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Infinite-Dimensional Lie Algebras Determined by the
Space of Symmetric Squares of Hyperelliptic Curves*

V. M. Buchstaber and A. V. Mikhailov

November 12, 2017

Abstract

We construct Lie algebras of vector fields on universal bundles of symmetric squares of
hyperelliptic curves of genus g = 1,2, .... For each of these Lie algebras, the Lie subalge-
bra of vertical fields has commuting generators, while the generators of the Lie subalgebra
of projectable fields determines the canonical representation of the Lie subalgebra with
generators Log, ¢ = —1,0,1,2,..., of the Witt algebra. As an application, we obtain
integrable polynomial dynamical systems.

Introduction

The connection of the theory of infinite-dimensional Lie algebras with the classical theory of
symmetric polynomials [1] and the modern theory of integrable systems is widely known and
fruitful (see [2]). In this article we obtain a description of the Lie algebras G(£% ) of vector
fields on the spaces of the universal bundles 512\,70 (see Definition 2) of the symmetric squares of
the hyperelliptic curves

Ve = {(X,Y) ceC?:Y?= ﬂ(X—xi)}, X = (z1,...,2xn).

=1

The Lie algebra G(£3,) contains the Lie subalgebra of fields lifted from the base Sym™(C)
(such fields are said to be base), i.e., horizontal and projectable fields (see [3] and [4, p. 337])
over the polynomial Lie algebra G(Sym” (C)) (see [5], [6]) of derivations of the ring of symmetric
polynomials in xy,...,zy. Lie algebras with such a structure form an important class of Lie
algebroids; see [7].

The Lie algebra G(Sym” (C)) naturally arises and plays an important role in various areas of
mathematics and mathematical physics, including the isospectral deformation method and the
classical method of separation of variables. In fundamental works (see, e.g., [5] and [8]) as
coordinates on Sym” (C) the elementary symmetric functions ey, ..., ey were chosen. In [5], in
terms of the action of the permutation group Sy on C¥, the operation of convolution of invari-
ants was introduced and basis vector fields on Sym” (C) were defined, which are independent at
any point of the variety of regular orbits. At each point of the variety of irregular orbits these

*The work was supported by the Royal Society International Exchanges Scheme Grant.



fields generate the tangent space to the stratum of the discriminant hypersurface containing the
given point. Zakalyukin’s well-known construction yields basis vector fields V; = >V, ; (e)a%j,

e = (e1,...,en), with symmetric matrix V; ;, which are tangent to the discriminant.

In this article we show that the use of the Newton polynomials py,...,py makes it possible
to substantially simplify the formulas and, most importantly, employ the remarkable infinite-
dimensional Lie subalgebra W_; of the Witt algebra W in computations. The generators of the
Lie algebra W_; are L_o, Ly, Lo, . . ., and the commutation relations have the form [Lo,, , Log,| =

2((]2 - ql)L2(lI1+Q2)'

For any N, the Lie algebra W_; has a faithful canonical representation in the Lie algebra
G(Sym™(C)) which maps the generator L, to the Newton field £, = 2" 2919, The image
of this representation belongs to the Lie algebra W_;(V), which has the structure of a free left
module over the polynomial ring C(Sym®™ (C)). We obtain an explicit expression for the vector
fields V; with symmetric matrix V; ;(e) in terms of the Newton fields £9, (see Corollary 7). An
important role in our calculations is played by a grading of variables and operators. In this
connection, we introduce variables y,,, and Ny by setting e,,, = v, and pp = Ny, and bear in
mind that degx; = 2.

Note that the Jacobi identity in the C[Nj, ..., Nay]|-polynomial Lie algebra W_;(N) implies
the nontrivial differential relation

N

ONo(gin ON3(tn
mz:l m(/\/’z(mm)ﬁ;) - Nz(q+m)ﬁ> = (¢ = k)Nogkiqin)
for the Newton polynomials. We show that there exists a unique representation of the Lie
algebra W_; in the Lie algebra of horizontal vector fields L_o, Ly, Lo, ... of the Lie algebroid
G(EXo) (see Theorem 6). The proof of the uniqueness of this representation uses the fact that,
relative to the Lie bracket [, -], the Lie algebra W_; is defined by the generators L_, and Ly
and the relation [Lo, [Lo, [Lo, Ly]]] = 12[L4, [Lo, L4]].

On the Lie algebroid ¢ (5]2\,70) there exist two commuting vertical vector fields. For each point
X, the restrictions of these fields to Sym?(Vy) are the images of obviously commuting fields on
Vi X Vi. In our upcoming publication we shall give an explicit description of such commuting
fields on Sym® (Vi) for any k& > 2. In Section 4 of this article we give an explicit description of
these fields in the case of interest to us, namely, for £ = 2.

Similar operators on Sym™(C?) were constructed in [9] on the basis of a construction of the
spectral curve and the Poisson structure. A proof of the commutativity of operators in [9] uses
a method that differs from ours.

The key results of our work are a formula for the generating series L(t) (see Theorem 7) of
the horizontal vector fields £°,,..., L5, ... that determine a representation of the Lie algebra
W_; and a commutation formula for the vertical and horizontal vector fields (see Theorem 8).

In Section 6 we construct an N-dimensional algebraic variety W (V) in the (N + 2)-dimensional
algebraic variety 3, and homeomorphisms fy: CN*2\ {uy = 0} = &% o\ W(N), where {uy =
0} is a hyperplane in CN*2 with graded coordinates s, g, Uy _2, UN; Y2, - - - ,Y2(N—2)- Onme of the
main results of the present work is an explicit construction, which uses the homeomorphisms
fn, of the polynomial Lie algebras on CV*2 that are determined by the Lie algebroids G (6']2\,70),
N =3,4,... (see Theorem 9).

The article concludes with a description of polynomial Lie algebras on CV*! for N = 3,4, 5.
In the case N =5, we obtain a polynomial Lie algebra isomorphic to the Lie algebra of vector



fields on the universal bundle of Jacobians of nonsingular hyperelliptic curves of genus 2, which
was constructed in [10] by using the theory of two-dimensional o-functions.

1 The Space of Symmetric Squares of Hyperelliptic
Curves

Consider a family of plane curves

Vo ={(X,Y;x) € C* x C" : n(X,Y;x) = 0}, (1)

where N
T(X,V;x) = Y2 = JJ(X — ). (2)

k=1

The vector {y(x) = e is the parameter set for a curve in family (1). By Vy we denote the
subfamily of curves satisfying e; = p; = 0.

In this paper we use the following grading of variables: degx, =2, k=1,..., N, deg X = 2,
and degY = N. With respect to this grading the polynomial 7(X,Y’;x) is homogeneous of
degree 2N.

The discriminant variety of family (1) is the algebraic variety

Disc(Vio) = {&n(x) € Sym™ (C) : Ay =0}, where Ay = l_I(xZ —z;)%

i<j

The discriminant variety Disc(Vy) of the family of curves Vy is defined similarly. The variety
Disc(Vig) € CV is the image under the projection C¥ — Sym”™ (C) = CV of the union of the
so-called mirrors, that is, the hyperplanes {x; = z;, i # j}, and Disc(Vy) C CN~! is the image
of the intersection of the space CN~! = {e € C" : ¢; = 0} with the union of mirrors.

