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Recognising human activity in free-living using
multiple body-worn accelerometers

Elliott Fullerton, Ben Heller, and Mario Munoz-Organero

reduce the risk of chronic diseases and is now widely accepted
Abstract— Objectives: Recognising human activity is very useful in promoting a healthier lifestyle [1,2]. Despite this
for an investigator about a patient's behaviour and can aid in knowledge, statistics show that average healthy life
prescribing activity in future recommendations. The use of bdy expectancies, where one perceives oneself to be in "Good"
worn accelerometers has been demonstrated to be an acate health, are still faling [3]. In order to change current

measure of human activity, however research looking at these ! - . ]
of multiple body worn accelerometers in a free living behaviour, understanding the determinants and barriers to

environment to recognise a wide range of activities is not eviden Pphysical activity behaviours is important in designing
This study aimed to successfully recognise activity and sub- interventions to improve healthy life expectancies [4].
category activity types through the use of multiple body war  Therefore, accurate measurement of activity types and the
accelerometers in a free living environment. , intensity they are performed at is important [5]. The use of
Method: Ten participants (Age = 23.1 + 1.7 years, height =171 wearable technology, more specifically body-worn

47 cm, mass = 782 + 125 Kg) wore nine body-worn - L -
accelerometers for a day of free living. Activity type was accelerometers is a common tool for activity recognition

identified through the use of a wearable camera, and sub Which has allowed researchers to gain accurate insight into
category activities were quantified through a combination of fee- ~ activity types [6,7].
living and controlled testing. A variety of machine learning Typically, physical activity is viewed as either engaging in
techniques consisting of pre-processing algorithms, feature and sport or some form of exercise; in fact, it is actually defired a
classifier selections were tested, accuracy and computing &m any bodily movement produced by skeletal muscles resulting
were reported. ) . . A

in energy expenditure above resting level [8]. This el

Results: A fine k-nearest neighbour classifier with mean and - hether it b | . he kitch lavi
standard deviation features of unfiltered data reported a activity whether it be cleaning the kitchen or playing a

recognition accuracy of 97.6%. Controlled and free-living teing ~ COmputer game. Quantifying and comparing activity types is
provided highly accurate recognition for sub-category actiiies  possible through looking at the ratio of exercise metabolic
(>95.0%). Decision tree classifiers and maximum features rate, where one metabolic equivalent of a task (MET) is
demonstrated to have the lowest computing time. defined as the energy used when simply lying quietly. For the
Conclusions: Results show recognition of activity and sub- average adult, one MET averages at 3.5 ml of oxygen uptake

category activity types is possible in a free living environnmeg . . .
through the use of multiple body worn accelerometers. This per kilogram of body weight per minute. Furthermore, any

method can aid in prescribing recommendations for activity ad ~ activity with two METs requires twice the amount of

sedentary periods for healthy living. metabolic energy used than lying quietly [9]. For neally
activity types, the Taylor Compendium of Physical Activity
Index Terms— Human Activity Recognition, Machine contains a MET value [10]. For activity prescription purposes
Learning, body-worn accelerometers any value between three and six METs can be identified as
moderate activity, which has been shown to have a pesitiv
I. INTRODUCTION impact on a person's wellbeing and is often the range

Physical activity and its benefits to health have recently beerf@commended to populations [6].
popular area of research [1,2]. The increase or mainteméince With the decrease in healthy life expectancies and increases
a certain level of physical activity has been demonstrated ifb long term health care costs on a yearly basis [11],
highlighting activity type and intensity is essential to
providing populations with recommendations of what is
f:lizea;gﬁ‘(’ywzaoslzu orted by the Centre for Soorts Ering research NECESSaY 10 improve; disease prevention, musculoskeletal,
Sheffeld Hallam Universty, Sheffield, UK ports Eeing ' mental and performance health. Currently adult populations
E. F Elliott Fullerton was with the Centre for SpoBisgineering Research, many countries are advised to take part in 150 minutes of
Sheffield Hallam University, Sheffield, UK S10 2HPe is now with the  moderate activity a week [12, 13]. Furthermore, patients with
ffﬂ'gﬁ?éﬁﬁgﬂiﬁrLsepffse}”dj(§§3{|Z'§in“?@e|%'§'£3c'ﬁf°“gh University, obesi?y, heart_ disease, or diabetes are often given a specific
B. H. Dr. Ben Heller— Centre for Sports Engineering Research, Sheffiel@Xercise routine to follow [14]. Reference [15] stated that
Hallam University, Sheffield, UK, S10 2HP (B.Hellesf@.ac.uk). continuous physical and physiological monitoring in any
M. M Professor Mario Munoz-Organere- Department of Telematic environment would shorten hospital stays for patients,
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(munozm@it.uc3m.es) improve recovery, reliability of diagnosis and improve



