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1. INTRODUCTION

Lag and mixing during sediment transfer across the Tian Shan1

piedmont caused by climate-driven aggradation-incision cycles2

Supplementary files3

Luca C. Malatesta1, Jean-Philippe Avouac1, Nathan Brown2, Sebastian F. M. Breitenbach3, Jiawei4

Pan4, Marie-Luce Chevalier4, Edward Rhodes5,2, Dimitri Saint-Carlier6, Wenjing Zhang4, Julien5

Charreau6, Jérôme Lavé6, Pierre-Henri Blard6
6

7

1 Introduction8

Details of the sampling and analytical methods are listed in the supplementary file. Most of it is9

a description of the 20 post-IR IRSL samples collected by the Caltech-CAGS field mission to the10

Chinese Tian Shan in June and July 2013 and analysed in the UCLA luminescence laboratory. The11

detailed method for cosmogenic nuclide analysis is in Section 3. Information about the samples is12

listed in Section 4. Each sample location is described in Figures 3 to 26 with a wide view of the13

outcrop and a close-up view of the deposits. The photos are embedded at high-resolution in the14

pdf. The analytical results are illustrated with a sensitivity plot and a radial plot of single-grain15

equivalent dose De values. The UCLA lab number is indicated in brackets after the field number.16

The final Figure 27 shows the details of the cosmogenic profile samples collected by the 2012 CRPG17

Nancy mission on terrace T18 of the Anjihai River.18

19

2 Method for luminescence dating20

2.1 Sample preparation, instrumentation, and measurement protocol21

K-feldspar grains of 175-200 µm were isolated from the sedimentary samples under dim amber22

LED light conditions. Subsamples were wet-sieved, treated with 3% HCl, separated by density23

with lithium metatungstate (ρ <2.565 g/cm3; Rhodes, 2015), and treated with 10% HF for 1024

minutes to remove the outer layer from the grains.25

26

Luminescence measurements were carried out using a TL-DA-20 Risø automated reader equipped27

with a single-grain IR laser (830 nm, at 90% of 150 mW) and a 90Sr/90Y beta source. Measurements28

of scatter in De values for Risø calibration quartz suggest that source inhomogeneity causes 11%29

overdispersion. Emissions were detected through a Schott BG3-BG39 filter combination. Samples30

were mounted on aluminium single-grain discs with 100 holes.31

32

The U and Th concentrations were measured with inductively-coupled plasma mass spectrom-33

etry (ICP-MS), and the K concentration (Table 2) was measured using inductively-coupled plasma34

1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
2Department of Earth, Planetary, and Space Sciences, University of California Los Angeles, CA 90095, CA
3Institute of Geology, Mineralogy & Geophysics, Ruhr-Universität Bochum, 44780 Bochum, Germany
4Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
5Department of Geography, The University of Sheffield, S10 2TN Sheffield, UK
6Centre de Recherches Pétrographiques et Géochimiques, Vandoeuvre les Nancy, 54500 France
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2. METHOD FOR LUMINESCENCE DATING

optical emission spectrometry (ICP-OES). These values were used to calculate the total beta dose-35

rate contribution using the conversion factors of Adamiec and Aitken (1998). A value of 12.5 ±36

0.12 wt. % K content was used in calculating the internal dose rate (Huntley and Baril, 1997).37

Sediment samples were collected within each sample hole for water content measurement, and cos-38

mic dose-rates were estimated following Prescott and Hutton (1994).39

40

A post-IR IRSL single-grain protocol (Buylaert et al., 2009) was used to measure equivalent41

dose (De) values. Individual grains were stimulated first at 50 �C for 3 s, and then at 225 �C for 342

s to measure the more stable post-IR IRSL signal. Preheating at 250 �C for 60 s was used before43

natural and regenerative measurements, as well as a stimulation with the IR diodes at 290 �C for44

40 s at the end of each single-aliquot regenerative-dose (SAR) cycle Wintle and Murray (2006).45

2.2 Fading correction46

Faded and unfaded ages of the samples are listed in Table 2. The stimulation temperature of 225 �C47

for the post-IR IRSL measurement was chosen to minimise athermal fading while maximizing the48

solar-bleaching rate (Li and Li, 2011; Kars et al., 2014). Nevertheless, post-IR IRSL signals exhibit a49

range of fading values (Buylaert et al., 2009). To assess the stability of the measured signal at room50

temperature, we measured the sensitivity-corrected luminescence following a beta dose of 70.7 Gy,51

a preheat of 250 �C for 60 s and a pause ranging from 3270 s to 1.02 ×106 s (Huntley and Lamothe,52

