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Abstract 

Nowadays, numerical modelling is increasingly used to assess the stability of 

tunnels and underground caverns. However, an analysis of the mechanical 

behaviour of existing brick-lined tunnels remains challenging due to the complex 

material components. In order to study the mechanical behaviour of the masonry 

in brick-lined tunnels, this paper proposes a series of small scale physical tunnel 

model tests to represent the true behaviour of a real tunnel under extreme loading. 

Advanced monitoring techniques of laser scanning and photogrammetry are used 

to record tunnel deformation and lining defects. This investigation shows how 

these techniques may substitute or supplement the conventional monitoring 

procedures. Simultaneously, the corresponding numerical models of these small 

scale physical models have been developed using FLAC and UDEC software and 

verified by the experimental results to assess the overall stability of these tunnels. 

Predictions using numerical models under various conditions have also been 

carried out to show the mechanical behaviour of a masonry tunnel and to quantify 

the influence of the surrounding and loading conditions. 

 

KEYWORDS: Physical models, Numerical simulation, Tunnel Stability, 

Condition monitoring, Deformation 
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1 INTRODUCTION  

Most old tunnels in UK were built decades ago; some are even over a 

hundred years old. These ageing infrastructures pose significant risk to safety and 

the efficiency of communication and utilities which can directly impact on the 

economy. Tunnels are usually lined with bricks or stones which may suffer from 

material degradation and changing loading conditions after many years of service. 

Reliable assessment of stability of such tunnels is important for designing 

maintenance and refurbishment measures. 

However, quantitative safety assessment is very difficult to undertake since 

many factors are unknown, for example the behaviour of construction materials 

and the underground conditions. Although several numerical models have been 

proposed to study the structural behaviour of masonry infrastructure, for example 

old tunnel masonry structures (Idris et al., 2008 and 2009), masonry bridges (Betti 

et al., 2008), and masonry structures (Giordano et al., 2002; Lourenço, 1996, 1998; 

Sutcliffe, 2003; Valluzzi et al., 2005), the modelling and the mechanical behaviour 

analysis of existing brick-lined tunnels remains challenging due to the complex 

material components. The engineering practice of tunnel refurbishment is still 

largely dominated by ad-hoc stabilizing measures based on experience. Tunnel 

monitoring has predominantly been a manual process, which is time-consuming 

and subjective, giving rise to variance in the standards and quality of examination. 

To develop an understanding at the performance of brick-lined tunnels, the 

overall aim of this research is to develop a numerical approach for the modelling 

of a series of small scale physical model tunnels under extreme loading. The 

deformation of the brick-lined tunnels is assessed through both the physical test 

models and the numerical modelling. 

During the physical model tests, advanced monitoring techniques of laser 

scanning and photogrammetry are used to record tunnel deformation and lining 

defects, which may substitute or supplement the conventional manual procedures. 

This is explained in Chen et al. (2013), Chen (2014), and Chen et al. (2014). The 

numerical models are developed to simulate the corresponding physical models. 

These numerical models and advanced monitoring techniques then have the 

potential to be applied to field studies to enable accurate prediction of the actual 

behaviour of real masonry tunnels, see Fig. 1. 
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These physical model tests are not required to closely replicate the real tunnel 

behaviour with its many and varied conditions, but should provide similar 

boundary and loading conditions, which can be controlled and measured. 

 

FIG 1. The methodology of the overall research  

2 PHYSICAL MODEL PREPARATION AND TEST SETUP 

2.1 Brief introduction 

Physical model testing in the laboratory is an invaluable procedure in 

masonry research to demonstrate the performance of real masonry structures. It is 

often advisable to undertake the testing of small scale physical models prior to 

field studies for safety and economic reasons. 

In this study a series of small scale physical tunnel models were built up in 

the laboratory to assess the stability of brick-lined railway tunnels and their 

mechanical behaviours under controlled conditions. In order to simulate the 

behaviour of both deep seated (e.g. mountain tunnels) and shallow tunnels 

affected by traffic load, the physical model tests were subjected to static uniform 

and concentrated load applied to the surface of the overburden soil. 