For N = 3, the variety Disc(V3) C C? in the coordinates (es, e3) is determined by the equation
Ag = 27e2 — 4e3 = 0, i.e., is the well-known swallowtail in C2. In the book [5] it was proposed
to refer to the varieties Disc(Vy) as generalized swallowtails in CV 1.

Let By and By denote the open varieties CV \ Disc(Vi ) and CV~1\ Disc(Vy), respectively.
The curves of the families Vi and Vy with parameters in the spaces By and By are said to
be nonsingular for obvious reasons. They have genus [M] For example, in the cases N = 3

2
and 4, these are elliptic curves.

We set Eno = {(X,Y:x) € C2 x CN : 7(X,Y;x) = 0, £(x) € Byo}. The group Sy acts freely
on £y by permutations of the coordinates zi,...,2y, and therefore a regular N!-sheeted
covering Ex 0 — Enp = Eno/Sn is defined.

Definition 1 The universal bundle of nonsingular hyperelliptic curves of family (1) is the
bundle Exo — Bno: (X, Y;€(x)) — &(x).

The space En is the universal space of nonsingular hyperelliptic curves of genus [%] The
fiber over a point of the base By is the curve with parameters determined by this point. The
universal bundle £y — By of nonsingular hyperelliptic curves is defined similarly.



We set

E}m = {(X1,Y1; Xo, Yo; x) € C*xC?*xCY : 71( Xy, Yisx) =0, k= 1,2; X1— X,y # 0, £(x) € Byo}-

The group G = S5 x Sy acts freely on gJZV,Ov so that the generator of Sy determines the permu-
tation (X1,Y7) <> (X2, Ys), and the elements of the group Sy determine permutations of the
coordinates of the vector x. Therefore, a regular covering 3 o = Ex /G — &} is defined.

Definition 2 The universal bundle of symmetric squares of nonsingular hyperelliptic curves of
family (1) is the bundle

512\7,0 — Bno: ([ X1, Y15 Xo, Ya); [x]) = [x],

where [X1,Y1; Xo,Ys] = &(X1, Y15 X0, Ys), [x] = £(x), and &: C% x C* — Sym?*(C?) is the

canonical projection onto the symmetric square of C?.

The space 8]2\,,0 is called the universal space of symmetric squares of nonsingular hyperelliptic
curves of genus [Y1]. The fiber over a point of the base By, is the variety (Sym®V)\(X;—X, =
0) with parameters determined by this point.

The universal bundle £% — By is defined similarly.

2 The Lie Algebra of Newton Vector Fields

In the paper [6] the theory of polynomial Lie algebras was constructed. Important examples
of such infinite-dimensional Lie algebras are the Lie algebras of vector fields on C and CN~!
tangent to the varieties Disc(Vi ) and Disc(Vy) and, therefore, the Lie algebras of vector fields
on By and By.

In this section we give an explicit description of the Lie algebras Gp, (N) and Gp(N) of vector
fields in coordinates (p1,...,pn) and (pa, ..., py) determined by the Newton polynomials. We
have degx; = 2,i=1,...,N. To control grading, we introduce the notation

N
/V’%Zpk(x):zxf, k=0,1,....
i_1

For graded generators of the polynomial ring P(Sym”(C)) we take the polynomials
Na, ..., Nan. Then P(Sym™(C)) ~ C[Ns, ..., Noyl].

Definition 3 The gradient homogeneous polynomial vector fields
N
£5,=2> a0, q=-101,. .., (3)
i=1

on CN of degree 2q are called the Newton derivations of the ring Clzy, ..., xx].

Lemma 1 The operators qu, q=—1,0,1,... are derivations of the ring C[Na, ..., Nay], and

they are uniquely determined by the formula

LI N = 2kN3(sosg), kE=1,2,.... (4)

4



Corollary 1 The operators L3, act on the ring C[Ny, ..., Naoy] as

N B
£, = 3 W 5
k=1

ok
Lemma 1 and Corollary 1 are verified directly.
Let us write the equation [, (z — 2;) = 0 in the form z™ = 3> (=1)7+1yyaN 7.

Jj=1

Lemma 2 For any k > 0,

N
pNTE — Z(_l)j+1y2k’2ij—j7
j=1

where the {yoro;, Kk =1,...}, j=1,..., N, are the sets of symmetric functions in x, ...
with generating series

00 1 N—j N

2j = Zy2k,2jtk = m <—1)sy2(j+5)ts, E(t) = H(l — x;t).
k=0 s=0 =1

Proof: According to (6), for any k > 0, we have

N
Z(_l)j+1y2(k+1),2jl’N_j — pNth+l _ o Ntk
j=1 N N

Hence yakt1),208 = Yonlor2 and Yoky1),25 = Y2jY2k2 — Yok2(j+1)- We obtain the following system

of equations for the generating series:

Von = yan (1 +tdh),
ygj:ygj(1+ty2)_ty2(j+1)a ]:1a7N_1

Solving this system, we obtain (7).
O

Corollary 2 For any k > 0,

N
Noviry = Z<_1)j+lka,2jN2(N—
=1

WE

L1y = D (=1 yar L5 v 1y

1

<.
Il

Let us introduce the generating series £°(t) = » 22 _; L5 ¢!,

Corollary 3 The following relation holds:

1 N
_ m—1
“E0 > _E( m-l"
m=1
where
N—m
E(t;m) =Y (=1)fyxt® and E(t) = E(t;0)
k=0

(10)

(11)



Poof Let us write the series £°(t) in the form £%(t) = Zf_fl Lo N 37 0 LY vyt
According to (9), we obtain

N—-2 N
= 3 e e (St )
j=1

q—fl

—ZtN‘ (L (=D)L

It remains to use (7).
U

Lemma 3 The following relation holds:

[;CO ;ngZ] = 2(QQ — Q1)£g(ql+q2). (12)

2q1°

Proof: The required relation follows directly from (4).
O

Corollary 4 For allk,q € N andn =1,..., the polynomials Noyp, k = 0,1, ..., are related by

N

ONo(gin ON(k4n
Z m(N2(k+m) aﬁ[? Nz (g+m) aj\(/j )) = (q - k)N2(k+q+n)- (13)

m=1

Proof: The required relations follow directly from (5) and (12).
U

Example 1 For N = 3, the polynomials N5, Ny, and Ng are algebraically independent and
Ny=3. For k=0, ¢ =1, and n = 3, relation (13) gives the Euler differential equation

ONs ONs ONs
2N + 4N, + 6N = 8\%.
2 3rr N —— N 6 A N 8
Lemma 4 For all ¢ = —1,0,1,...,
L5 A(N) = dyag(N)A(N), (14)
where
x;z-i-l - xq—kl
AN) =[] —2;)> and (N) => =~ (15)
1<j i<j X x]
For any k > 0,
N-1
g (N+k)(N) = (=1)° Y2(k+1),25V2(N—s—1)
s=1

Proof: We have
A
0 § : q+1 I I } : 4 J
£ A Ty akan<J —$] (N)( Tx])

The formula for yo(n4x) (V) follows from (6).
0



Example 2 v 5(N) =0, 7(N) =2N(N — 1), and y1(N) = 4(N — 1)Ns.