2001). These measurements were performed for two aliquots each of samples J0654, J0656, J0658,53

and J0661. It has been shown that single aliquot fading measurements for density-separated K-54

feldspar sediments correspond to the fading values derived from the brightest individual grains of55

a population (Brown et al., 2015).56

The measured g-values for these samples were 3.60 ± 0.69, 4.63 ± 0.94, 4.34 ± 0.70, and 4.95 ±57

0.75, giving a weighted mean value of 4.32 ± 0.38 % signal loss per decade with a time constant of58

3349 s (Aitken, 1985, Appendix F). These values are abnormally high for a post-IR IRSL protocol59

measured in the blue wavelength (e.g., Thomsen et al., 2008), but also notably uniform. We applied60

this fading correction to the young samples using the ‘Luminescence’ package within R (Kreutzer61

et al., 2012).62

For some of the older samples, the equivalent dose was beyond the linear portion of the dose-63

response curve, rendering the g-value correction of Huntley and Lamothe (2001) inappropriate.64

In these cases, we followed the approach developed by Lamothe et al. (2003). A single, unfaded65

dose-response curve for each sample was constructed using the approach of Kars et al. (2008);66

the dimensionless recombination center density (ρ0; Huntley, 2006) was estimated from laboratory67

fading measurements as 2.98 ± 0.38 ×10�7. The summed luminescence intensities of each single-68

grain disc were used for the measured dose-response curves. The unfaded curve was then faded to69

its natural level using the same g-value used for the young samples (equation 6 of Lamothe et al.,70

2003) and the corrected equivalent dose was calculated by mapping the natural intensity to the71

approximated natural dose-response curve.72

For Type C samples, two routines were used to determine ages: the Minimum Age model with73

three variables (MAM-3, Galbraith et al., 1999) and the DIscrete Minimum Model (DMM, Fuchs74

and Lang, 2001; Rhodes, 2015). Both methods compare well with 1σ overlap in most cases (Figure75

1).76
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2. METHOD FOR LUMINESCENCE DATING
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Figure 1: Results obtained using the Discrete Minimum Model (DMM; as described within the
text, assuming an overdispersion of 25%) are compared against the Minimum Age Model with 3
variables (MAM-3). Note correspondence over a wide range of equivalent dose values.

Table 1: Post-IR IRSL protocol used for luminescence dating in this study. This single-aliquot
regenerative cycle is repeated for the natural dose and all subsequent laboratory doses.

Step Treatment Description
1 Irradiation for t s Natural dose (i.e., do nothing) for first cycle,

laboratory dose for subsequent cycles
2 Heat to 250�C for 60 s Preheat
3 IR laser stimulation at 50�C for 3 s per grain IRSL
4 IR laser stimulation at 50�C for 3 s per grain post-IR IRSL, Lx
5 Irradiation for t s Test dose (same dose every cycle)
6 Heat to 250�C for 60 s Preheat
7 IR laser stimulation at 50�C for 3 s per grain Test dose IRSL
8 IR laser stimulation at 50�C for 3 s per grain Test dose post-IR IRSL, Tx
9 IR diode stimulation at 290�C for 40 s Hot bleach to empty all traps

3
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Table 2: Detailed results of post-IR IRSL luminescence dating. ‘Depth’ indicates the position of the sample below the surface. The
unfaded age is the final calculated age for each sample. The river acronyms are KTN (Kuitun), AJH (Anjihai), and MNS (Manas).
The distribution types are described in Section 4.1.2 of the main article.