2.2 Test variations 

For the first physical model, a comparatively higher strength mortar mix 

comprising cement, lime and sand in respective proportions of ratio 1:1:6 as 

prescribed by with BS 4551:1980 was used. For both the second and the third 
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physical model, a mortar mix proportion of lower strength (1:2:9) was used. Table 

I shows the different combinations of variables investigated for the three physical 

model tests conducted. 

TABLE I. LOADING OUTPUTS FROM THREE PHYSICAL MODELS 

2.3 Model constructions 

All the physical models investigated in this study followed an identical 

process to ensure consistency and comparability. The key elements of the 

construction process were the brickwork liner, rigid box, plastic sheeting, and 

surrounding soil. 

Bricks used in constructing the physical models in this investigation were 

half the size of a ‘Mellowed red stock brick’ and had dimensions of 107.5 × 51.25 

× 32.5 mm (L × W × H). Each brick was separated by a 5 mm mortar joint. As 

shown in Fig. 2, the tunnel’s brick lining consists of three layers of bricks situated 

at the arched region. The sidewalls, on the other hand comprise one and a half 

bricks juxtaposed to each other but layered alternately. For consistency this 

research utilised the stretcher bond along the longitudinal direction of the entire 

tunnel. 

Test number Mortar mix proportion loading style 

Physical model test 1 1:1:6 (higher strength) Uniform load 

Physical model test 2 1:2:9 (lower strength) Uniform load 

Physical model test 3 1:2:9 (lower strength) Concentrated load 
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FIG 2. Front view of the brickwork liner 

A rigid support fashioned mainly from wood was utilised to support the soil 

surrounding the brick liner and to behave like a boundary restriction. The support 

was in the form of a box with the exposed faces of the second and the third ring of 

the brickwork tunnel covered with Perspex. After a full analysis of potential loads, 

deflections and factors of safety, a set of hot finished square and rectangular 

hollow section steel beams were designed and bolted at the front and back of the 

box to increase its stiffness, see Fig. 3. 

To avoid the surrounding soil slipping out of the box, the tunnel was covered 

with plastic sheeting all around the rigid box. Moreover, plastic sheeting played an 

important role in reducing the friction between the soil and the box during loading. 

Portaway sand was used as the soil and compacted in layers. The surrounding 

soil density of 1832 kg/m3 and the depth of 1075 mm from the tunnel toe was kept 

the same for all physical model tests. 

In addition to the advanced measurement techniques, potentiometers were 

used to provide a reference for monitoring of the deformation of the tunnel. 
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FIG 3. Loading system installation for uniform load 

3 TEST RESULTS OF THE FIRST AND THE SECOND MODELS UNDER UNIFORM LOAD  

Results from the mechanical testing of the first and second physical models 

were compared to ascertain the relative effects of the different mortar mix 

proportions used in the construction of their brick linings. The data obtained 

proved useful for establishing typical behavioural characteristics for a uniformly 

loaded tunnel and determining specific tunnel failure criterion. Furthermore, the 

outputs of the mechanical tests acted as a benchmark for the numerical validation. 

3.1 Ultimate load capacity and tunnel mode of failure 

Fig. 4 demonstrates the transmitting path of the uniform load from the steel 

plate on top of the overburden soil to the tunnel. In this figure, H is the soil depth 

from the surface to the tunnel’s toe, h is the soil depth above the tunnel crown, q is 

the uniformly distributed load acting on the tunnel arch and e is the horizontal 

stress acting on the tunnel, from the top to the bottom of the tunnel (e1 to e2). By 

virtue of its shape, the uniformly distributed load on the arch of the tunnel caused 

the tunnel to act as a monolith thereby forcing the applied load to be transmitted to 

the sidewalls, initiating the shear failure on the tunnel sidewalls as the primary 

mode of structural failure and losing the load-carrying capacity of the tunnel. The 
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shear failure caused diagonal cracks among the sidewalls and excessive 

deformations, and finally the collapse of the tunnel. 