patients’ quality of life [15]. On the other hand, rises imesearch evidence that looks at accelerometer data in a free-
sedentary behaviour have also been correlated with hediiing environment. Recently Reference [27] looked at the
risks [16]. Sitting and watching television is now one of théentification of activities in free living through a body worn
most popular activities and over two hours a day can have camera and a two accelerometers [27]. Each activity was
unfavourable effect on body composition and decreasetkfined from the Taylor compendium of physical activities
fitness [16]. As a result, recognising activities whethefl0], and intensities were determined from a guide that
sedentary, moderate or vigorous becomes very usafidrfo investigators followed. Reference [27] reported identificatio
investigator or practitioner about the participant’s or patient’s  of 81% of images captured but highlighted the need foemor
behavior [17], and can aid in prescribing activity in futuren depth analysis with the use of wearable sensors. It ihwwort
recommendations. noting that in addition to a hip mounted accelerometer,
Human activity recognition (HAR) dates back to the 1990another was not mounted as is standard in the physical yctivit
where ambulatory movements were recognised from the ussearch community, instead was freely suspended from a
of sensor based systems in controlled environments [18]. Mdesmyard. Also, intensity and nature of activities performed
recently, HAR systems have been modelled outside of were not used to create a classification model that could be
laboratory environment which involve the use ofused with other free-living data.
accelerometers [19,20]. Other methods such as compuldrerefore, this study aims to successfully recognise human
vision and motion capture techniques have also been used astivity in a free living environment through the use of
have reported high accuracies [21]. However, these techniquesltiple body worn accelerometers and machine learning
are often only capable of being used in a controllednalytic techniques, where not only multiple accelerometers
environment where participants are instructed to perforere used to gain high recognition accuracy but also the
specific activities. Body-worn accelerometers have thefficiency of different feature and classifiers selections are
capability to monitor participants in  uncontrolledshown. Whilst main activity types can be identified throagh
environments for long periods of time [22]. wearable camera, more specific activities and intensities can
Recognition of activity type from accelerometer data hase validated in a controlled environment under the
been achieved by many researchers using machine learnimgestigators control. The following sections present the steps
techniques [17,23]. These techniques take large data sets thien to identify each activity type and what machine learning
undergo filtering, segmentation and feature extractions, likechniques are used and are most suited for this data. If
the mean of a specified signal, this information is then usedsaccessful, these techniques can be used to help aid
train a percentage of the data with a specific classificatia®cognising a wider range of physical activities in the future
method; the recognition accuracy is then reported when thwat can help with better understanding of prescribing activity
training algorithm is tested on the remaining data set. A widevels for a healthy population
variety of classification methods have been reported to be
accurate Reference [24] showed the accurate classification
through the use of a simple decision tree approach to Il. METHODS
discriminate between standing and sitting, Reference [2%bn participants (Age = 23.1 + 1.7 years, height =171.0 * 4.7
showed the use of a nearest neighbour method in correlatigy mass =78.2 + 12.5 Kg, male = 8, female = 2) participated
with multiple sensors for an activity recognition platform angh the study. All participants were free from illness and injury
Reference [26] used a support vector machine method forafithe time of data collection. Participants were briefed on
more complex recognition of multiple tasks that mainltdy procedures and made aware of the associated rigks an
involved hands and arms. Moreover, the key to successfiinefits. Consent was given by all and each participant was
recognition is that filtering, segmentation and featurgyformed they were free to withdraw from testing at any point,
extraction is specific to the activities that have been defingfithout prejudice. Prior to data collection, ethical approval
[17]. With this knowledge high activity recognition is nowyas given by the faculty of Health and Wellbeing in Sheffield
reported frequently [23], what is more concering is thejallam University. All data were recorded and stored
computing time necessary to process complex filters, featurgsnfigentially.
and classifiers if the user is looking for immediate feedback
about their activity level. Recently Reference [6] showed thgongrolled testing
use of multiple accelerometers and simple filters alongside a o )
simple and fast decision tree classification method whidright participants (five male and three female) attended two
utilises mean and variance features to be just as goodoredi _controlled sessions; one in a Igboratory environment and one
(>90% recognition accuracy) of a range of activities (lying" & home env_qunment. Participants were asked to perform a
sitting, standing and walking) compared to more comple¥@riety of activities (Table 1) that they would regularly
approaches. When using multiple sensors though the outffform in a free living environment which cannot be
heavily depends on the position at which it is placed and #dentified through a stillimage from a wearable camera. These
stability [19]. activities would contribute to the qsyelopment of c_lassnﬁcmwn
Whilst many studies have looked at HAR outside of glgorlthm_s_for sub-category activities in fn_ee living testing.
laboratory and in a controlled environment, there is a lack &&ch activity was performed for a three-minute period. The