Field Lab Th U Depth Total dose Equivalent Dist. Faded Unfaded
code code % K (ppm) (ppm) (m) rate (Gy/ka) dose (Gy) type age (ka) age (ka)
TS13 37 J0645 2.4 ± 0.1 10.6±0.5 2.6±0.13 0.75 4.324±0.206 5.4±1.1 C 1.2±0.3 1.7±0.4
TS13 36 J0646 2.4 ± 0.1 10.3±0.5 2.85±0.14 3.0 4.398±0.212 9.7±0.8 B 2.2±0.2 3.3±0.3
TS13 45 J0647 2.4 ± 0.1 8.5±0.4 2.28±0.11 0.50 4.266±0.211 22±2.4 C 5.2±0.6 7.7±1.0
TS13 86 J0648 2.1 ± 0.1 8.6±0.4 2.61±0.13 3.0 3.897±0.184 22.1±1.3 B 5.7±0.4 8.4±0.7
TS13 11 J0650 2.3 ± 0.1 10±0.5 3.63±0.18 3.0 4.386±0.205 39.4±3.4 C 9.4±1.0 13.4±1.6
TS13 06 J0651 2.1 ± 0.1 9±0.5 2.67±0.13 1.32 4.109±0.193 41.6±3.6 C 9±0.9 15.1±1.7
TS13 01 J0652 2.2 ± 0.1 9.8±0.5 2.67±0.13 38.2 3.904±0.191 276.3±16.0 A 70.8±5.6 116.8±8.1
TS13 03 J0653 2.4 ± 0.1 9.6±0.5 2.65±0.13 7.5 4.242±0.210 51.4±6.1 B 12.1±1.6 18.3±2.6
TS13 12 J0654 2.4 ± 0.1 8.6±0.4 2.32±0.12 15 4.105±0.209 433.7±28.7 B 105.7±9.1 181±13.0
TS13 08 J0655 2.2 ± 0.1 10.1±0.5 2.73±0.14 100 3.956±0.194 124.8±17.5 A 31.3±1.7 48.9±3.6
TS13 07 J0656 2.6 ± 0.1 8.7±0.4 2.29±0.11 100 4.324±0.228 518.3±59.9 B 119.9±15.4 193.4±28.0
TS13 10 J0657 2.3 ± 0.1 4.8±0.2 1.37±0.07 200 3.479±0.191 846.7±83.2 B 243.4±27.8 396.5±36.7
TS13 09 J0658 2.5 ± 0.1 7.6±0.4 1.92±0.10 200 3.995±0.213 923.6±55.7 B 231.2±19.2 316.9±24.3
TS13 02 J0659 2.5 ± 0.1 8.4±0.4 2.11±0.11 200 4.160±0.219 839.2±134.9 B 201.8±34.4 286.1±40.9
TS13 19 J0661 2.4 ± 0.1 11.1±0.6 4.05±0.20 1.0 4.346±0.197 10.7±0.8 C 2.5±0.2 3.6±0.3
TS13 35 J0662 1.7 ± 0.1 7.5±0.4 1.91±0.10 10 2.177±0.094 53±8.0 A 24.3±3.9 37.4±6.4
TS13 14 J0663 2.3 ± 0.1 10±0.5 2.53±0.13 0.80 4.246±0.202 5.3±0.7 C 1.2±0.2 1.7±0.3
TS13 34 J0664 1.5 ± 0.1 5.7±0.3 1.68±0.08 4.0 3.017±0.137 489.2±58.9 B 162.2±21.1 236.1±26.3
TS13 32 J0665 2.2 ± 0.1 10.4±0.5 3.55±0.18 10 4.087±0.190 319.3±14.4 B 78.1±5.3 111±7.0
TS13 30 J0668 1.8 ± 0.1 5.2±0.3 3.51±0.18 4.0 3.642±0.168 188±15.0 B 51.6±4.9 81.3±9.0
TS13 33 J0669 2.2 ± 0.1 9.5±0.5 3.57±0.18 5.0 4.039±0.187 578.7±62.1 B 143.3±17.0 198.1±20.5
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3. METHOD FOR COSMOGENIC PROFILE

3 Method for cosmogenic profile77

3.1 Methods and parameters78

Details of the sampling location and analytical results of sample TS12 ANJ T1B are presented in79

Figure 27. We infer the age of surface abandonment from the depth distribution of cosmogenic80

isotope concentration (Dunai, 2010; Gosse and Phillips, 2001). To better account for the potential81

deposit of loess and/or soil after terrace abandonment, we followed the approach of Braucher et al.82

(2000) and Guralnik et al. (2011) and modified the general formulation of Lal (1991) as follow:83

C(z,B) = −C0e
λx/B +

X

i=n,m1,m2

Pi

ρB
∆i

+ λ
e

− ρz/∆i

⇣

1− e
λ
B
+

ρ

∆i
z
⌘

(1)