Corollary 5 The vector fields L 2q7 = —1,0,1,..., on C" determine vector fields on Sym™ (C)
tangent to the algebraic variety Disc(Viyo) C Sym™ (C).

Theorem 1 The Lie algebra Gp,(N) of vector fields on the variety Byo in the coordinates
No, ..., Non has the structure of a free N-dimensional module over the ring C[Na, ..., Nan]
with generators qu, qg=—1,0,1,..., N — 2. The set of generators extends to an infinite set
{£3,}, where the elements L9, for ¢ > N — 2 are given by (9). The operators L3, act on Ny

by (4).

The structure of the Lie algebra Gp,(N) is determined by (12) and (4), where the Ny, for k > N
are the polynomials Nox(Na, ..., Naon) defined recursively by (8).

We set LY (t) = tE(t)L(t). According to Corollary 3, operators L9 ,, ,) for which

N N
= Z LY om-opt™ = Z E(t;m) L3, _o)t™
m=1 m=1

are defined.

Lemma 5 The following relation holds: LY(t) = S0t [1.(1— 1) 52~

oxy *

Proof: We have

00 N N
0
=tE(t Lyt = =) t||(1—zt)—. O
)2 L Zl_xkt@xk > t]]a -t g
q:—l k=1 k=1 ]#k
[l

Lemma 6 The generating polynomial

Z y2m> "

m=1

m s is symmetric with respect to the permutation t <> s.

Proof: We have

N
t S
LYH)E(s) =tE(t)L(t)E(s) = —Et)E O
A(t)E(s) () L7(t)E(s) ()(8);1_m1
O
Corollary 6 The action of the operators £?4’2(k_2), k=1,...,N, on the elementary symmetric
polynomials e,, = Yo, 1S given by a symmetric matric T,gm = T,S’m(yg, .., Yan), that is,

ﬁ%g(kq)yzm = E%,Q(me)ymc‘

7



Proof: We have

k=1 m=1
N N
= Z Z(_l)k+m(£?4,2(k—2)y2m)t s™
k=1 m=1

It remains to use Lemma 6.

O

The Lie algebra Gp(N) of vector fields on By in the coordinates Ny, ..., Nay is a Lie subalgebra
of Gp,(N). Tt consists of the fields that leave the ideal Jo = (N3) C C[Na, ..., Nay] invariant.

We have £2,N; = 2N and LI No = 2Nog41). We set Lo = L] and Lo = L3, — % Nog41) L0,
By construction LoN2 = 2N3 and Lo,y = 0 for ¢ # 0.

q

Theorem 2 The Lie algebra Gp(N) of vector fields on By in the coordinates Ny, ..., Naon has
the structure of a free (N —1)-dimensional module over the ring C[Ny, ..., Nan] with generators
Loy, q=0,1,...,N—=2. The set of generators extends to an infinite set {Lo,}, and the elements
Log forq=N—+k—1, k>0, are given by (see (9))

N
Lonyk1) = Z(‘l)] Yok2i LY N1y (16)

j=1

where Yo 2j = Yok,2; mod (N2) and the Yak,2j are the polynomials determined by the generating
series (7).

The structure of the Lie algebra on Gp(N) is introduced directly by the condition that this is a
Lie subalgebra of the Lie algebra Gp,(N).

Let La(t) = tE(t)L(t), where

[e.9] o 1
Lt)= Y Logt™ =" (£2q —~ NNQ(M,CQ Q)tqﬂ.
g=-1 g=-1
Lemma 7 The following relation holds:
1 4
La(t) = LY(t) + N (EOZE(t)) LY, = [LO — (1 — N)yz.cQ} 2t (17)

Lemmas 6 and 7 give the following result.

Lemma 8 The generating polynomial La(t)E(s) = Z%Zl(—l)m(ﬁA(t)me)sm is symmetric
with respect to the permutation t <> s.

Let us introduce operators ‘C(f]\,Z(k—2) such that L4(t) = 22\122 L a2k-2)t-

Corollary 7 The operators Laom—2y, k = 2,...,N, leave the ideal (N3) invariant. Their
action on the elementary symmetric polynomials €, = Yo, is determined up to the ideal (N3)
by a symmetric matric Ty m = Thm(Yas - - Yon)-

8



Proof: The proof of this assertion is similar to that of Corollary 6.
O

The Lie algebra Gp(INV) of vector fields on By in the coordinates yy, ..., yon has the structure
of a free (N — 1)-dimensional module over the ring Clys, ..., yon] With generators L4 k-2,
k =2,...,N. The action of these generators on ys,, is given by a symmetric matrix (7}, ,,) =

(Thm (N)).

Remark 1 For each N, we give an explicit construction of the fields Laom—2) and the sym-
metric matriz (Tym(N)). The notation L4 is suggested by Arnold’s monograph [5] (see also
[8]). These fields will be used in Section 9 to construct the Lie algebroids 9(512\,70) and explicitly
describe an isomorphism between the Lie algebroid G(E2,) and the algebroid constructed in [10]
from the universal bundle of Jacobians of genus 2 curves.

3 Representations of the Witt Algebra W_; in Lie Al-
gebras
with the Structure of a Free N-Dimensional Module
over the Polynomial Ring

Let us introduce the following notion.

Definition 4 We define an N-polynomial Lie algebra W_1(N) as the graded Lie algebra with
e the structure of a free left module over the graded ring A(N) = Clug, ..., von]|, degvo, = 2k;
e an infinite set of generators qu, qg=-—1,0,1,... deg qu =2q;

e a skew-symmetric operation [-,-| such that
[qup qug] = 2(q2 - Q1)Lg(q1+q2)a

[Lagy s Var Lag,] = Vagy 2k Lag, + Var[Lag,, Lag,),

[Vak, Liagy s Voky Liagy | = Vok, Vagy 2k Lagy — Vaky [Logy s Vor, Lag, |,

where vy, 0 € A(N) is a homogeneous polynomial vagox(va, . .., van) of degree 2(q + k).

Using the identity vy, (v, Lag) = (Vg Uk, ) Lo, and Leibniz’ rule, we see that the skew-symmetric
operation [-, -] on the Lie algebra W_;(N) is completely determined by the set of homogeneous
polynomials vgg o = Vag.2k(V2, - - ., Van).

Theorem 3 The set of polynomials vogor = Vagok(Ve,...,van) € A(N) determines a skew-
symmetric operation on an N-polynomial Lie algebra W_1(N) if and only if the homomorphism

N

v: Wi (N) = DerA(N), — v(L3,) = vaga
k=1

9
8U2k ’

of A(N)-modules is a homomorphism of the N -polynomial Lie algebra W_1(N) to the Lie algebra
of polynomial derivations of the ring A(N) = Clvg, ..., van].



