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ABSTRACT

Although rare, 3p microdeletion cases have been well described in the clinical
literature. The clinical phenotype includes; intellectual disability (ID), growth
retardation, facial dysmorphism and cardiac malformations. Advances in
chromosome microarray (CMA) testing narrowed the 3p25 critical region to a 124kb
region, and recent Whole Exome Sequencing (WES) studies have suggested that
the SETD5 gene contributes significantly to the 3p25 phenotype. Loss-of-Function
(LoF) variants in SETDS5 are now considered a likely cause of ID.

We report here a patient with a frameshift LoF variant in exon 12 of SETD5.
This patient has features overlapping with other patients described with LoF SETD5
variants to include; similar facial morphology, feeding difficulties, intellectual
disability, behavioural abnormalities and leg length discrepancy. In addition, he
presents with an aberrant blind ending bronchus.

This report adds to publications describing intragenic mutations in SETD5 and
supports the assertion that de novo LoF mutations in SETD5 present with an
overlapping but distinct phenotype in comparison with 3p25 microdeletion

syndromes.

KEY WORDS
3p microdeletion, 3p25, SETDS5, aberrant blind ending bronchus, intellectual

disability, loss of function.
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INTRODUCTION

Intellectual Disability (ID) has a worldwide prevalence of approximately 1%-
3% and has become the most frequent reason for referral to paediatric genetic
services [Maulik and Darmstadt 2007]. Due to its clinical and genetic heterogeneity,
the underlying cause for ID remains unclear. However, advances in genetic testing
have led to the elucidation of several novel genes linked to ID, some of the most
successful studies have led to the identification of de novo LoF sequence variants in
candidate genes [de Ligt and others 2012; Rauch and others; Vissers and others
2010].

Distal deletions of the short arm of chromosome 3 were first characterised by
cytogenetic and FISH analysis [Aqua and others 1995; Verjaal and De Nef 1978].
This condition results in a well-described syndrome associated with a clinical
phenotype that includes; intellectual disability, growth retardation, facial
dysmorphism and cardiac malformations. The severity of the condition varies
considerably, with the size of the deletion apparently correlating with the severity of
the phenotype [Drumheller and others 1996].

A report by Kellogg and others [2013] described 4 patients with 3p25.3
deletions and ID, including 3 previously reported patients by Peltekova and others
[2012], Riess and others [2012] and Gunnarsson and Foyn Bruun [2010]. These
3p25.3 deletion carriers had a narrow range of overlap comprising of 3 genes
including SETDA5. In addition to ID, patients had a common phenotype of depressed
nasal bridge (3/4), low set ears (3/4) and philtrum differences (3/4). Other features
were more variable including; cardiac malformations (2/4), ptosis (2/4), low birth
weight/growth retardation (2/4), seizures (2/4) and microcephaly (2/4) [Kellogg and

others 2013].

John Wiley & Sons, Inc.
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Following this, 7 patients with independent LoF variants in SETD5 from a
cohort of 996 patients with moderate/severe ID (0.7% of cohort) were reported.
Features included; speech delay, behavioural problems and autism. Similar
dysmorphology i.e. brachycephaly, prominent forehead, abnormal eyebrows, similar
nose morphology (long, thin, tubular), eye morphology (long, narrow, upslanting
palpebral fissures, mild ptosis, unilateral amblyopia, nystagmus, strabismus) and
large, fleshy, low set ears were reported. Again, more variable features included;
cardiac malformations (2/7), skeletal abnormalities (leg length discrepancy, scoliosis,
kyphosis, lordosis) and genitourinary abnormalities (4/7) [Grozeva and others 2014].