Where B is a ‘negative’ denudation rate (Braucher et al., 2000) which represents the accumu-84

lation rate or burial rate since terrace abandon; t represents the time since initial exposure of the85

surface (in this case, the abandonment of the terrace surface); C0 is the average cosmogenic inher-86

itance (in atoms/g); λ is the decay constant of 10Be equal to ln(2)/T1/2 where T1/2 is the half-life87

of 1.387 Ma (Chmeleff et al., 2010; Korschinek et al., 2010); n, m1, and m2 refer to the neutrons,88

fast muons and slow muons, respectively; ∆ is the respective attenuation length of neutrons, slow89

muons and fast muons (∼160, ∼1500, ∼4320 g/cm2 respectively) from Braucher et al. (2011) ; P90

is the respective local production rates (at g�1 yr�1) for the neutrons, slow muons and fast muons;91

and ρ is the soil density (g/cm3). This new formulation assumes that the few tens of centimeters92

of loess covering the terraces accumulated at a constant rate since the terraces abandonment. The93

exposure time of each sample is therefore dependent of its depth (t = z/B).94

The local 10Be production rates, P , for neutrons, fast muons and slow muons were scaled for95

local latitude and altitude according to Stone (2000) and the local atmospheric pressures were96

extracted from the ERA40 dataset (Uppala et al., 2005). In this study, we used the SLHL (see level97

high latitude) production rate of 3.9±0.1 at g�1 yr�1 that was compiled by Balco et al. (2009) and98

revised by Braucher et al. (2011) to include the slow and fast muons contribution. The slow and99

fast muonic production rates (0.01 and 0.034 at g�1 yr�1 respectively) were derived from Braucher100

et al. (2011). Alluvium density was estimated by analyzing pictures of the outcrop in order to101

determine first the relative proportions of grains larger than medium gravel (� > 1− 2 cm) and of102

sand-sized to medium gravel-sized grains. Bulk density was calculated by attributing densities of103

2.7± 0.1 g/cm3 to coarser grains and 1.9± 0.1 g/cm3 to finer grains (Hancock et al., 1999).104

3.2 Sample treatment105

Quartz separation and isolation of pure beryllium oxide (BeO) was performed at CRPG (Nancy,106

France). Samples were first crushed and sieved. The 200-800 µm fraction was then processed107

by magnetic separation and the non-magnetic fraction was dissolved in a mixture of H2SiF6 and108

HCl. Quartz was then purified in three successive HF baths to remove atmospheric 10Be from109

the quartz surfaces (Brown et al., 1991; Kohl and Nishiizumi, 1992). Next, the purified quartz110

was completely dissolved in HF after addition of 200 µl of an in-house 2.020 10�3 g/g 9Be carrier111

solution. Purified BeO samples were obtained after subsequent purification by anion exchange,112

cation exchange and alkaline precipitation. The 10Be/9Be ratios of the BeO samples were measured113

at the ASTER (Accelerator for Earth Sciences, Environment and Risks) national AMS (Accelerator114

Mass Spectrometer) facility, located at CEREGE in Aix en Provence, France. These concentrations115

5



3. METHOD FOR COSMOGENIC PROFILE

Table 3: Sample data set and cosmogenic results

Sample Depth Sampling Pure Qz 10Be/9Be 10Be [10Be] error
name (m) thickness weight 10�14 counts 104 104

(cm) (g) (at/g) (at/g)
TS12 ANJ T1B P0a 0 5 10 3.7 476 9.59 0.5
TS12 ANJ T1B P0d 0 5 9.7 3.8 381 10.11 0.61
TS12 ANJ T1B P0e 0 5 25 8.9 1145 9.58 0.33
TS12 ANJ T1B P1 -0.3 5 4.2 2.5 248 14.84 1.09
TS12 ANJ T1B P2 -0.75 5 2.6 1.3 155 12.29 1.27
TS12 ANJ T1B P3 -1.1 5 5.9 2.5 204 10.77 0.85
TS12 ANJ T1B P4 -2.5 5 2.2 1.1 113 11.42 1.43

are normalized to the 10Be/9Be SRM 4325 NIST reference material using an assigned value of116

2.79±0.03 ·10�11 (Nishiizumi et al., 2007). This standardization is equivalent to 07KNSTD within117

rounding error. The mean 10Be/9Be ratio of 22 chemical blank samples is 1.7± 0.7 · 10�15. Blank118

corrections represent between 0.1% and 8% of the samples (average of 1.6%).119
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4. SAMPLE LOCATIONS AND RESULTS

4 Sample locations and results120

Grain size was surveyed at eight locations along the Kuitun River (Figure 2). The intermediate121

axes of >100 grains was surveyed on the surface of alluvial bars next to the active river channel in122

six locations along the Kuitun River (sampling sites I-VI) and on the dry bed of the small tributary123

Swallows’ Canyon (sampling sites VII and VIII). The location of the sampling sites can be found in124

Figures 4 and 7 of the main article. Picking was done in an area of roughly 20 by 20 meters where125

the surveyors would walk at random and, at each step, pick the the sediment grain that their finger126

would first hit when reaching for the ground without looking (Wolman, 1954).127
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4. SAMPLE LOCATIONS AND RESULTS
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Figure 2: Grain size survey of the Kuitun River. Top: along stream evolution of the grain sizes on
active banks of the Kuitun River. Bottom: cumulative fractions of grain sizes for each survey. See
Figures 4 and 7 of the main article for location.