sensor set up shown in Fig 1 consisted of -Aipey—worn
runscribé™ inertial sensors (Scribe Labs, California,USA)
containing a tri- axial accelerometer which were applied to
the: left and right lateral ankle, left and right hip (ASIS)t lef
and right wrist (resting on the radius), left and right upgper
(resting on the brachialis) and Spine (T18) the same
investigator for all participantsLocations of sensors were
based on a collection of previous research that looked at a
range of activity types [623]. Sampling frequency for each
sensor was set at 10 Hz with the addition of a low pass anti-
alliasing filter of 5 Hz. All sensors were synchronised vigetim

of initialisation.

Table1Activity Types performed in controlled testing wistssociated Figure1Body worn accelerometer set up (1) Left ankle (@hR <
MET Value ankle (3) Left hip (4) Right hip (5) Left upper a®) Right upper
arm (7) Left wrist (8) Right wrist (9) Spine

Activity MET value
Laboratory Free Living
Walking - 110m/s 2 Ten participants (seven male and three female) wore the same
- L70mss 3 accelerometer set up as controlled testing (Fig 1), sampling
Walking Uphill (2.50% gradient) 5.3 frequency was kept at 10 Hz with a low pass filter of 5 htt a
Walking Uphill (7.50% gradient) g all sensors were synchronised via time of initialisation.
Running - 2.0 m's 6 Accelerometers were applied to participants as they woke up
R 2.70 m/s 9.7 and removed before going to sleep. Primary activity types and
Cyeling - 30-50 watts 35 sub-categories if poss_ible were defined from a we_arable
N 90.100 watts P camera (SnapcamlLite, iON Ltd, UK) that captured an image
_ 100-160 watts 8.8 every 30 seconds; To highlight if any drift was present, the on
board timer of the camera was compared against a stopwatch
Calisthenics - Moderate 38 that assessed the difference in time from start to finishtaf da
- Vigorous .. .
capture. Participants were instructed to remove the camera
Standing 13 during free living if they did not want a picture to be recorded
Lying Quietly 1 at that point in time (for example going to the toilet or getti
Sitting Quietly 13 changed). Activity types were categorised into eight main
Sitting and working on a Computer 13 categories 1) Self-Conditioning 2) Cycling 3) Home actsiti
Housework (Moving Light Furniture) 58 4) Running 5) Self-Care 6) Transport 7) Walking 8) Inactive
Home Within sub-categories another 29 activities were defined

] ) (Appendix A) taken from the Taylor compendium for physical
Walking Upstairs 5.0 L . . .

) ] activities [11]. The primary investigator followed a set of
Walking Dovnstairs 33 guidelines for image identification; the reliability of
Cooking and Washing Up 33 identification was also reported for a subset of the data &o
Vacuuming 33 secondary investigator who followed the same guidelines.

Sitting and watching television 1
Sitting and eating 15 Data analysis
Mopping 33 Data were stored and analysed using Matlab (Mathworks

2015b, USA). Once all images were identified, two different
Al walking and running activities were performed on 1gh pass filters (Chebyshev and Eliptic) and a discrete
treadmill (Pulsar, HP Cosmos, Germany) and cyclin avelet analysis were run using Matlab Filter design toolbo
activities were performed on a cycle ergometer (Monar%"ath_Works 2015b,USA) as previous research has shown the
Exercise, Sweden). Participants were instructed to perforfgnefits of these pre-processing techniques on recognition
callisthenic exercises that they would normally do in a fre@ccuracy [23]. _ '

living environment, they were not restricted to a specific set 41 activity-defined window approach was used to define the
movements to allow for variability between participants activity at each picture taken during free living. This window
Activities performed outside of the laboratory were complleteVaS segmented into six second windows which had a 50%
in a home environment. Walking up and downstairs waverlap. Data for controlled testing was segmented into the
performed on a flight of six stairs where all other actigitie S8M€ SIX second perlpd and overlap. Previous resgarch has
were performed in a kitchen and living room setting. used much smaller windows [6], based on suggestions that