Kuechler and others [2015] went on to expand the phenotype further and
described 4 unrelated patients with 4 different non-recurrent microdeletions on
chromosome 3p25 narrowing down the smallest region of overlap to 94kb including
only 2 coding genes, SETD5 and parts of THUMPD3. Included in the cohort were 2
patients with intragenic SETD5 variants. Patients were compared with those from
Kellogg and others [2013], Peltekova and others [2012], Riess and others [2012] and
Gunnarsson and Foyn Bruun [2010]. Both microdeletion carriers and intragenic
SETDS5 variant carriers had a similar craniofacial phenotype of striking eyebrows
(full, broad, straight, arched or with synophyrys), a tubular nose with broad nasal
bridge, bulbous nasal tip, anteverted nares, a long philtrum and downturned corners
of the mouth. Just like previous reports, features which showed incomplete
penetrance were cardiac malformations and postaxial polydactyly.

An emerging behavioural phenotype was supported with almost all the LoF
mutation carriers and 3 microdeletion carriers showing some behavioural problems.
Patients with larger deletions had additional facial differences (blepharophimosis,

abnormal slanting of palpebral fissures and ptosis). Microdeletion carriers were more

John Wiley & Sons, Inc.
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likely to be of short stature, microcephalic and hypotonic and microdeletion carriers
also showed more severe speech impairment.

The only published cases of an inherited SETD5 variant suggested a more
variable phenotype. Two siblings with developmental delay and features consistent
with previously reported SETDS5 de novo cases were compared to their father who
had only mild intellectual impairment with some features of SETDS. These patients
did not have ritualised behaviour or autism, abnormalities in eye structure,
gastrointestinal and/or abdominal wall defects or scoliosis/kyphosis [Szczatuba and
others 2016].

Frequency data for SETD5 mutations is difficult to obtain. However, the
genetic database Decipher includes 34 patients with SETD5 sequence variants

(https://decipher.sanger.ac.uk/), the SFARI database of genes linked with autism has

47 SETD5 mutations reported in its human gene module (https://sfari.org/) and a

recent large study of 4,293 patients recruited from the Deciphering Developmental
Disorders (DDD) study identified 17patients with de novo SETD5 mutations
[Deciphering Developmental Disorders 2017]. SETDS is, therefore, likely one of the
most commonly mutated genes in developmental disorders [Deciphering
Developmental Disorders 2017].

Adding to published reports, we present a patient with a de novo
heterozygous c.1381_1388del, p.(Asn461fs) frameshift mutation in exon 12 of
SETD5, who also has an aberrant blind ending bronchus, thus expanding the

phenotype.
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MATERIALS AND METHODS
This patient was recruited to the Deciphering Developmental Disorders
(DDD) study. Trio-based exome sequencing was performed on the affected
individual and their parents, as previously described [Wright and others 2014]. Each
affected individual also had a high-resolution analysis for copy number abnormalities
using array-based comparative genomic hybridization (aCGH). Putative de novo
mutations were identified from exome data using DeNovoGear software [Ramu and
others 2013] and were validated using targeted Sanger sequencing. Mutation
nomenclature is according to HGVS guidelines with reference transcript
NM_001080517.2.
CLINICAL REPORT

This patient is the second child of healthy non-consanguineous, White
European parents with unremarkable family history. He was born at term with a birth
weight of 2.976kg, following an uneventful pregnancy. Raised alpha fetoprotein
(AFP) levels were noted but antenatal scans were normal. There were no postnatal
complications. Failure to thrive and difficulty gaining weight were noted and he later
required fundoplication. He was born with postaxial polydactyly in all extremities
requiring surgical removal at the age of 4 months and tongue tie. Persistent cough
was noted at age 2 days and recurrent infections have continued to affect him, with a
later diagnosis of asthma. His chest infections were thought to be due to an aberrant
blind ending bronchus identified on bronchoscopy. There were no concerns with his
vision but conductive hearing loss was treated with grommet insertion.