 

FIG 4. Tunnel model of failure under uniform load 

The first physical model failed at a load of 995 kN when the tunnel could no 

longer support the load. The major shear failure was observed on the two 

sidewalls together with evidence of minor tensile failure on the tunnel’s crown. A 

similar failure mode was observed in the second physical model test, the model’s 
ultimate load at failure was found to be 69.7% of that of the first model as shown 

in Table II. The result is consistent with the comparatively higher compressive 

strength of the brickwork in the first physical model. It also suggests a correlation 

between compressive strength of constituent brickwork and the tunnels’ ultimate 
load capacities, in that the tunnel comprising higher strength brickwork failed later 

than its counterpart when both were subject to identical load regimes. The result is 

also consistent with previous research by Hogg (1997), that the first physical 

model could withstand a larger uniform load than the second physical model, 

possibly because it comprised brickwork of higher compressive strength. 

Steel plate 

F 

  

F 

Surrounding soil 
e1 

e2 

q 

H 

h 

Load spreader beam 

  
 

 

  
 

 

Shear failure 



8 

3.2 Deflection behaviour 

The observed deformation pattern of the tunnel under uniform load can be 

represented as shown by Fig. 5 (a). It shows that it generally deforms inwards with 

the tunnel arch transferring the imposed uniform load downwards to the sidewalls, 

resulting in a crushing phenomenon near the springing, see Fig. 5 (b). 

 

FIG 5. (a) Deformation tendency of the tunnel; (b) Crushing phenomenon at the arch springing  

The pressure-crown deflection relationship observed from the two models is 

shown in Fig. 6 (a) revealing similar arch structural stiffness of the two models. It 

suggests that the stiffness (Young’s modulus) of the brickwork does not have 

significant effect on brick-lined tunnels. However, the first physical model test 

with comparatively stronger ultimate load capacity corresponded with more 

deformation (62.3 mm) at failure, while the crown displacement at failure of the 

second physical model test was 67.6% of that of the former test.  

It is observed from Fig. 6 (b) that the springing structural stiffness of the 

second physical model reduced to around 3/4 of that of the first physical model. It 

indicated that the brickwork stiffness of the second model had a great influence on 

the springing structural stiffness when the lateral load from the surrounding soil 

was parallel to the bed joints (horizontal joint in masonry). The smaller 

development of the springing deformation at the same load level in the first 

physical model test implied that the springing of the tunnel arch connected to the 

sidewall started to crush early than in the second physical model test, which 

slowed down the movement of the springing. 
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FIG 6. (a) Pressure-crown displacement curves under uniform load; (b) Pressure springing 

displacement curves under uniform load 

3.3 Cracking behaviour 

Initial radial and stepped cracking was observed in the outwardly facing 

mortar joints of the first, second and third arch rings during the process of loading. 

These were noted to occur at 59% (594 kN) and 56% (392 kN) of the total loading 

regime for the first and the second physical models respectively. As the loading 

progressed, the cracks were noted to propagate at the intrados of the tunnel arch 

(i.e. the inner surface of the tunnel arch). Subsequently, there was an increase in 

growth of radial cracking at the intrados of the tunnel arch, see Fig. 7 (a).  

Additionally, the onset of diagonal cracking cutting through the two tunnel 

sidewalls and leading to imminent shear failure was evidenced by Fig. 7 (b). 

 

FIG 7. (a) Crack failure under uniform load; (b) Shear failure at sidewalls 
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4 TEST RESULTS OF THE THIRD MODEL UNDER CONCENTRATED LOAD 

The third physical model was subjected to concentrated loading above the 

centre of the tunnel crown. The mortar of the same mix proportion (1:2:9) as the 

second physical model was used in the construction of the third physical model. 

Consequently, it was possible to compare the mechanical behaviour of tunnel 

structures subjected to two different load types i.e. the second physical model 

under uniform load and the third physical model under concentrated load. 

4.1 Ultimate capacity and tunnel mode of failure 

 

FIG 8. Tunnel model of failure under concentrated load 

Fig. 8 illustrates the third physical model under concentrated load acting on 

the overburden soil area just above the tunnel crown, transmitted by a steel plate. 

During loading, the formation of structural hinges at the tunnel arch with cracking 

was noted at 62% of the loading programme. The third physical model 

experienced a sudden failure at the pressure of 0.73 MPa which was 70% of the 

failure pressure of the second physical model test as shown in Table II. The failure 

was due to the development of five structural hinges, point A to E shown in Fig. 9 

(a), this agreed with Page (1993). In addition, the collapse of partial ring sections 

due to ring separation of three arch rings at the tunnel crown, occurred suddenly at 

the maximum load as can be seen in Fig. 9 (a). The ring separation normally 

occurs in a multi-ring masonry arch subjected to loading as shown by Casas 
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(2011). Data result from the concentrated load test on the third physical model is 

shown in Table II. 

