with higher CORT during breeding were more likely to defer breeding in the following year [72]. The

context dependence of the correlation between parental CORT and fledging number, and the negative

correlation between parental CORT and nestling mass in our study suggests that a positive correlation

between CORT and reproductive success in a single year may not be predictive of lifetime reproductive

success. Furthermore, while there was positive correlation between CORT and number fledged in 2009,

parents with elevated baseline CORT also fledged lighter offspring. As mass at fledging is predictive of

future survival and reproductive success of offspring [38–41], parents with elevated CORT in 2009 may
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have suffered reduced reproductive success in that year. Overall, studies that incorporate the concepts of

reproductive trade-offs and reproductive strategies would be insightful (e.g. [72–75]).

5. Conclusion
This study shows that circulating parental CORT concentrations can be indicative of offspring

quality. In addition, the year-specific positive correlation between parental CORT and number fledged

suggests that variation in conditions between years may alter the relationship between parental

CORT and fitness proxies. Our results highlight the importance of measuring multiple measures of

reproductive success when trying to establish whether inter-individual variation in CORT predicts

fitness. Ultimately, as CORT concentrations are intrinsically variable and linked to the prevalent

conditions, further studies that incorporate environmental harshness will improve our understanding

of evolutionary endocrinology.
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