Developmentally, at 10 months he could not sit unaided, he walked at 23
months. Leg asymmetry was detected subsequently. His first word was at 13

months, with a vocabulary of single words at 2 years. At a clinical psychologist

John Wiley & Sons, Inc.
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assessment at 5 72 years old, a Verbal 1Q of 83 (13th percentile) and Performance
1Q of 98 (45th percentile) were recorded. Assessment also showed some weakness
in social communication and a stutter with recurrent dribbling. However, he did not
fulfil criteria for Autistic Spectrum Disorder. At age 7, he was attending mainstream
school with additional support. He was reported at school to have a dyslexic profile
with ‘low average’ level. In terms of behaviour, repetitive stereotyped behaviours
were noted such as repeatedly touching his face. He was late to develop imaginary
play and weakness in social interaction with peers was noted. Reassessment at age
9 highlighted his complex communication needs and problems acquiring language
skills.

On examination age 2 %, he was noted to have brachycephaly with
prominence in forehead, metopic ridge, hypertelorism, clinodactyly and prominent
left ear (Figure 1 which shows evolving facial dysmorphism with age). Left leg was 2
cms longer than right with a small café au lait mark (0.5cm) on left leg. Height was
89cm (25th centile), weight was 13.11kg (25th centile), and head circumference was
49cm (2nd-9th centile).

Investigations included metabolic tests; urine organic acids and amino acids,
creatine kinase, alpha feta protein, thyroid function, mucopolysaccharides were
normal. Echocardiogram and renal ultrasound were also reported normal.
Cytogenetics showed a normal male karyotype (46,XY) and FISH testing for deletion
or duplication of the TBX1 locus at 22q11.2 was negative. Testing for primary ciliary
dyskinesia was also normal along with normal ophthalmology assessment which
included electroretinogram. Panel genetic testing for Bardet Biedl Syndrome was

normal. Patient was enrolled in the Deciphering Developmental Delay (DDD)

John Wiley & Sons, Inc.
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[DECIPHER ID: 259090] study which identified a de novo heterozygous
c.1381_1388del, p.(Asn461fs) frameshift mutation in exon 12 of SETD5.
DISCUSSION

The 3p critical region was initially thought to be a 3-5Mb region [Aqua and
others 1995]. Subsequent patients were described with a narrow region of
overlapping regions [Gunnarsson and Foyn Bruun 2010; Kellogg and others 2013;
Peltekova and others 2012; Riess and others 2012] and SETD5 was considered to
be the strongest candidate gene [Peltekova and others 2012; Shuib and others
2009]. Further evidence to support pathogenicity of SETD5, came from large cohorts
of de novo mutation carriers [lossifov and others 2014; Pinto and others 2016;
Rauch and others 2012; Deciphering Developmental Disorders 2017].

The coding sequence of SETD5 is 4329bp long and encodes 1442 amino
acids. It is ubiquitously expressed and high levels have been seen in the cerebral
cortex, the intestine and the eye [Kuechler and others 2015; Nagase and others
1997]. The gene is highly evolutionarily conserved suggesting that it is functionally
important and is considered a member of the ‘writers’ group of epigenetic genes
[Kleefstra and others 2006].

In silico domain analysis has showed that SETDS5 is a multidomain protein
containing a SET domain and a putative PHD domain [Kuechler and others 2015]. It
thought have an important role in cell replication and gene expression through
regulation of histone acetylation [Hu and others 2010; Jones and others 2008;
Tanaka and others 2000; Yao and others 1998]. Genes encoding histone modifiers
are increasingly recognised to have a contribution to ID [Berdasco and Esteller

2013].

John Wiley & Sons, Inc.
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Animal models have demonstrated that SETDS5 is important in mammalian
development with SETD5 deficient mouse embryos exhibiting severe developmental
delay, vascular abnormalities, apoptosis, and reduced cellular proliferation; findings
consistent with impairment of gene expression [Osipovich and others 2016].