  

FIG 9. (a) Collapse during the physical model test under concentrated load; (b) Deformation 

tendency of the tunnel profile under concentrated load 

TABLE II.  LOADING OUTPUTS FROM THREE PHYSICAL MODELS 

4.2 Deflection and cracking behaviour 

A simplistic depiction of the deformation tendency to failure is shown in Fig. 

9 (b) where the sidewalls deformed outwards from the tunnel profile and the 

crown at the third ring deformed inwards over the loading period. 

Physical 
model 

Mortar mix 
proportion 

loading style 
Failure 
load 

Failure 
pressure 

Mode of 
failure 

Location of 
failure 

1 
1:1:6 

(higher 
strength) 

Uniform load 995kN 
1.49 
MPa 

Mainly shear 
failure, 

partially tensile 
failure 

Mainly tunnel 
sidewalls, 

partially tunnel 
arch 

       

2 
1:2:9 
(lower 

strength) 
Uniform load 694kN 

1.04 
MPa 

Mainly shear 
failure, 

partially tensile 
failure 

Mainly tunnel 
sidewalls, 

partially tunnel 
arch 

       

3 
1:2:9 
(lower 

strength) 

Concentrated 
load 

73kN 
0.73 
MPa 

Mainly five 
structural 
hinges, 

collapsed due 
to ring 

separation 

Mainly tunnel 
arch 

Hinges 
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For the same mortar mix ratio (1:2:9), the third physical model was placed 

under concentrated load where it experienced only half vertical movement of the 

crown at failure, compared to that of the second physical model under uniform 

load as shown in Fig. 10 (a). In the third physical model, the tunnel crown at the 

first (inner) arch ring recorded diagonal deformation, developing a structural hinge 

at the third (outer) arch ring and cracks through three arch rings at the tunnel 

crown. In the second physical model, the tunnel crown only moved vertically. 

With regards to springing deflection at failure, the third physical model had 

comparable springing displacement within 5% difference from that of the second 

physical model as can be seen in Fig. 10 (b). 

  

FIG 10. (a) Pressure-crown displacement curves under uniform and concentrated load; (b) Pressure-

springing displacement curves under uniform and concentrated load 

5 NUMERICAL SIMULATION  

5.1 General introduction 

Numerical models were developed using FLAC (Finite Difference Method) 

and UDEC (Distinct Element Method) programmes and used to simulate and 

compare the mechanical behaviour of the corresponding physical models after 

loading. This would then allow these numerical models to be applied to future 

field studies to enable accurate predictions of the actual mechanical behaviour of a 

masonry tunnel. 

In FLAC, the macro-modelling strategy (Idris et al., 2008) was used, which 

was to consider the brick, mortar and brick / mortar interface smeared out in a 

homogeneous anisotropic continuum; while the simplified micro-modelling 
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strategy (Idris et al., 2008) was applied to UDEC which assumed the continuum 

part of detailed micro-modelling expands to zero thickness interfaces. 

5.2 Parametric study 

Take the parametric study of the first physical model under uniform load 

using FLAC for example, the stiffness and strength properties of the brickwork 

and the brickwork / soil joint were selected: Poisson’s ratio (v), Young’s modulus 
(E), cohesion (c), friction angle (ĳ) and density (ȡ). The effects of these properties 

on the stress and deformation conditions have been investigated with both uniform 

and concentrated loading until failure. 

Table III lists the mechanical properties assigned to brickwork with mortar 

mix proportion of 1:1:6 and interface properties of brickwork and soil as a 

baseline model from the laboratory work, analytical solutions and some estimation, 

such as joint friction and joint cohesion. The properties of surrounding soil were 

always kept the same during the whole process of numerical simulation, based on 

the laboratory tests. After a sophisticated parametric analysis (details listed in 

Table IV, Table V and Table VI) FLAC model A7 (see Table V for details) was 

proved to be the one to simulate the physical model test 1, since its performance 

i.e. deformation and failure characteristics under loading was very similar to the 

physical model test 1. Similarly, parametric study for the second and the third 

physical models were conducted using FLAC and UDEC software. 