' Formatted: Caption, Left, Line
spacing: single, Keep with next



increased window size reduces sensitivity [19], however theor each recognition processat-metho8@%b of the data were
nature of the 30 second image capture and the large datasetd for training and 20% was tested using the MATLAB
means that a large window is more suited. Classification Learner toolbox (Mathworks 2015b, USA).
A variety of heuristic, frequency and time domain featureBecision tree classifiers are support tools which make
were created based on recommendations from a wide variegcisions based on tree-like models. A complex decision tree
of successful features [23]; for each feature and classificatistructure was chosen for this dataset which contained 42 levels
method, the computing time was calculated and th&f decisions based on acceleration output from specific
recognition accuracy was reported for every sub category thensors. Split criterion was based on Ginis diversity index.
same analysis was run again and the highest accuracy \@ampport vector machines (SVMs) are supervised learning

reported for specific features and classifiers. methods used for classification. For this dataset a cubic
method approach was chosen meaning a kernel value of three
Feature Selection was used. Box constraint was equal to one and one vs one

Time-domain features were directly derived from the datmulticlass method was used where all data was standardized.
y tﬁearest Neighbour methods are used for classification of

segment using MATLAB script files (Mathworks 2015b, .= .- - .
- activities based on the closest training examples in the feature
USA) created in-house. All features were extracted from the : .
ghace. For this data set the number of neighbours was set to

average signal output over a windowed period. Feature . . ) .
- ’ o ane for optimum computing time, distance between
consisted of: mean, standard deviation, root mean square, peal

. ner%ghbours were euclidean and weights were equal where all
count and peak amplitude. Features were extracted from e ata was again standardized. Ensemble classifiers are not as
sensor and each axis (9 sensors and 3 axes, 27 diffafersy ) ’

common in HAR studies but havecentlybeen reported to
for each feature). improve recognitiobe accurayte and—improve—efficiency-in

Frequency-domain features focused on the periodic stauctu

of the signal, features included spectral energy and spectral 9 §30]. Essentially this method
gnal, p 9y p .combines a set of trained weak learner models from above and

power. Spectral energy has shown to highlight the pertgd'C'dtata on which these learners were trained. It can predict

in an acceleration signal and distinguish between differen . .
intensity activities [28]. Spectral entropy features calculate:czpsen.ﬁIble responses for new dgta by aggregating predictions
y rom its weak learners. For this data set a set of 200 as

the freque_ncy domaln entropy  from a Fa§t Founesqtandard in the decision tree learners MATLAB classificatio
transformation, previous research has shown this can h
ﬁ_ arner toolbox were bagged together.

discriminate values with similar energy [28]. As before al
frequency- domain features were extracted from each axis for
each sensor and kept singular.

Heuristic features have been derived from a fundamental . Il RESULTS

understanding of how specific movements can creaféf the ten participants, one was removed as sensor capture
distinguishable sensor signals [29]. Signal magnitude area 4@ accidentally reset by this participant. No spurious

been shown to effectively identify periods of daily liviigp]. ~actiakieal data was found, however non-wear time and
(1) shows the calculation for signal magnitude area. unidentifiable images accounted for 24.0% of the data. Across

the nine days of actical data recorded, 118,501 six second
episodes of activities were recognized (197.5 hours); the
breakdown for each activity is shown in Table 2. Inactive
episodes accounted for 73.5% of the data. For each activity a
Wherex(t), y(¢) andz(t) refer to thex, y andz axis signal subset of 29 specific activity types were identified (two Self
for each windowed output Signal vector magnitude (SVM) Conditioning, three Cycling, six walking, two Running, four
features have also been used with recognition in hum&@glf Care, seven Inactive, one Transportation, four Home
activity; it essentially provides a measure of movemenictivities). The inter-rater reliability for image identification
intensity. (2) shows the calculation of SVM. was 0.93 for Activity Type and 0.92 for sub categories.
Camera drift was equal to 0.41 + 0.17 seconds.

sMa =2 (flx(Oldt + [{ly@©)lde + [;1z(6)dt ) @

SVM = \Jx? + y? + z? )

Wherey; is theit" value of the signat, as is the same foy;
andy;. In this case was taken as the maximum value. Unlike
time or frequency domain features each sensor collates all
three axes which essentially reduces 27 different signals down
to nine features for each window.