8



4. SAMPLE LOCATIONS AND RESULTS

Selected grain

Ignored grain

Figure 3: Location and details of sampleTS13 37 (J0645) = 1.7± 0.4 ka; Kuitun; abandonment.
Sample taken in 0.8 m of fluvially reworked clayey fine sand to silt with few granules. The sample
was collected 5 cm above the fluvial fill. The fluvial fill is 3.2 m thick and lies on a bedrock strath
of T2. On 3.7.2013, the strath was 1.6 m above the water level. The general approach for analysis
is to reject grains based on sensitivity and high outliers. The overdispersion is 0.54.
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4. SAMPLE LOCATIONS AND RESULTS

Selected grain

Ignored grain

Figure 4: Location and details of sample TS13 36 (J0646) = 3.3± 0.3 ka; Kuitun; abandon-
ment. Sample taken in the silt of a fluvially reworked 3.2 m thick series of loess and cross-bedded
medium grained sand 20 cm above the top of the alluvial cobble conglomerate. The alluvial cobble
conglomerate lies on the terrace strath and the sample constrains abandonment age. The general
approach for analysis is to reject grains based on sensitivity. The overdispersion is 0.2.
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4. SAMPLE LOCATIONS AND RESULTS

Selected grain

Ignored grain

Figure 5: Location and details of sample TS13 45 (J0647) = 7.7± 1.0 ka; Kuitun; abandon-
ment. Sample taken in the middle of the 0.3 m thick silt horizon capping the 1.5 m thick cobble
conglomerate that lies on the strath of T7. The silt horizon is covered by a layer of creeping collu-
vium. It was not possible to dissociate the colluvium from the capping silt unequivocally. But it is
very likely that the silt constrains the abandonment age of terrace T7.

11



4. SAMPLE LOCATIONS AND RESULTS

Selected grain

Ignored grain

Figure 6: Location and details of sampleTS13 86 (J0648) = 8.4± 0.7 ka; Kuitun; abandonment.
The sample was taken in a silt horizon 20 cm above the fluvial deposit of the terrace and below a
colluvium wedge. Although it appears from the pictures that the overlying coarse deposit might be
fluvial and not colluvial. The sample would then reflect an aggradation age, not an abandonment.

12



4. SAMPLE LOCATIONS AND RESULTS

Selected grain

Ignored grain

Figure 7: Location and details of sample TS13 11 (J0650) = 13.4± 1.6 ka; Kuitun; abandon-
ment. Sample taken in a silt lens at the base of the colluvium wedge covering the alluvial cover of
the terrace T9. It constrains the abandonment of T9 and it is a repeat of sample KTN-09 (10±2
ka) of Poisson and Avouac (2004).

13



4. SAMPLE LOCATIONS AND RESULTS

Selected grain

Ignored grain

Figure 8: Location and details of sample TS13 01 (J0652) = 116.8± 8.1 ka; Kuitun; aggrada-
tion. Sample is collected at the base of the conglomerate cliff cut after abandonment of terrace T2.
Material is a thick silt lens of reworked loess and very fine sand. The sample constrains a phase of
aggradation of the alluvial fan. The overdispersion is 0.50.

14



4. SAMPLE LOCATIONS AND RESULTS

Selected grain

Ignored grain

Figure 9: Location and details of sampleTS13 03 (J0653) = 18.3± 2.6 ka; Kuitun; aggradation.
Sample is collected in the riser of T3 at the downstream end of the Kuitun. Material is taken from a
thin lens of silt. The sample constrains a phase of aggradation of the alluvial fan. The overdispersion
is 0.33.
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4. SAMPLE LOCATIONS AND RESULTS

Figure 10: Picture looking East and down in the Swallow Canyon. The Kuitun Canyon, flowing
from right to left, is visible in the background.
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Figure 11: Schematic profile of the tributary Swallow Canyon and location of the samples TS13 12
(J0654), TS13 08 (J0655), TS13 07 (J0656), TS13 10 (J0657), TS13 09 (J0658). The shading
represents a possible stratigraphy.
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4. SAMPLE LOCATIONS AND RESULTS