Histone modifier genes are all dosage sensitive and haploinsufficiency is
believed to be the disease mechanism. In vitro analysis has shown that variants in
SETDS5 trigger nonsense mediated decay (NMD) pointing to LoF [Kuechler and
others 2015]. Haploinsufficiency of a single gene has also proven to be casual for
the specific phenotype in a number of microdeletion syndromes. There are several
examples of this including; EHMT1 in association with 9934 deletion and SATB2 in
association with 2q33.1 deletion.

The phenotypic features of our patient with a de novo SETD5 variant fit with
previously described patients to include; ID, language delay, ritualised behaviour,
feeding difficulties, abnormal ears, eyebrows, shape of nose and polydactyly (see
Table ). Common features described in the literature that our patient did not have
include; micrognathia (8/13), thin upper lip (8/13), gastrointestinal defects (5/13) and
genitourinary defects (6/13).

The observation of brachycephaly was made only in our patient and 3 patients
in the Grozeva and others [2014] cohort (3/7). Unsteady gait and hypertelorism are
only described in our patient and 1 of the patients in the Szczatuba and others [2016]
paper.

Congenital heart defects appear to be more of a feature of the microdeletion
syndrome [Gunnarsson and Foyn Bruun 2010; Peltekova and others 2012] with only
4/13 patients in the SETD5 group affected. Knockout mice models have shown that

SETD5 may be important for embryonic stem cells to differentiate into

John Wiley & Sons, Inc.
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cardiomyocytes [Osipovich and others 2016] and given the nature of cardiac
anomalies reported in the literature, it is reasonable to consider a cardiac
assessment at the time of initial diagnosis.

Behavioural problems including obsessive compulsive disorder (OCD) and
autism were common findings (6/13). Most of the patients with SETD5 pathogenic
variants have truncating variants (frameshift or nonsense variants) and whilst some
de novo missense variants have been reported in large cohorts of autism patients as
being causative, extended phenotypic descriptions are not available to assign
causality (Table ). Based on data presented by [Li and others 2016; Neale and
others 2012] there is insufficient evidence to link the reported SETD5 missense
variants with autism or susceptibility to autism. Our patient had been assessed for
autism but did not meet criteria for a diagnosis. He did show signs of ritualised
behaviour with some areas of weakness in social communication. This is
increasingly being observed in children with underlying genetic conditions
contributing to their behaviour profile i.e. their behavioural problems are not typical
and hence, will not fulfil the diagnostic criteria for autism spectrum disorder.
However, it is well-recognised that their learning needs and behavioural traits can be
challenging to manage and needs appropriate assessment to tailor resources to their
needs.

The notable difference in our patient is the presence of a blind-ending
bronchus. Although recent studies have highlighted the integral role of SETD5 in
mammalian development, it remains unclear if the blind ending bronchus is related to

the SETD5 mutation or whether it has an independent cause.

John Wiley & Sons, Inc.
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CONCLUSION
We report a 10-year old boy with a de novo LoF variant in SETD5 and provide

a comprehensive review of published literature on this frequently reported ID gene.

O©CoO~NOUTA,WNPE

10 The emerging phenotype includes; ID, facial dysmorphology, skeletal anomalies,
12 behavioural problems and speech and language difficulties. We report for the first
14 time, aberrant blind ending bronchus as a possible association with this phenotype.
Further case reports of this nature are required to expand the phenotype and

19 understand variable expressivity of SETD5 especially as genomic sequencing

21 studies identify variants of interest in this gene.
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FIGURE AND TABLE LEGENDS

Figure 1: Facial dysmorphism of this patient evolving with age demonstrating
prominent forehead, upslanting palpebral fissures, bilateral low-set, posteriorly
rotated ears, smooth philtrum.
Table I: Clinical features of patients with de novo SETDS5 variants in comparison to
our patient.
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Figure 1 aged 3, 6 and
9 years