Classification



Table2 Recorded Episodes of Actiyit-

*Show aActivities not included in free-living recognition-types-that
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Activity
Self-Conditioning®
Cycling*

Home Activities
Running

Self-Care
Transport

Walking

Inactive

Total

No. of six second windows

796

1356

6927

920

5406

1267
14721
87108
118501
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Table3 Recognition accuracy (%) for different classifiers unfiltered, filtered and wavelet transforms

Filtered Discrete Wavelet
i T 0, i 7 r
Classifier Unfiltered (%) Elliptic (%) Filtered Chebyshev (%) (%)
Decision Trees
Complex Tree 90.0 88.8 89.0 81.2
Support Vector
Cubic 96.7 95.4 95.6 94.8
Nearest Neighbour
Fine KNN 97.6 84.4 84.5 90.5
Ensemble R
Bagged Trees 96.4 91.8 92.3 91.4
Filtered Discrete Wavelet
i T 0, i 7 r
Classifier Unfiltered (%) Elliptic (%) Filtered Chebyshev (%) (%)
Decision Trees
Complex Tree 90.0 88.8 89.0 81.2
Support Vector
Cubic 96.7 95.4 95.6 94.8
Nearest Neighbour
Fine KNN 97.6 84.4 84.5 90.5
Ensemble R
Bagged Trees 96.4 91.8 92.3 91.4

Table4 Recognition accuracy (%) for different featusunfiltered, filtered and wavelet transformssBeerforming classifier is shown
a) @ -Fine KNN method-b)’Ensemble -Bagged Tree Method

Feature Unilltered (%) e]l::tlltce;le ?%) cne?;-;;re?(%) Dlscm(eﬂ/:)v el
Mean & Standard Deviation 97.6 91.82 92.3b 91.4°
Maximum 96.82 92.7% 93.4° 91.4°
Root Mean Square 96.8° 02.3% 93.0° 91.3°
Peak Count & Amp 96.9* 92.2b 92.9b 90.7°
Spectral Energy 95.8° 91.2b 92,00 90.6°
Spectral Entropy 79.5° 82.1° 82.2° 78.8°
Signal Magnitude Area 93.6° 86.5% §7.2b 88.0°
Signal Vector Magnitude 91.6° 91.0 92,00 85.20

A recognition accuracy of 97.6% was found for main activity typ®seg unfiltered data, mean and standard deviation =atur
along with a fine k-nearest neighbour method. A full represiem of the performance of different classifiers on untlte
filtered and wavelet transformed data is shown in Tablall3pre-processing techniques showed no increase in recognition
accuracy and high recognition accuracies were also achieved vgigmble (96.4%) and support vector machine (96.7%)
methods.

Mean and standard deviation features together provided thadmesacy out of all features selected for both nearest neighbou
and ensemble methods. The worst feature, spectral entropy plodoognition accuracy of 79.5%, however it did improve
through the use of filters as did signal vector magnitudesul®s for all features used are displayed in Table 4. A domnfus
matrix from the fine KNN method with mean and standard dewiaiatures from unfiltered data is shown in Table 5. 283
(1.30%) inactive episodes and 121 (0.55%) walking episodes weretpteitistead of correct activity types.

' Formatted: Section start: Continuous,
Number of columns: 1



Table5 Confusion matrix for free living activities usifige KNN method with mean and standard deviatiGtdees

Recognition
=]
] © on o £ o0
R g 5 £ E
g .2 2 g 2 =
=g 3 2 g g =
< = [+ w El -
Actual &=
Home Activities 1025 52 3 2 21
Inactive 76 16719 1 63 11 87
Running 0 3 195 0 0 0
Self-Care 6 50 0 926 0 6
Transportation 0 9 0 1 236 8
‘Walking 18 84 0 11 8 2376

Analysis of the impact of calculation of various features and ifitrsswas completed using a pre-defined Matlab timing
function (Mathworks 2015b, USA). Table 6 shows the computing for the range of features and classifiers selected. Feature
calculation times were assessed for one sensor of the free-livasptddflaximum feature values showed fastest execution times
of 4.0 milliseconds whilst Spectral Entropy showed to be the slowest atsd®iods.