Selected grain

Ignored grain

Figure 12: Location and details of sample TS13 12 (J0654) = 181.0± 13.0 ka; Kuitun; aggra-
dation. Sample taken in a 10-15 cm thick lens of reworked silt to medium sand 201 m above the
river. The sample constrains a phase of aggradation of the alluvial fan. The overdispersion is 0.25.
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4. SAMPLE LOCATIONS AND RESULTS

Selected grain

Ignored grain

Figure 13: Location and details of sample TS13 08 (J0655) = 48.9± 3.6 ka; Kuitun; aggrada-
tion. Sample taken in a thin lens of reworked silt 127 m above the river. The sample constrains a
phase of aggradation of the alluvial fan. The overdispersion is 0.42.
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4. SAMPLE LOCATIONS AND RESULTS

Selected grain

Ignored grain

Figure 14: Location and details of sample TS13 07 (J0656) = 193.4± 28.0 ka; Kuitun; aggra-
dation. Sample taken in a lens of reworked silt to fine sand 109 m above the river. The sample
constrains a phase of aggradation of the alluvial fan. The overdispersion is 0.28.
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4. SAMPLE LOCATIONS AND RESULTS

Selected grain

Ignored grain

Figure 15: Location and details of sample TS13 10 (J0657) = 396.5± 36.7 ka; Kuitun; aggra-
dation. Sample taken in a 10-15 cm thick lens of reworked silt to fine sand 74 m above the river.
The sample constrains a phase of aggradation of the alluvial fan. The overdispersion is 0.22.
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Selected grain

Ignored grain

Figure 16: Location and details of sample TS13 09 (J0658) = 316.9± 24.3 ka; Kuitun; aggra-
dation. Sample taken in a thin lens of reworked silt to medium sand 21 m above the river. The
sample constrains a phase of aggradation of the alluvial fan. The overdispersion is 0.25.
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Selected grain

Ignored grain

Figure 17: Location and details of sample TS13 02 (J0659) = 286.1± 40.9 ka; Kuitun; aggra-
dation. Sample is collected at the base of the Kuitun main conglomerate cliff that is cut by Holocene
incision, >250 m below the alluvial fan surface. Material is taken from a 1-1.5m thick loess horizon.
The overdispersion is 0.46.
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Selected grain

Ignored grain

Figure 18: Location and details of sample TS13 19 (J0661) = 3.6± 0.3 ka; Anjihai; abandon-
ment. Sample taken in a fine sand bed capping the fluvial deposits of terrace T13. The sample
should constrain the abandonment of T13.
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Selected grain

Ignored grain

Figure 19: Location and details of sample TS13 14 (J0663) = 1.7± 0.3 ka; Anjihai; sample
taken in a lens of reworked silt to fine sand at 0.8 m depth in the alluvial fill under terrace T2. The
sample will provide an age constrain on the Anjihai alluvial fan aggradation.
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Selected grain

Ignored grain

Figure 20: Location and details of sample TS13 35 (J0662) = 37.4± 6.4 ka; Toudao; abandon-
ment. Sample taken in a silt horizon at the base of a ca. 10 m thick colluvial wedge, 5-10 cm above
the top of the cobble conglomerate fill that defines the main terrace of the Toudao River. Sampling
was done in a side wash cutting through the terrace. From this sample, we expect an abandonment
constraint for the main terrace. The overdispersion is 0.
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Figure 21: Stratigraphic relationship between TS13 32 (J0665) and TS13 34 (J0664); Toudao;
the samples are collected from silt lenses in an alluvial conglomerate that lies unconformable on
Jurassic sandstone and is capped by colluvium.
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Selected grain

Ignored grain

Figure 22: Location and details of sample TS13 34 (J0664) = 236.1± 26.3 ka; Toudao; Sample
collected above the Toudao River in a narrow silty sand lens less than 10 cm thick, with granules
and then pebbles and cobbles conglomerates above and below. The sample lies 2-3 m above the
bedrock and 3-4 m below sample TS13 32, the two constrain the age of the fluvial deposit on the
strath. See Figure 21 for a sketch of the stratigraphic relationship with TS13 32 (J0665). The
overdispersion is 0.
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Selected grain

Ignored grain

Figure 23: Location and details of sample TS13 32 (J0665) = 111.0± 7.0 ka; Toudao; aban-
donment. Sample taken in the first reworked silt lens above the massive fluvial cobble conglomerate
and below a few thinner pebble conglomerate horizons. It represents the very last phase of aggra-
dation that postdates the deposition of the main fill (cobble conglomerate) of this high terrace.
The sample lies 3-4 m above TS13 34. See Figure 21 for a sketch of the stratigraphic relationship
with TS13 34 (J0664). The overdispersion is 0.03.
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Figure 24: Stratigraphic relationship between TS13 30 (J0668) and TS13 33 (J0669). The
samples are collected from silt lenses in a thick alluvial conglomerate that lies unconformable on
Jurassic sandstone and is capped by colluvium.
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Selected grain