TABLE III.  SURROUNDING SOIL, BRICKWORK (MIX PROPORTION 1:1:6) AND 

BRICKWORK / SOIL JOINT PROPERTIES 

Surrounding soil 
ȡ (kg/m³) E (MPa) v c (MPa) ĳ Tr (MPa) 

1832 26* 0.3* 0 44° 0* 
Brickwork (1:1:6) 

ȡ (kg/m³) E (Mpa) v c (Mpa) ĳ Tr (MPa) 
1732 384.33 0.2* 0.1845 55° 0.2437* 

Brickwork / soil joint 
 JKn (Gpa/m) JKs (Gpa/m) Jc (Mpa) Jĳ JTr (MPa) 
 112.97 112.97 0 25* 0 

*: Young’s modulus and Poisson’s ratio of the surrounding soil were referring to Juspi, 2008; Poisson’s ratio of the brickwork 

and the friction angle of the joint (Jĳ) were referring to Idris et al.,  00 ; Tr is the tensile strength of the surrounding soil and brickwork. 
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TABLE IV.  BRICKWORK PARAMETRIC STUDY OF POISSON’S RATIO, YOUNG’S 

MODULUS AND FRICTION ANGLE (MIX PROPORTION OF 1:1:6) 

 E (MPa) v c (MPa) ĳ JKn = JKs (GPa/m) Jĳ 

Baseline A 384.33 0.2 0.1845 55° 112.97 25° 

FLAC A1 384.33 0.3 0.1845 55° 136.87 25° 

FLAC A2 553 0.2 0.1845 55° 162.55 25° 

FLAC A3 249 0.2 0.1845 55° 73.19 25° 

FLAC A4 384.33 0.2 0.1845 50° 112.97 25° 

FLAC A5 384.33 0.2 0.1845 52° 112.97 25° 

TABLE V. PARAMETRIC STUDY OF THE BRICKWORK COHESION (1:1:6) 

 
E (MPa) v c (MPa) ĳ JKn = JKs 

(GPa/m) 
Jĳ 

FLAC A4 384.33 0.2 0.1845 50° 112.97 25° 

FLAC A6 384.33 0.2 0.2 (8%) 50° 112.97 25° 

FLAC A7 384.33 0.2 0.16 (13.3%) 50° 112.97 25° 

FLAC A8 384.33 0.2 0.14 (24.1%) 50° 112.97 25° 

TABLE VI.  PARAMETRIC STUDY OF BRICKWORK YOUNG’S MODULUS, JOINT 

FRICTION ANGLE AND STIFFNESS (1:1:6) 

 E (MPa) v c (MPa) ĳ JKn = JKs (GPa/m) Jĳ 

FLAC A7 384.33 0.2 0.16 50° 112.97 25° 

FLAC A9 384.33 0.2 0.16 50° 112.97 30° 

FLAC A10 384.33 0.2 0.16 50° 112.97 35° 

FLAC A11 384.33 0.2 0.16 50° 112.97 40° 

FLAC A12 553 0.2 0.16 50° 162.55 25° 

FLAC A13 249 0.2 0.16 50° 73.19 25° 

FLAC A14 384.33 0.2 0.16 50° 56.49 25° 

6 RESULTS AND DISCUSSIONS 

6.1 The effect of stiffness and strength properties 

In numerical models (1:1:6) the results showed there was little change on the 

crown displacement due to the increase in the Poisson’s ratio of the brickwork and 

the variation in Young’s modulus of the brickwork as they affected 3.5% to 13% 

of the crown displacement behaviour, compared to the crown displacement of the 
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FLAC baseline A. The interface stiffness of brickwork / soil (JKn & JKs) 

reduction in value to 50% decreased the overall stiffness to some extent. 

The decrease in friction angle of the brickwork increased the crown 

displacement up to 75% of the FLAC baseline A; also the cohesion of the 

brickwork changed largely because of the affect the mechanical behaviour of the 

brickwork tunnel. The increase in joint friction angle slightly changed the crown 

displacement curve. 