Proof: The theorem is proved by a direct verification of its statements.
O

The Lie algebra W_; with generators £gq, q = —1,0,1,..., contains the Lie subalgebra gen-
erated by the three operators £%,, £5, and L3, where [£Y,, £I] = 4L£). The Lie algebra W_,;
with respect to the bracket [-, -] is generated by only two generators, £°, and LY.

Example 4 6£5 = [£°,, £Y], 48 = [L£°,, £Y], and 2L3 = [LY, L]].

The generators Lo,, where ¢ > 1, are given by the recurrence relation 2q£g( gr2) = L9, Eg( . +1)].

Moreover, the operators £°,, L} are related by commutation relations, the first of which is

[£8> [Ega [£8> EZ]” = 12[£2a [£8> EZH (18)

Corollary 8 The representations fyj(ﬁgq) = 25:1 U%q,zk%%: j = 1,2, of the N-polynomial
algebra W_y coincide if and only if vy, o, = v3, o, for ¢ = —1 and 2.

By construction there is an embedding of the Lie algebra W_; into the Lie algebra W_;(NV).
On the other hand, the ring homomorphism ¢: A(N) — C, p(vx) =0, k = 1,..., N, induces
a projection W_1(N) — W_; of Lie algebras.

Corollary 9 The homomorphism

N
0
v: W_i(N) = Gpo(N), 7(qu) = L’gq = Z 2k/\f2(q+k)m7 ¥ (var) = Na,
k=1
extends to an epimorphism of Lie algebras.

Note that the nontrivial relation (13) between Newton polynomials in z1,...,zx ensures the
fulfillment of the condition

7([L2k7 L2k]) = [7(L2k>7 7(L2k>]

The kernel of the homomorphism v is described by (9). The restriction of the homomorphism
v to the Lie subalgebra W_; gives a representation of the Lie algebra W_; in the Lie algebra
Gpo(N) with the structure of a free N-dimensional C[Na, ..., Nay]-module.

4 Commuting Vector Fields on the Symmetric Square
of a Plane Curve

Consider the symmetric square of the curve V={(X,Y)eC?: F(X,Y) =0}, where F(X,Y)
are polynomials in X and Y. Let Dy = F(Xg, Yi)v,0x, — F(Xk, Yi)x,0v,, £ = 1,2. We
introduce the operators

B 1
X, - X

1

c -
X1 — Xy

(D, —Dy), L2 (XoDy — X, Dy). (19)

10



Lemma 9 1. The operators L' and L* are derivations of the function ring on Sym*(C?) \
{Xl - X2 - 0}

2. The operators L' and L? annihilate the polynomials F(X1,Y1) and F(Xs,Ys).
3. (LY, L] = 0.

Proof: The operators £! and £? are derivations of the function ring on (C? x C?)\ {X; — X5
= 0}. Statements 1 and 2 are verified directly. A standard calculation shows that

(X1 — X)L (X) — Xo)L?] = —F(X5,Ys)y,D1 — F(X1, Y1)y, D2 + (X1 — Xo)?[L1, L£7].

On the other hand, [D; — Dy, XoDy — X1Ds] = —F(Xs, Y2)y, D1 — F(X4, Y1)y, D2. The coinci-
dence of the left-hand sides of the equations and the relation X; — X5 # 0 imply the lemma.
O

5 Lie Algebroids on the Space of Nonsingular Hyperel-
liptic Curves

Consider the bundle f: Eyy — By (see Definition 1). In Section 2 we described the Lie
algebra of vector fields on By generated by the Newton fields £5,, k = —1,0,1,...,N —2. In
this section we construct a Lie algebroid on the space Exo. We set 7 = m(X,Y;x) = Y% — P,
where P = P(X;x) = [[X,(X — ;). By G(C[X,Y;x]) we denote the Lie algebra of derivations
of the ring C[X,Y’;x]|. Let us introduce the operator L} _, = 2Y0dx + Pxdy € G(C[X,Y;x]).
We have L% _,m = 0. Hence, for fixed x, the operator £ _, determines a vector field on C?
that is tangent to the curve V = {(X,Y) € C* : n(X,Y;x) = 0}. The field £} _, determines
the vertical field of the bundle f: Ex9 — Bno.

Lemma 10 Let D be a derivation of the form aOx +b0y of the ring C[X,Y;x], where x € By .
Then Dr = &7, where ® € C[X,Y;x], implies D = L% , + 7D, where ¢ € C[X,Y; x| and
D' € G(C[X,Y;x]).

Proof: We shall carry out calculations in the ring K = C[X,Y;x]/(r). In this ring Y? = P,
and thus K is a free C[X;x]|-module with generators 1 and Y. We set a = a; + a2} and
b= by + bY, where a;,b, € C[X;x], [ = 1,2. The condition that Dm = 0 in the ring K implies
(a1 + aY)Px = (b1 + bY)2Y. Hence a1 Px = 2by P and ay Px = 2b;. On the other hand, the
condition D =L}, _,, where ¥ = 1)1 + 1Y, implies

aq + CLQY = 277/)2P + 2@[)1}/, bl + bQY = TﬂlPX + ¢2P)(Y.

Hence 2y = ag, 299 P = a1, and ¢y Px = by. Since x € By, it follows that the polynomials
P(X;x) and Px(X;x) are coprime, and this system has a polynomial solution ¥y = 1)5(X; x).
O

Consider the following sequence of derivations of the ring C[.X,Y’; x]:

0 0 k1 X =l
L = L5+ 2X"10x + CurYy,  where O = Y = —

=1

(20)

11



Theorem 4 The homogeneous fields LS, k = —1,0,1,..., of degree 2k are uniquely deter-
mined by the condition that they are lifts of the Newton fields L3, and generate the Lie algebra
of Newton horizontal vector fields on the space of the bundle En o, that is,

[Lgth’ quz] = Q(QQ - Q1)Lg(th+q2)'

Proof: Weset £3, = £, +2X* 0y = 2(3"N | 2¥9, + X*+19y). The operator LY, determines

=11

a Newton derivation of the ring C[X;x]. It is easy to check that (20) can be written as
~ 1
L3 = L3 + (L3 n P)Y oy (21)

Hence LY, (Y2 — P) = P(L£Y In P — £3, In P) = 0. Thus, formula (20) determines horizontal
vector fields LY,, k = —1,0,1,..., on Ey, which are lifts of the fields £3, on the base By .
Now let L3 and L3? be two homogeneous horizontal vector fields on Ey that are lifts of
the field £9, on the base Bno. Then, according to Lemma 10, Lg}f = Lg}j + VYoptr2-NLy_o,
where ori0-n = 1 + Y and ¢y, ¥y € C[X;x] are homogeneous polynomials such that
degtyy =2m =2k +2— N and degp =2(k+1— N).

Note that the degree of the function 19,5 n cannot be negative. Hence the condition o519 N
# 0 implies N < 2k + 2. On the other hand, according to Corollary 6, the generators of the
algebra W_; are completely determined by the operators LY, and L}. As a result, we obtain
the following conditions: N <0 for k = —1, N <4 for k=1, and N <6 for £k = 2. In the
case where k£ = 2 and N = 5, we obtain deg; = 1, which contradicts degy; = 2m. Thus, we
have proved that the lift of the fields £9,, k = —1,0,1,..., is unique for N =5 and N > 6.