Classifier times were assessed using mean and standartioteféatures. A decision tree method proved to be fastest (6.2
seconds) but not as accurate, where a fine KNN approach deated to be accurate with some sacrifice on computing time
(76.6 seconds). The SVM approach showed accurate resultsvdroemmputing time was 70 times larger compared to other
classifiers.

Considering the recognition accuracy obtained for main actiytgs, only unfiltered data was analysed for each sub-category
Sub-categories utilised data from controlled and free living.d&s above for each sub-category a range of classifiers and
features were analysed. Table 7 shows the highest recogadttomacy achieved for each sub category and what feature and
classifier it was achieved with. 100% recognition was achieved foingyaiunning and self-care activities, whilst all other
activities accuracy was above 95.0%. Root mean square featuresdstmobe a strong predictor for three of the categories,
however when using other features, high recognition accuracy s@ashawn. For example, peak count and amplitude features
for cycling showed an accuracy of 99.3% and mean and sthddaration features showed an accuracy of 99.5% for running
activities. Decision tree methods fell below 90.0% accuracy for walkingtlahics and inactive categories, all other classifiers

showed accuracies above 90.0%.

_The use of signal vector magnitude features fell below 90.0%amctior walking, calisthenics, inactive and home activity
categories. All other features showed accuracies above 90.00%&VMeclassifier was shown to be most accurate for self-
conditioning activities, as the data was smaller than the nains#t, computing time was not as slow due to the small size of
the subset; however, a nearest neighbour method showed accli@&@%. Transportation activities only had one activity
recognised so was not included in the analysis.



Table6 Computing time of different features and class#fieor free-living data set

Features Time (Seconds)
Mean & Standard deviation 0.057

Root Mean Square 1.643
Maximum 0.004

Peak Count & Amplitude 52.012

Spectral Energy 66.709

Spectral Entropy 100.328

Signal Magnitude area 4332

Signal Vector Magnitude 0.287
Classifiers Time (Seconds)
Complex tree 6.22135

Fine KNN 82.848528
SVM 1HR+

ensemble 288.822670

Table7 Optimal Feature and Classifier representatiorSioln-Category activity types

Sub-Category Recognition Classifier Feature

Accuracy
Cyﬂl,ng ) 100 Ensemble  Maximum
3 Activities
Home
Root M
Activities 96.8 Ensemble S O::Me can
4 Actmvities g
Runn_n_lg_ 100 ENN Root Mean
2 Activities Square
Self-Care
1 Activities 100 KNN Spectral Entropy
Self-
Conditioning 97.5 SVM 1;‘03; f:lea”
2 Activities T
Transport ) |
1 Activities NA NiA NA
Walking Mean &
6 Activities 95.8 Ensemble  Standard
deviation
In“t,w,e, o8 KNN Root Mean
7 Aclivities Square

IV. DISCUSSION

In this study, the design of a sensory system of multiple body acrelerometers consisted of signal pre -processing algorithms,
feature and classifier selections. The use of a wearable carasemted to be reliable r=0.93 and r=0.92 for image idenidica

of main and sub-category activity type respectively which agwé#s previous research [27]. Three different signal pre-
processing algorithms were tested along with a wide range ofdeaind classifiers. Results showed the use of unfiltered data
along with the use of mean and standard deviation features i@®@d@iX main activity types accurately for 97.60% of the time
with a fine KNN classification method.

_Pre-processing algorithms had no aid on recognition accuracyh diffiers to previous HAR research [23], this is likely due to
the low sampling frequency of 10Hz which is normally higheactivity recognition research [17]. Misclassified activities from
the confusion matrix were often recognised as either walkipgrods of inactivity, as each activity was solely identifieairfr