The results of the parametric study indicate that both the friction angle and 

the cohesion the brickwork have a significant influence on the brick-lined tunnel 

mechanical behaviour with the most important parameter being cohesion. It shows 

a good agreement with Idris et al. (2008) on the property study of masonry blocks. 

The rest of the factors considered (Poisson’s ratio, Young’s modulus of the 
brickwork, joint stiffness and friction angle) do not have a significant influence on 

the mechanical behaviour of the brick-lined tunnel. 

6.2 Comparison with physical model tests 

Numerical modelling results using both FLAC and UDEC software were 

analysed and compared with physical model tests of brick-lined tunnels, as shown 

in Fig. 11 and Fig. 12. In terms of both deformation characteristics and failure 

pattern, the numerical modelling results have a good agreement with the 

mechanical behaviour of the physical model tests, thus proving that they could be 

effectively used in the study of masonry tunnel stability. For example, Fig. 13 and 

Fig. 14 illustrate the displacement vectors and plastic state of the FLAC numerical 

model simulating the first physical model. The image in the lower left-hand corner 

of each figure shows the physical effect of the model test result. Both of the 

figures are coincident with the first physical model test, with a similar deformation 

trend and shear failure at the tunnel sides.  

These good agreements with physical model tests 1 - 3 encouraged further 

predictions of performance using numerical modelling under various conditions, 

and will be discussed in section 7. 
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FIG 11. Physical model test 1 (a) & physical model test 2 (b) vs. numerical curves 

 

FIG 12. Physical model test 3 vs. numerical curves 

 

FIG 13. Displacement vectors of numerical model (1:1:6) during uniform static load compared with 

the physical model 
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FIG 14. Plastic state of numerical model (1:1:6) compared with the physical model 

7 PREDICTION OF NUMERICAL SIMULATIONS 

7.1 Introduction 

Based on the previous numerical modelling, the deformation characteristics, 

mechanical behaviour and probable failure mechanisms of the brick-lined tunnels 

under different conditions are predicted by FLAC and UDEC software separately. 

TABLE VII.   PREDICTION OF NUMERICAL MODELS UNDER UNIFORM AND 

CONCENTRATED LOAD 

7.2 Overburden soil depth 

In order to figure out the interaction of the overburden soil on brick-lined 

tunnels, various soil depths (from the tunnel bottom, toe) are used in numerical 

Numerical  
model No. 

Overburden soil  
depth (mm) 

Depth difference 
(mm) loading style Mortar mix 

proportion 
1 980  

Uniform load 
1:1:6 (higher 

strength) 
2 1075 95 

3 1265 190 

4 1455 190 

7 980  

Concentrated 
load 

1:2:9 (weaker 
strength) 

8 1075 95 

9 1170 95 

10 1265 95 
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models. Depths from 980 mm to 1455 mm in increments of 95 mm or 190 mm 

were added each time, as can be seen in Table VII. 

For the model under uniform load, the increase in soil depth gradually 

decreases the overall stiffness and failure load of the brick-lined tunnel, as can be 

seen in Fig. 15 (a). The shear failure not only occurs at the tunnel sidewalls, but 

also extends to the tunnel arch as the soil depth rises. On the contrary, for the 

model under concentrated load, an increase in the soil depth leads to an increase in 

the overall stiffness of the brick-lined tunnel dramatically, see Fig. 15 (b). Beyond 

a soil depth of 1265 mm, it is very hard to disperse the concentrated load to the 

tunnel since most of the concentrated load would only be dispersed to the soil 

below. 

  

FIG 15. Prediction of crown displacement curves under (a) uniform load & (b) concentrated load 

7.3 Concentrated load 

In order to simulate the overloading and failure of ‘Brickwork Bridge’ due to 
heavy vehicles, numerical models are then developed to study the failure 

mechanism of the brick-lined tunnels under concentrated load at different 

locations. 

The performance of numerical modelling under concentrated load at different 

positions is predicted as followed, especially at one quarter across the tunnel arch 

and at the middle of the tunnel arch which are usually considered to be the critical 

loading position (Robinson and Kapoor, 2009). With the load 0.1 m wide, the 

UDEC modelling was used to predict better local mechanical behaviour. 