Ignored grain

Figure 25: Location and details of sample TS13 30 (J0668) = 81.3± 9.0 ka; Manas; aban-
donment. The sample is in front of Jiawei Pan in the left picture. The sample was collected in
the clay to fine sand capping the fluvial cobble-pebble deposits of the main strath terrace in the
Upper Manas). This bed is covered by angular to subangular cobble-pebble colluvium and soil.
The sample should constrain the age of the Upper Manas strath terrace. See Figure 24 for a sketch
of the stratigraphic relationship with TS13 33 (J0669). The overdispersion is 0.05.
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Selected grain

Ignored grain

Figure 26: Location and details of sample TS13 33 (J0669) = 198.1± 20.5 ka. Sample taken
in a very small clayey silt in the boulder conglomerate of the main strath terrace of the Upper
Manas. The sample lies 2.5 m above the strath. It is a good constraint on the creation of the strath
(assuming that the boulder conglomerate present today is the original cover of the strath). See
Figure 24 for a sketch of the stratigraphic relationship with TS13 30 (J0668). The overdispersion
is 0.24.
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Figure 27: Left: sampling site for the depth profile analysis of sample TS12 ANJ T1B =
5.1± 1.7 ka. Right: 10Be cosmogenic concentrations as a function of depth. The red line show
the best fit model. Fine sediments (silt, loess, soil) are assumed to have a bulk density of 1.6±0.2
g/cm3. The measured depths are converted to theoretical depths with the respective densities (blue
ellipses).
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Table 4: Supplementary Table Compilation of all published ages
dating surfaces of the north alluvial piedmont of the Eastern Tian
Shan. The map no. column lists the numbering used in the maps
(“e” for external source). The relative height* is the elevation of
the sample above the river divided by the height of the fill terrace
marking the incision onset. Easting and Northing are referenced in
the UTM zone 45 T. The River acronyms are ANJ (Anjihai), ANJw
(Anjihai windgap), HTB (Hutubi), JNG (Jingou), KTN (Kuitun),
MNS (Manas), TDO (Toudao), TSH (Tashi), and URQ (Urumqi).
The sources are 1: this study; 2: Poisson and Avouac (2004); 3:
Poisson (2002); 4: Gong et al. (2014); 5: Lu et al. (2014);6: Lu
et al. (2010); 7: Stockmeyer, in review ; 8: Fu et al. (2017). ⇤

Combination of the surface F2 samples following Lu et al. (2010,
p. 348). † These samples are not included in Figures 13 and 14
because they only border a small ephemeral stream that crosses
the windgap after it was abandonment by the Anjihai River. The
coordinates for Fu et al. (2017) listed here are the mean positions
of the samples that contribute to each age.

River Map Sample Age Height* Lat. Lon. Method
code no. (ka) (�N) (�E)

KTN 01 TS13 011 116.8±8.1 0.10 44.3260 84.7793 p-IR IRSL
KTN 02 TS13 021 286.1±40.9 0.05 44.1408 84.7354 p-IR IRSL
KTN 03 TS13 031 18.3±2.6 0.67 44.3685 84.7927 p-IR IRSL
KTN 07 TS13 071 193.4±28.0 0.44 44.2146 84.7740 p-IR IRSL
KTN 08 TS13 081 48.9±3.6 0.52 44.2150 84.7729 p-IR IRSL
KTN 09 TS13 091 316.9±24.3 0.09 44.2154 84.7806 p-IR IRSL
KTN 10 TS13 101 396.5±36.7 0.30 44.2143 84.7771 p-IR IRSL
KTN 11 TS13 111 13.4±1.6 1.00 44.2123 84.7672 p-IR IRSL
KTN 12 TS13 121 181±13.0 0.82 44.2121 84.7669 p-IR IRSL
ANJ 14 TS13 141 1.7±0.3 0.16 44.1008 85.0983 p-IR IRSL
ANJ 19 TS13 191 3.6 ±0.3 0.88 44.0929 85.0986 p-IR IRSL
MNS 30 TS13 301 81.3 ±9.0 0.95 43.8489 85.8011 p-IR IRSL
TDO 32 TS13 321 111±7.0 1.00 43.9734 85.1261 p-IR IRSL
MNS 33 TS13 331 198.1±20.5 0.80 43.8489 85.8013 p-IR IRSL
TDO 34 TS13 341 236.1±26.3 1.00 43.9738 85.1255 p-IR IRSL
TDO 35 TS13 351 37.4±6.4 1.00 43.9794 85.1071 p-IR IRSL
KTN 36 TS13 361 3.3±0.3 0.32 44.2919 84.7873 p-IR IRSL
KTN 37 TS13 371 1.7±0.4 0.02 44.2962 84.7885 p-IR IRSL
KTN 45 TS13 451 7.7±1.0 0.76 44.2885 84.7819 p-IR IRSL
KTN 86 TS13 861 8.4±0.7 0.65 44.2900 84.7900 p-IR IRSL
ANJ 1B TS12-ANJ-T1B1 5.1 ±1.7 1.00 44.1052 85.0973 TCN