one image of 30 seconds it is likely that more than one activéne performed during this time period and inactivity and
walking being two of the more common activities are most likehat the participant was actually doing instead of the activity
identified from the single image. The accuracy of each feature epasted and all features except spectral entropy reported
accuracy above 90.0%. Maximum features proved to not onhcterate (96.8%) with a nearest neighbour method but had the
lowest computing time (4.0 milliseconds). Other features proveiktaccurate but computing time in some cases was large
compared to maximum, mean and standard deviation features.rRiezogccuracy for the range of classifiers selected showed
to be above 90.0%, additionally ensemble and nearest neigimatiods showed to be better suited to specific features. SVM
approaches showed to be accurate; however computing time vederably large compared to other methods and therefore is
not recommended for use in free-living monitoring. Referdft@roduced results which suggested the use of aidediee
method along with mean and variance features for the sakengiuting time. Results agree that decision tree methods are fas



for free living recognition, however when considering trainimgarest neighbour methods produced much higher accuracies
(>7.0%) with a sacrifice of 76.6 seconds/sensor in computing time. It is wditig tioat this increase in computing time may be
too high when using many sensors, it is therefore ideal to reducerttienaf sensors when using this method.

The use of different methods for each sub category wittmibicmtion of data from controlled testing showed to beulisefd is
recommended in future investigations. No sub-category accteidyelow 95.0% recognition; this is likely due to the small
amount of activities within each sub-category. On the other hetidn the walking category, a range of activities which were
based on gradient, intensity and stair based activities wertfield and a 95.8% accuracy was still achieved which shbatsa
wide range of activities within a contained category can stillymedccurate recognition.

Whilst testing was defined as free living, where participavese free to act how they normally would, it was reported that
camera set up had an influence on participants, participéiets mentioned that they felt uncomfortable in performindydai
activities, this likely correlates with the high number of inactemsodes recorded. In future, sensor-compatibility with
participants should be addressed to ensure that free-livingriseaasf can be. Image identification proved to be reliable, however
the process of image identification is time consuming and experien the researcher's behalf is necessary for reliahlésces
Moreover,common misclassification was shown in episodes of inactivity€}l &nd walking periods (0.55%i} is likely that
more than one activity is performed in a 30 second windewitThis iswhere-most-of-the-misclassification-lies.a limitation to
this study and-Future research should therefore look into the use of videmalies image windows to gain greater insight into
activity type and duration performed. Of all 29 activities retsed, it is worth noting that none were overly vigorous cayisin
high accelerations, it is possible that accuracy may have been hirfde@é vigorous activities were includedhe robustness

of the model trained may not be applicable to a wider @ojpul and it is recommended that future investigation use a smaller
testing set.

Though the accuracy of multiple body worn accelerometerséas shown to be successful in activity recognition in a free
living environment, the accuracy of the number of sensalsvdrat set up is most user friendly should be assesskeduire
studies. More activities taken from the Taylor compendium ofipalyactivities should also be recorded for each category to
gain more insight into specific activities and help better understand thefdastévity needed.

V. CONCLUSION

Successful recognition of six main activities in a free livemyironment was achieved from the use of multiple body worn
accelerometers. A fine k-nearest neighbour classification methddthet use of mean and standard deviation features was
shown to be the best predictor of activity types. The ofdifferent classifiers from free-living and controlled tegtio
recognise sub categories demonstrated high accuracies acdrismended for future investigations. Future studies shooild lo
at how many sensors are required to achieve successful rémogiid also look at a wider variety of activities that are
sedentary, moderate and vigorous.

VI. PRACTICALIMPLICATIONS

This method has shown successful recognition of a wide raragiaties through the use of multiple wearable inertial sensor
which allows for better understanding of human behavioar free-living environment. With further research looking atider
range of activities, it will be possible to fully understand theueagy and intensity of activity in human behaviour.



APPENDIX
Main Activity Sub Category MET Value
Light - 30-50 watts 35
Cycling Moderate - 90-100 watts 6
Vigorous - 100-160 watts 8.8
Mopping 33
Kitchen Activity 33
Home Activities ~ Vacuuming 33
Food Shopping 23
Laundry 2.0
Running Light 2.0 m/s 6
Moderate 2.7 m/s 9.7
Eating and sitting 1.5
Self-Care Eating ?nd lying L3
Grooming 20
Talking or standing and eating 2.0
Self Conditioning Calfsmem.cs mf]deme 38
Calisthenics Vigorous 8.0
Transport Passenger on a bus or a tram 13
Light 1.1m/s 2
Moderate 1.6 m/s 3
Walking Uphill , 53
Downhill 33
Upstairs 5
Downstairs 35
Lying Quietly watching television 1
Lying Quietly working 13
Sitting Quietly 13
Inactive Sitting, fidgeting slightly 1.5
Standing 1.8
Sitting Working 13
Lying Quietly 1
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FIGURES-ANDFABLES