As an application of ‘Brickwork Bridge’ under a pavement, Fig. 16 

demonstrates the failure pattern and deformation of the UDEC model under 
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concentrated load at 1/4 way across the tunnel arch. Compared to the concentrated 

load at 1/2 way across the arch with direct tensile failure at the crown as shown in 

Fig. 17, the load at 1/4 way across the arch has been transferred to one side of the 

tunnel arch. The failure load is larger with tensile failure at one side of the arch. 

 

FIG 16. Prediction of plastic state under concentrated load at 1/4 of the arch 

 
FIG 17. Prediction of plastic state under concentrated load at 1/2 of the arch 

8 CONCLUSION 

The test results from physical scale models clearly indicated the mechanical 

behaviour of the brick-lined tunnels, e.g. deflection pattern of brick lining, force-

displacement relationship, crack formation and failure mechanism. The failure 

pattern of physical models under uniform and concentrated load differed. The first 

two physical models, which were under uniform load, failed as a result of shear 

failure at the sidewalls as the major force was transferred to the sides. The third 

    UDEC (Version 4.00)

LEGEND

    2-Apr-13  21:13

  cycle     16875 

  time  =  1.117E+00 sec

no. zones : total      1318

at yield surface (*)    349

yielded in past  (X)    647

tensile failure  (o)     34

block plot                 

-0.200

 0.200

 0.600

 1.000

 1.400

-0.800 -0.400  0.000  0.400  0.800

JOB TITLE :  Plastic state at 1/4                                                           

Itasca Consulting Group, Inc. 

Minneapolis, Minnesota  USA   

    UDEC (Version 4.00)

LEGEND

    2-Apr-13  21:09

  cycle     20799 

  time  =  1.383E+00 sec

no. zones : total      1318

at yield surface (*)    379

yielded in past  (X)    617

tensile failure  (o)     46

block plot                 

-0.200

 0.200

 0.600

 1.000

 1.400

-0.800 -0.400  0.000  0.400  0.800

JOB TITLE :  Plastic state at 1/2                                                           

Itasca Consulting Group, Inc. 

Minneapolis, Minnesota  USA   



20 

physical model, which was under concentrated load, failed due to the formation of 

five structural hinges at the tunnel arch. The strength of mortar has a large 

influence on the overall behaviour. The model test under concentrated load 

showed more brittle behaviour than under uniform load. 

Numerical simulations were presented with continuum and discontinuum 

methods. Quantitative agreement with the physical tests was achieved from 

parameter studies. The deflection and failure mechanism could be reasonably 

simulated. Results from the parametric analysis confirmed that, in both numerical 

methods, the cohesion of brickwork (blocks in UDEC) was the dominant factor, 

followed by the friction angle of brickwork. These results agreed with the findings 

of Idris et al. (2008). However, numerical models were not very sensitive to the 

Poisson’s ratio, Young’s modulus of the brickwork, joint stiffness, joint cohesion 
or the joint friction angle. Generally, the micro-modelling strategy (used in UDEC) 

shows a better agreement with the physical model test of the local failure 

behaviour of brickwork structures. The failure pattern of the UDEC model under 

concentrated load clearly demonstrates the hinges and cracks at certain positions 

of the tunnel arch. The macro-modelling strategy applied in FLAC simulates 

reasonably well the deformation characteristics and shows a good agreement with 

the three physical model tests. 

Prediction of numerical models at various soil depths under uniform load 

showed the interaction between a brick-lined tunnel and the overburdened soil; 

prediction at different locations under concentrated load was linked to the 

engineering application of a ‘Brickwork Bridge’ under a pavement. It was shown 

that, under uniform load, shear failure not only occurred at the tunnel sidewalls, 

but also extended to the tunnel arch. As the soil depth increased, the concentrated 

load at the middle of the arch failed easier due to direct tensile failure at the crown, 

compared to the load one quarter across the arch. 

As a recommendation for further modelling work, it would be interesting to 

introduce other constitutive models related to masonry structures to simulate the 

longer term deformation and stress conditions of brick-lined tunnels after years of 

degradation. More realistic conditions could be applied, such as tunnels 

surrounded by anisotropic geotechnical materials and cyclic loading, representing 

moving vehicles on the road. 
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