It remains to consider the cases N = 3,4,6. As shown above, in the case N = 6, the lifts of the
fields £°, and L9 are unique, and any lift of £ must have the form L + oL}, where o € C.
A direct verification shows that the commutation relation (see (18)) in the Witt algebra holds
only for &« = 0. Thus, in the case N = 6, the lift of the fields £9, is unique. Similar arguments

show that this is also true in the cases N = 3 and 4.
The commutation rule [Lj, , LS,
Newton operator and from (21). This completes the proof of the theorem.

O

| = 2(q2 — ql)Lg(q1 tgp) follows from the fact that Egk is a

Corollary 10 The generating function for the operators (20) has the form

1
1-Xt

LO(t) = () + %(20@) I P)YY, where £9(t) = £9(t) + 2 o, (22)

Consider the space CN*! with the graded coordinates (X, Y; N5, ..., Ny_1)). Using the equa-
tion Y? = P(X;x), we can identify the space £y with an open dense subvariety in CV*1.
The Lie algebra of vector fields on £y described above determines a polynomial Lie algebra
generated by the field £}, and the fields L°,, LY, L9, ... >L(2)(N—2)'

Example 5 Case N = 3. The coordinates in C* are X, Y, Ny, and Ny. We have
1 2 3 2, Lo 1 L s
§N6:—Y + X° - ALX +§(N2 —N)X + §N2N4_6N2 .

Using this formula, we obtain an explicit expression for the basis polynomial fields L%, L°,, LS,
and LY in C*.

12



6 Coordinate Rings of Spaces of Symmetric Squares of
Hyperelliptic Curves

Consider the space C? x C? with coordinates (X1,Y;) and (X5, Y5) graded as above, i.e., so that
deg X = 2 and degY;, = N, k = 1,2, and the space C° with graded coordinates us, us, vy,
Uni2, and ven. Here the subscript corresponds to the degree of variables.

Lemma 11 The algebraic homogeneous map
g: (CQ X (C2 — (C57 5((X17 }/1)7 <X27 YQ)) — (U27 Ug, VN, UN+2, U2N)7

where us = X1 + Xo, uy = (X — Xz)z, on = Y1+ Y, oy = (Xg — Xo)(Y1 — Y2), and
voy = (Y1 — Y3)2, makes it possible to identify the algebraic variety (C* x C?)/Sy with the
hypersurface in C* determined by the equation usvay — v, = 0.

Proof: The lemma is proved directly.
O

For what follows we need the homogeneous polynomials agy.(us, uy) of degree 2k determined by
the generating series

1
t
(1 — Xlt)(l ~ Xt ) Uz,u4 ZG% UQ,U4

1 2
QTR R (23)

In the notation of Lemma 11 we have

> 1 1
(XE 4 X = (2 — uyt)a(t: . 24
; + =1 X +1_X2t (2 — ugt)a(t; ug, ug) (24)

Moreover,

(X1 — Xo) (X771 = XJ )i 2

WE

bl
||
N

= [(XF+ X2 = Xy Xo(XF72 + X557 = waa(t ug, ua), (25)
k=2

1 1
1—-X3t 1—Xot

> (Vi = Vo) (X~ X&)t’“:m—n)[ = onosta(tiw,u). (26)

k=0

N _
We have Y? = XV + 37, (—1)F . X", Hence

1
(Y?+Y5) = 5(”12\/ + van)

=2

-1

= (2a9n — Upaan—2) + ¥ (=1 yor(2a9n_1y — usaan—_k-1)) + (—1)V2yan.
2

=
[|

13



We also have
N—2

(X) — Xo)(Y? = Y5) = onunge = wy (a2(N—2) + Z(_l)ky2ka2(]\/—k—2))a
=2

N-1
(Y1 — Y2) (Y — Y5) = unvan = Unso <a2(N—1) + Z(_l)ky%a2(N—k—l)>~
h—2

The graded coordinate ring Ro(N) of the space 512\,70 in (C? x C*\ {X; — X5 =0}) x By (see
Section 1) has the form
(C[Xla }/I;X% }/2;3717 s o ,JZN]/J,
degzr; =deg Xy, =2, deg¥, =N, j=1,...,N, k=1,2,

where J = (m;, m3) is the ideal generated by the polynomials 7, = m1,(Xy, Yz;x). Let RS (N) C
Ro(N) denote the invariant ring of the free action of G on Ry(N). Consider the graded ring
R(N) = Ro(N)/{y), where y = 21 + -+ + zn. Let RE(N) C R(N) denote the invariant ring
of the free action of G on R(N). We shall treat the ring RY(N) as the coordinate ring of the
universal space £%.

Lemma 12 The ring R€(N) is isomorphic to the graded ring
Rg - C[“Qa Ugy UN, UN+2, V2N, Y]/JG7
where y = (ya, ..., Yyan) and the ideal JY has Grébner basis

2
Ponta = Uy g — UsVan,
N-1

Ponio = UNUNy2 — Uy (GQN—Q + Z(_1>ky2ka2(N—k—1))u
k=2
N-1
Pyn = 03 + van — (aan — usaa(n-—1)) Z ) 2k (2a(n -1y — Uzazv—r-1)) — (—1)" 20w,
k=2
N-1

Z 1)k92ka2(1v k— 1)

The relation vy Ponig — UnioPonio + u4P3N =0 holds.

Psn = UnUan — Unyo (@2

Proof: The lemma follows easily from the relations obtained above.
O

Let us introduce the ring A(N) = Cluy, ua, Un—2,Un, Y], Where § = (ya, ..., Yo(n—2))-

Lemma 13 The following ring homomorphism holds:
p: Ry — A(N),
QO(UQk) = U2k, k= 172a (;O(UN) = UN, gp(ka) = Y2k, k::27"'aN_27

SO(UN+2) = U4UN -2, 90(?12N) = U4Uz2v727
N-2

SO(yZ(N 1)) = ( 1)N_1 |:UN—2UN — G(N-1) — Z(_l)kQQkQZ(Nkl)}a
k=2

1
Pl = (-1 L [@%V + tax) — (20 — tatagy 1)

— Z ) yor (2a9(n 1y — Us@a(n k- 1))}

14



Proof: A direct verification shows that the homomorphism ¢ maps the ideal J¢ to 0.
|

Corollary 11 The homomorphism pluy']: RG[uy'] — A(N)[uy'] is an isomorphism.