TableJActivity Types performed-in Hed-testing with Ed Value
Activity MET value
Laboratory
Walking - 1.10m/s 2
- 1.70 m/s 3
Walking Uphill (2.50% gradient) 53
Walking Uphill (7.50% gradient) 8
Running - 2.00m/s 6
- 270 m/s 9.7
Cycling — 30-50 watts 35
- 90-100 watts 6
- 100-160 watts 88
Calisthenics - Moderate 38

- Vigorous

Standing 13
Lying Quietly 1
Sitting Quietly 13
Sitting and working on a Computer 13
Housework (Moving Light Furniture) 58
Home

Walking Upstairs 5.0
‘Walking Downstairs 35
Cooking and Washing Up 33
Vacuuming 33
Sitting and watching television 1
Sitting and eating 15
Mopping 33
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Fablez R led-Episod EActivity—2Shew-Activity-types-tf grised-during living Formatted: Font: 7 pt
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Activity No. of six second windows

Self-Conditioning® 796 Formatted: Font: 7 pt
Cycling* 1356 ( ) i
Home Activities 6927 Formatted: Font: 7 pt
Running 920

Self-Care 5406

Transport 1267

Walking 14721

Inactive 87108

Total 118501
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Filtered Discrete Wavelet
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Classifier Unfiltered (%) Elliptic (%) Filtered Chebysheyv (%0) (@) Formatted: Font: 7 pt

Decision Trees

Complex Tree 90.0 88.8 89.0 81.2

Support Vector

Cubic 96.7 95.4 95.6 94.8

Nearest Neighbour

Fine ENN 97.6 84.4 84.5 90.5

Ensemble

Bagged Trees 96.4 91.8 92.3 91.4
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Table-Ressg racy-(96)foF foaturos-a)-Fine-Niadds) Ensemblo—Bagged-Free-Method

Filtered Filtered Discrete Wavelet
Feature Unfiltered (%0) elliptical (%) Chebyshev (%) (%)
Mean & Standard Deviation 97.6 91.8® 92,3 91.4°
Maximum 96.82 92.7% 93.4b 91.4°
Root Mean Square 96.82 92.3b 93.0° 91.3%
Peak Count & Amp 96.9° 92.2b 92.9® 90.7°
Spectral Energy 95.8° 91.2% 92.0b 90.6°
Speciral Entropy 79.5° 82.1% §2.2% 78.8°
Signal Magnitude Area 93.6° 86.5° 87.2b 88.0°
Signal Vector Magnitude 91.6° 91.0t 92.0b 85.20
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Table 5-Confusion-matrixforfree livina-acti
)
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Recognition
| Formatted: Font: 7 pt
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g g 2 = & =
< = [ & 9 =
Actual &=
Home Activities 1025 52 1 3 2 2
Inactive 76 16719 1 63 11 87
Running 0 3 195 0 ] 0
Self Care 6 50 0 926 0 6
Transportation 0 9 0 1 236 8

‘Walking 13 84 0 11 8 2376




TFable 6-Computina-time-of di foatur Ad
AX PHHRG

Features Time (Seconds)
Mean & Standard deviation 0.057

Root Mean Square 1.643
Maximum 0.004

Peak Count & Amplitude 52.012

Spectral Energy 66.709

Spectral Entropy 100.328

Signal Magnitude area 4.332

Signal Vector Magnitude 0.287
Classifiers Time (Seconds)
Complex tree 6.22135

Fine KNN 82.848528

SVM 1HR+

ensemble 288.822670
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Tabk Optimal-E. i nd Cl ifi £ A5 iy o,
Op y-b/P
Sub-Category Recognition Classifier Feature
Accuracy
Cycll_ng . 100 Ensemble  Maximum
3 Activities
Home
Root M
Activities 96.8 Ensemble S olc;are can
4 Activities a
Rungmg 100 ENN Root Mean
2 Activities Square
Self-Care
100 KNN Spectral Ent
4 Activities pectral Eatropy
Self-
Root Mean
Conditioning 97.5 SVM Square
2 Activities a
Transport , ,
/ ; /
1 Activities NiA NA NiA
‘Walking Mean &
6 Activities 95.8 Ensemble  Standard
deviation
Inact_w_e_ o8 KNN Root Mean
7 Activities Square
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