KTN e1 OSL-T2-12 10 ±1 0.92 44.2142 84.7725 OSL
KTN e2 OSL-T2-22 10.8 ±2 0.92 44.2142 84.7725 OSL
KTN e3 OSL-T4-12 7.3 ±1 0.65 44.3242 84.7728 OSL
KTN e4 OSL-T4-22 6.8 ±0.5 0.65 44.3223 84.7735 OSL
KTN e5 OSL-T4-32 7.5 ±1 0.65 44.3222 84.7738 OSL
KTN e6 C-T5-12 3.3 ±0.1 0.32 44.3213 84.7789 14C
KTN e7 C-T5-22 3.4 ±0.2 0.32 44.2997 84.7811 14C

KTN e8 KTN 013 35 ±10 1.00 44.2713 84.7625 OSL
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KTN e9 KTN 023 86 ±10 1.00 44.2894 84.7600 OSL

MNS e10 T-6-loess-bottom4 19.9 ±1.5 1.00 44.1786 86.1401 p-IR IRSL
MNS e11 T-5-loess-bottom4 12.4 ±0.8 0.83 44.1284 86.1064 p-IR IRSL
MNS e12 T-4-loess-bottom4 4 ±0.4 0.58 44.1659 86.1172 p-IR IRSL
MNS e13 T-3-loess-bottom4 3.1 ±0.3 0.44 44.1673 86.1155 p-IR IRSL
MNS e14 T-2-loess-bottom4 1.4 ±0.3 0.22 44.1677 86.1139 p-IR IRSL
MNS e15 T-1-loess-bottom4 0.5 ±0.1 0.11 44.1685 86.1114 p-IR IRSL

URQ e16 4 (T7)5 255 -25/+15 1.00 43.4043 87.2149 OSL
URQ e17 2 (T5)5 142 ±14 1.00 43.4867 87.3060 OSL
URQ e18 1 (T2)5 3.52 ±0.04 0.73 43.5314 87.3304 14C

mix e19 2-3-4-5 (F2(T2))
6⇤ 295 ±25 1.00 — — ESR

TSH e20 1 (T3(F3))
6 1.8 ±0.2 0.16 44.1576 86.3416 OSL

TSH e21 1 (T3(F3))
6 26 ±2.7 0.16 44.0122 86.3360 OSL

JNG e22 3a (T3(F3))
6 28.7 ±3 0.80 44.1814 85.4513 OSL

JNG e23 3b (T3(F3))
6 12.6 ±1.3 0.97 44.1814 85.4513 OSL

JNG e24 TGL-T47 19.6 +14.5/-8.3 1.00 44.0649 86.3351 p-IR IRSL
TSH e25 TGL-T37 42.8 +18.2-12.7 1.00 44.0709 86.3280 p-IR IRSL
TSH e26 TGL-T27 75.2 +31.7/-17.6 1.00 44.0647 86.3280 p-IR IRSL
TSH e27 TGL-T17 188.8 +62.8/-47.1 1.00 44.0673 86.3138 p-IR IRSL
TSH e28 TGL-T07 245.6 +72.3/-55.9 1.00 44.0686 86.3094 p-IR IRSL

ANJw e29 AJH-02-048† 3.6±0.1 1.00 ∼44.27 ∼85.17 OSL & p-IR IRSL
ANJw e30 AJH-06,07,088† 9.0±0.6 1.00 ∼44.27 ∼85.18 OSL & p-IR IRSL
ANJw e31 AJH-08,09,11,128 53.3±2.2 1.00 ∼44.26 ∼85.19 OSL & p-IR IRSL
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