Proof: The ring homomorphism

n: A(N)[up'] = Relug'],
n<u2k) = Uz, k= 1727 7](1}]\[) = UN, 77(3/%) = Y2k, k= 27"'7N_27
n(vn—2) = uy 'vn4e

is inverse to the homomorphism ¢[uy?].
U

Consider the space CNV™* with the graded coordinates (us, w4, Uy, Uny2, van;y) and the space
CN*1 with the graded coordinates (ug, us, vy_2,vn,y). As mentioned above, the space £%, can
be identified with the algebraic subvariety in C¥** determined by the equations Pyt = 0,
k=0,2,4,N (see Lemma 12). We set

N-1
~ 1 -
ban (u2;y) = oN—T (Uév + Z<_1)k2ky2kuév F 4 <_1)N2Ny21v>-
k=2

Let W,(N), s = 1,2, denote the algebraic subvarieties in C¥** determined by the equations

—

for s=1: wy=0, vy=0, ovni2=0, wvoy =bon(us;y),

—

for s=2: wu;=0, vny2=0, voy =0, v =bon(uz;y).

We set W(N) = Wy (N)UWy(N). Note that, for given y, the intersection Wi(N) N Wy(N) is
the set of roots of the equation byy(ug;y) = 0. Clearly, W (N) C £%.

Theorem 5 The mapping f: CNT1 — CN* defined by f(uz,us, vy_o,0n,y) = (U2, us, vy,
. _ 2
UNt2,VaN;Y), Where Unio = UgUN_2, Van = UgVKr_s,

N-2
Yov—1) = ()N {UN'UNZ - ( 1+ Z ) yoraz(v—k— 1))]

=2

and
] N-1
YN = (—1)N2 {UN + von — (2a2n — U2 (k-1)) Z ) yor(2a2(n—k) — U2aa(N—k—1)) |+
k=2

determines a homomorphism f: CNT1\ {uy, =0} — £% \ W(N).

Proof: The required assertion follows directly from Lemmas 12 and 13 and Corollary 11.
O
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7 Lie Algebroids on the Space of Symmetric Squares
of Nonsingular Hyperelliptic Curves

Consider the bundle £, — By, (see Definition 2). We have defined an action of the Witt
algebra of Newton fields £3, (see Definition 3) on the base By . Let us introduce the following
derivations of the ring C[ X1, Y71; X, Yo; x]:

Lgk = ‘Cgk + Q(X{H_laXl + X§+18X2) + 021165/105/1 + Cgkyéayzﬁ (27)

where
N
X{H—l k+1

. ;
i j L
Cy = E X, Jj=12

i=1
We set Egk = L9, +2(XF10x, + X519y,). Tt is verified directly that
N
1 .
LY, = L3 + = L3 [(In PDY10y, + (In PP)Yady, ], where PO =T[(X; —2).  (28)

=1

[\]

Now we are ready to obtain one of the main results of the present paper.

Theorem 6 The homogeneous fields LS, k = —1,0,1,..., of degree 2k (see (27)) are deter-
mined uniquely by the conditions that they are lifts of the Newton fields LS, on the base of the
bundle €3,y — By, generate the Lie algebra of Newton horizontal vector fields on E%, and
determine a representation of the Lie algebra W_.

Proof: The proof of the theorem uses explicit expressions and Lemma 10 by analogy with
the proof of Theorem 4.
OJ

Using the operators Dy, = 2Y,0x, + P GYk, k = 1,2, we infer (see Lemma 9) that in the Lie
algebroid of the bundle €% there are the two commuting horizontal fields

1 1

L D, —D d L XoDy — X1Ds). 29

NS N TTX (D 2) an N-2 T N TN (X2Dy 1D,) (29)
Lemma 14 For the curve Y2 = [, (X — ),

E(t)— (1—tX) > E(t;m) X"t =Ny?,

m=1
Proof: We have
N N
E(t) =Y Etm)X™ '+ > E(t;m) X"
m=1 m=1
N-1
= (BE@t) - EBEt; 1))+ Y (E(t;m)— E(t;m+ 1)X™" + B(t; N) XNtV

m=1
1

Let L(t) = > 5o | L3t

16



Theorem 7 For the generating series L(t) of the operators LS, k = —1,0,1,... (see (27)),
the relation

N
E()L(t) = Y E(t;m)t™ " LY, o) + As(t) Ly — Ao(t) Ly, (30)
m=1
holds on the variety (X — Xo # 0,Y1Ys # 0), where

X, X,
t) =tV |V, \Z
Aa(t) {11—tX1+ 21— tX,

1 1
Y—
=X, 1o,

1 1
:| = tNa(t, Ug, U,4) |:§(U,2’UN + UN+2) — Zt(u% — U4):| s

Ao(t) =tV [Yl

1
:| = tNa(t; Uag, U,4) |:UN — ét(UQ’UN — ’UN+2):| .

Proof: Let £ = E(t)L(t) — fozl E(t;m)tmfng(mﬂ). According to Corollary 3, we have
Lx;=0,i=1,...,N. Thus, the field £ is vertical, and therefore £ = Ax(t)L%_, — Ao(t) L5
for some series Ay(t) and Ag(t). On the other hand, according to Lemma 14,

1 al tNy?
eXj = — 5 {E(t) — (1 —tX;) mzl B(t; m)X}”_ltm_l] = 1——75]X] :
Using (29), we obtain the system of equations
1 Y, 1 Yy

(Aa(t) — XaAo(t))

(As(t) — X1 Ao(t))

X, — X, T1otX, X, — X, T1—tX,

provided that Y1Y5 # 0. Solving this system completes the proof of the theorem.
O

Corollary 12 In the basis {L°,, ... 7L(2)(N—2); Ly 4, Ly o} the following commutation relations
hold:

N
[Lap, Lag] = 2(q — p)Lap+q) = 2(q — p) < Z Wp+gqmLam-2) + Qprely 4 — ﬁp+q£*N2> ;

m=1

where Wytqm, Qptq, and Byrq are the coefficients of tP79 in the series E(t;m)/E(t), Aa(t)/E(t),
and Ao(t)/E(t). All these coefficients belong to the ring RE(N) (see Lemma 12).

We set N(t) = SN 1/(1 — ait) and Dy(t) = N(t) — 2(1/(1 — tX1) + 1/(1 — tX3)) = N (t) —
2a(t)(2 — ugt), where a(t) = a(t; ug, uq) (see (23)).

Lemma 15 The following relations hold:

* t *
[L(t), Ly_4) X1 = 1_—mD0(t>£N—4X17 (31)
) 2 £X )
00, G X = ([ + T Do) o (52)

Proof: Using (27) and (29), we obtain

2 tY;
- - L)Y, =
1—tX,’ (O 1—tX,
2Y,

Ly X1 = m» Ly X1 = XoLy 4 Xy

L)X,

N (),
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Hence

EN_4L(t)X1 = m £N—4X1‘ (34)

Relations (33) and (34) imply (31). Further, we have L(t)L% _5X1 = L(t)(X2Ly_4,X1). Using
(33), we obtain

L)Ly, X = [1 St <./\/'(t) ~2— X2>}£*];,_4X1, (35)
Ly o L(t) X, = % Ly 4 X1 (36)
Relations (35) and (36) imply (32).
U
We set
ALs(t) = ta(t)Do(t),  A_s(t) = tA_o(t), (37)
Bo(t) = a(t) | 2(1 — ugt) + %(ug —u)Do(t)| (38)
B_o(t) = ta(t)[2 + (1 — ugt)Do(?)). (39)