32 Figure 1: Facial dysmorphism of this patient evolving with age demonstrating prominent forehead,
33 upslanting palpebral fissures, bilateral low-set, posteriorly rotated ears, smooth philtrum.
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1
2 Table I: Clinical features of patients with de novo SETD5 variants in comparison to our patient
4
5 Grozeva et Grozeva et Grozeva et Grozeva et Grozeva et Grozeva
. et Grozeva et Kuechler et Kuechler et
. Our patient al.2013 al.2013 al.2013 al.2013 al.2013 al.2013 al.2013 al.2015 al.2015 Szczalubaet | Szczalubaet | Szczaluba et
; Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 1 Paiient 2 al.2016 al.2016 al.2016
Proband Brother Father
8 Chr3:9486924- Chr3: Chr3:9477570
) Chr3:9486 r3:9490142 Chr3:95172 Chr3:951730 ro:
9 o . 13%18(:%:‘;2; B Chr3:9486739 i Chr3:9489453 | ¢.2177 2178d Chr3:9512419 16 2 _9477650del Chr3:9490270 Chr3:0095123 Chr3:009512 | Chr3:0095123
o p.Asn481Profs$1 61119:533;1 o c.18660>§ ol .3001C>T ¢.3771dup c.3846del c.547_567+60 C>T 36C>G;_00108 | 336C>G;_001 | 36C>G;_0010
Asnds pLys e | PTYr622 pThr726Asnf | p.Arg1001* | p.Ser1258G | p.Ser1286Le del ©.2302C>T 0517.2. 080517.2. 80517.2.
1 £*39 lufs*65 aufs*84 p.P|:1081983_|Lys p.Arg768* Ser973* Ser973* Ser973*
e
12  Gender M
1 M M M M M M M F F M M M
& Descent Caucasian NR NR
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15 it 21n99'7°'7‘ 50-75" ] 96
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A 15|h 1sl_3rd
Feedin Y- ] Y- chewing
28 Difficultiges Y - reflux Y swallowing N N Y — chewing and N
24 difficulties difficulties swallowing NR NR Y Y NR
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3( —
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] Denoeed omine oo 00 nares nares shaped shaped p
ridge Long philtrum Short
44 nasal Prominent high rose
45
46 i
P John Wiley & Sons, Inc.
48




Page 19 of 19

American Journal of Medical Genetics: Part A

1
2 bridge nasal root
3 Tubular nose
4 Long philtrum Long Short philtrum Long philtrum Long philtrum Long philtrum
mall moutl N . philtrum . mall moutl . mall moutl pen moutl ong philtrum .
5 Small mouth op hil Small mouth Small mouth ap op 0 h | Long phil
Mouth/ Lower . Micrognathia . Long philtrum . Long philtrum . ; Downturned Downturned - . . Long philtrum
6 f Short Philtrum N N Thin upper ; - Long philtrum . } NR Micrognathia with an everted Thin upper lip . X
ace Thin upper lip . Thin upper lip N X Thin upper lip N ) corners of the corners of the " N N Micrognathia
Hi lip Micrognathia Thin upper lip full lower lip Micrognathia
igh palate B mouth mouth . -
7 High palate Micrognathia
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9 Teeth NR NR teeth NR NR NR teeth teeth NR NR NR NR NR
14 Post axial
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11 Post axial finger joints polydactyly
1 - B post axial Long and thin B Post axial Single
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15 Skeletal discrepancy discrepancy y Scoliosis Lordosis NR Slacrald|mplel Stiff legged NR NR NR N N Pectus
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2 1 febrile .
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28 Development .
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42 OCD=Obsessive Compulsive Disorder, ADD=Attention Deficit Disorder, ID = Intellectual Disability

41 Mutation nomenclature according to HGVS guidelines (_http://varnomen.hgvs.org /), using NCBI reference transcript NM_001080517.2.
r Abbreviations: NR=Not Recorded, M=Male, F=Female, Y=Yes, N=No, SD=Standard Deviations, AFP=Alpha FetoProtein, ASD= Artrioventricular Septal Defect VSD=Ventricular Septal Defect, PDA=Patent Ductus Arteriosus, MVP=Mitral valve prolapse,
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