Theorem 8 On the variety {X; — Xy # 0, 1Yo # 0} the commutation formulas for the
generating series L(t) of horizontal fields with the vertical fields Ly, and LY o are
[L(t), Ly = Aa(t) Ly = Aa(t) Ly, (40)
[L(t), Lx—o] = Bo(t) Lx—y = B2 (t) Ly (41)

Proof: The series [L(t), Ly _,] and [L(t), L% _,] are generating series for the vertical fields.
Let us find their representation in the form of linear combinations of the fields £3_, and £} _,.
According to Lemma 15, the coefficients A_o(t), A_4(t), Bo(t), and B_»(t) are solutions of the
systems of equations

t
_o(t) — Xo A _4(t) = Dy(t
A_s(t) — XoA_4(2) X, o),
t
o(t) — X1 A_4(t) = Dot
A o(t) — X1 A 4(t) /%, o(t)
and
2 tX,
— XoB 1(t) = Dy(t
Bot) = XoBolt) = 75 + 775, Pol®):
2 tX,
— X1B_s(t) = Do(t).
Bolt) = XaB2(t) = 37—+ 735, Do)
Solving these systems, we obtain (37)—(39). O
Corollary 13 In the basis {L2,, ..., L3y o Li_4, Li_s} the following commutation relations
hold:

* * *
[qu, £N74] = a_22¢12LN 4 — a_a2¢12L% o,
* * *
[qu, ﬁN—Z] - bO,2q+2£N—4 - b—27QCI+2£N—2a

where a_s 9442, A—42¢12, bo2gr2, and b_so,42 are the coefficients of tat1 in the series A _5(t),
A_4(t), Bo(t), and B_y(t). All these coefficients lie in the ring RE(N) (see Lemma 12).
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8 Polynomial Lie Algebroids Determined by the Lie Al-
gebroid on 8]2\,,0

In this section we give a description of the polynomial Lie algebroid G(N) on CN*! which uses
the homomorphism f: CN*!'\ {uy = 0} — £% o\ W(N) constructed in Section 6. As generators
of the Lie algebroid G(NN) we take the horizontal vector fields LY, and the vertical fields £%_,
and L} _,, which were constructed in Section 7. Without loss of generality, it is sufficient to
consider the algebroid G as a module over the polynomial ring A(N) = Clug, ug, vn_2, Un; Y]

Lemma 16 The action of the operators Ly_, and Ly _, on the coordinate functions uy and 4
has the form

* *
Ly _4ug = 20N, LN _yUuy = UsUn_2 — VN,

* *
N_qls = 4vun, LN oy = 2usvn — 2ugVN—o.

Proof: The required relations are derived directly from our results obtained above.
OJ

The action of the operators L£},_, and L},_, in the coordinates X, Y7; Xs, Y5; x has the form

= L (Yo Ye ) 2V -2 4 (X - ) (P + PY) )
Un_o = =
N2 MX - X (X1 — X5)3 ’
PO _ p
Ly yon =Ly V1+Ys) = ﬁ ) (43)
e Yi—-Ys\ 2(Y2—Y1)(X1Y1+X2Yl)+(X1—X2)<X2P)((11)+X1P)((22))
NN TN\ X, X, ) (X1 — Xp)? ’
(44)
X, P — x, PP
Ly goy =Ly ,(Yi+Yy) = —2 % (45)

X1 — X,

Our goal is to show that this action is polynomial in the coordinates us, us, vy_o, vy, y. We shall
use the polynomials agy(ug, uyg) (see (23)) and the polynomials by, (ug, uyg) for which > by, - t" =
a*(t).

Lemma 17 The action of the operators Ly_, and Ly _, on the coordinate functions vy_o and
vy has the form

N-3

Ly _4Un_—2 = Z(—l)ky%sz\f—zk—a, (46)
k=0
N-1

Ly_yon = Z(—l)k(N — k)Yaraan ok, (47)
k=0

= =

N_oUN_2 = Ux_o + 5 U §<_1)ky2kb2N—2k—6 3 %(—1)k(1\7 — k)YoraN —2k—4, (48)
N—-1

7V_2UN = Z(—l)k(N - k?)y2k(uza21v—2k—4 - aQN—Qk—Q)- (49)
k=0
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To prove this lemma, we need the following general statement.

Lemma 18 The formula

2(P?) — PW) 4 (X; — Xo)(PY) + PY)
(X1 —X3)3

r(P) = (50)

defines a linear map r: C[X;y| — C[X1; Xo;y] of Cly]-modules.

Proof: The transform (50) is C[y]-linear; thus, it suffices to prove that r(X*) € C[X;, X»;y],
k = 0,1,.... Let us take the generating series f(t;X) = > o,  X*tF = (1 —¢X)~1. We
obtain r(f(t, X)) = t3a*(t), where a(t) = a(t; uz, uy) (see (23)). Thus, we have r(1) = 7(X) =
r(X?) = 0 and r(X*) = by,_¢ for k > 3, where the by, are polynomials with generating series
5 bant” = a2(1).

0

We proceed to prove Lemma 17. Using (42), we derive (46). Relation (48) can be obtained by
evaluating £}, _,vn_2, since (44) can be rewritten as

L5 v _ le_YVQ 2+(X1+X2) x _l P§(11)_P-)((?2)
N=2EE2 X - X, 2 N2 X - X, )
and applying the relation
N-1
Py = Z(_l)k(N — k)ysp XN
k=0

The expression (47) for £3_ vy is obtained by using (25). Relation (45) can be rewritten as

1 1
Noaow = 5 (X0 + X)Ly oy — 5 (Py) + P).

Again applying (24), we obtain (49), which proves the lemma.

Thus, we have proved the following theorem, which is one of the main results of the present
paper.

Theorem 9 For each N > 3, a Lie Clug,us,vn_o,vn;y]-algebra with generators L°,, ...,
Lg(N_Q),E}kV_4,£}"V_2 is defined. The commutation relations between these generators are de-
scribed in Corollaries 12 and 13, and their action on us, ug, UN_2,VN,Y, in Lemmas 16 and 17.

9 Examples of Polynomial Lie Algebras

In this section we give an explicit description of the polynomial Lie algebras G(N), N = 3,4, 5,
over the rings Clug, uy, v1,v3] for N = 3, Clug, uy, va, vy; y4] for N = 4, and Clusg, w4, v3, Us; Ya, Ys|
for N = 5 with generators Lo, ..., Lov—2), Lx_4, L_o. Here Ly is the Euler field and, therefore,
[Lo, Log| = 2k Loy

Proof: Case N = 3 We have

1 2 1 3 2 2
Yy = Z(_?’“? — Uyg + 4?]17}3), Y = Z(_UQ + UolUy — U4V + 2U21}1U3 - ’U3>.
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The action of the generators Ly, Lo, and L* |, L} of the free left Clus, u4, vy, v3]-module is as
follows:

U2 Uy U1 U3
Lo 29 m Uy 3vs
1 2 1 3
L2 §(3u2 — Uyg— 81)1’03) —4UQU4 §<U2’01— 31)3) -3 (u4U1 + UQ'U:),)
Etl 2U1 4U3 1 ?)UQ
¥ U9V — —2(ugv1— )| —ug+0? | 2(3ud — ug— 20103)
1 2U1— U3 UgV1— U2V3 Uz T Uy 3 2 4 1V3

The commutation relations are

(L4, Lo] = —3u2 L7, + L1, L3, Lo] = 15(9us — 9u3 + 16y4) L7 ;.

Proof: Case N = 4 We have

Yo = %(QU:; + 2uouy — 4U2U4 + 4U2y4)7

Ys = %(3@* - 2u§u4 - ui + 4u4'z)§ — 8uavavg + 4@2 + 4u§y4 — duyyy).

The action of the generators Lg, Lo, Ly, and L}, L3 of the free left Clug, ug, vo, v4, y4]-module
is as follows:

Yq U2 Uy
Lo | 4y, 2uy m
LQ 6y6 —U% — Uyg — 2y4 —4UQU4
Ly | 8ys | 2(ud 4 Busug + dusys — 6ys) | ua(3u3 + ug + 4ya)
ol 0 209 4u,
51 0 UgVy — Uy —2(ugvy — Ugvy)
V2 Uy
LO 2/(}2 4/04
L2 —21}4 —2<U4U2 + U2U4>
L4 %(_U%UQ + Uy Uy + 4u2v4) ZUQU4U2 + U%U4 + uyvy + 2U4y4
L; 2Uq 3ul + uy + 2y4
L5 | 2(—ud —us + 203 — 2y,) u3 — Uty + Ys

The commutation relations are

(Lo, Ls] = Y6 Lo — yaLo — (usvy + ugva) Lf + 204.L5,
[£5, Lo] = —2us LG,

(L5, La) = (3us + ug + 2y4) L5 — 2us L3,

(L5, Lo = 3(us — u3 + 2y4) L5,

(L5, Ly4] = %(2@ — 2uguy + 3yg) Ly — %(u% — uy)L5.

Proof: Case N = 5 We have

ys = %(—571‘21 — 10ujuy — uf + 160505 — 12u5ys — 4ugys + 16usye),
Y10 = %(—21,6; —+ 2u2ui — 4U4'U32) + 8UQ'U3U5

- 4”? - 4“3% + 4ugugyy + 4u%y6 — duqys).
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The action of the generators Lo, La, L4, Lg, and L}, £} of the free left Clug, uy, vs, vs, Ya, Y|~
module is as follows:

Yq Ys
Lo | 4y, 6Ys
Ly | 6ys —5(3y% — 10ys)
Ly | 8ys | —2(4yays — 25y10)
Le | 10y10 —%y4ys
il oo 0
Lol oo 0
U2 Uy
LO 2u2 4U4
Ly %(_5713 — buy — 8yy) —4usty
L, %0(51@ + 15uguy + 20usys — 24vys) ug(3u3 + ug + dyy)
Lo | 55(—5uj — 30udug — 5ui — 20u3ys | —2ua(ul + uoug + 2usys — 2ye)
—2OU4y4 + 4OU2y6 - 64y8)
Ly 2v3 4vs
£§ UoV3 — Vs —2(U4U3 — UQ’U5)
U3
Ly 3v3
Lo %(—Ug’l}g — bvs)
L4 i(10U2U5 - (u% - 3’04 - 4y4)03)
Lo | 3(3ujvg — Tusugvs — 15u3vs — bugvs + 4ugvsys — 120514)
L3 2 (5u3 + ug + 2y4)
L3 5 (—2unuy + 205 — 2uys + 2y5)
Us
Ly Sus
L, —2(ugv3 + ugvs)
L4 %(10’&21@1’03 —f- 5U%U5 + 5U4U5 —I— 121)5y4)
Le | 3(—15u3usvs — bujvs — 5uivs — 15usuqvs — 12uqv3ys — 12usvs5y4 + 160s5y6)
L %(51@ + buguy + Gusyy — 4ye)
L3 1 (5u3 — uf — 4vvs + 6udys — 2ugys — dusye)

The commutation relations are

L5, Lo) = 55(—5uj + 5uy + 16y4) L,
L5, Ly) = —3(u5 — g + 4ya) L5 + 2 (5u3 — buguy + 8yg) L7,

= — & (T5uy — 50ujus — 25u] + 60ujys — 60usys — 128ys) L} + 3us(uj — ws) L3,
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Theorem 10 There is an isomorphism of graded rings
@ Clug, us, v3,v5; Ya, ys| — Clw, 23, 245 24, 25, 26]

which determines an isomorphism of the polynomial Lie algebra described above (for N = 5)
and the polynomial Lie algebra constructed in [10] on the basis of the theory of two-dimensional
sigma-functions.

Proof: The isomorphism ¢ and its inverse are given by

Ug — To, To — U2,
v3 — %1‘3, T3 — 203,
2 2
Uy — 5 + 42y, Tq — DU + Uy + 24,
1 1 2
vs — 5(Tow3 + 225), 2y — 7 (ug — u3),
1 2
Ys — 5(—6x5 + 24 — 424), 25 — Us — U3,
1 3 2 2
Yo — —7(—8T2z4 + 81y — 2m472 + 235 + 226), 26 — 2(UgYs + gy — V3 — Ys).

A direct verification shows that this isomorphism determines the required isomorphism of poly-
nomial Lie algebras, which is the identity isomorohism at the generators Lg, Lo, Ly, Lg, LY,

and £9. This proves the theorem.
O

Consider the sigma-function o = o(u; y), u = (uq,us) (see [11]) associated with the curve
{(X,)Y)eC?:Y? = X° + 4 X? — ys X? + ys X — y10}- (51)
In the notation of [10] the functions

oiti

i 9y,
Oui Ousy

£i,35 = @i,3j(u; y)=— Ino,

which are Abelian in u, are defined. According to [10], the polynomial Lie algebra over
C[$2>$3,9€4;Z4:
25, 2z6) specified in Theorem 10 has a realization in terms of vector fields on the univer-

sal bundle of the Jacobians of curves of the form (51). In this realization z,410 = Q4420 and
Zgta = Pgi13 for ¢ =0,1,2, L = 0/0uy, and L3 = 9/0us.

Acknowledgements

We are grateful to S. O. Gorchinskii, V. M. Rubtsov, V. V. Sokolov, A. V. Tsiganov, and
F. F. Voronov for useful discussions of the results of our work.

References

[1] I. G. Macdonald. Simmetric Functions and Hall Polynomials.Second ed. Oxford Math.
Monographs. Oxford University Press, 1995.

[2] V. C. Kac. Infinite dimensional Lie algebras. Third ed. addr Cambridge, 1995.

23



[3] Ph. J. Higgins and K. Mackenzie. Algebraic constructions in the category of the Lie
algebroids. J. Algebra, 129:194-230, 1990.

[4] P. W. Michor. Topics in Differential Geometry, volume 93 of Graduate Studies in Math.
Amer. Math. Soc., Providence, RI, 2008.

[5] V. I Arnold. Singularities of Caustics and Wave Fronts, volume 62 of Mathematics and
its Applications. Kluwer Academic Publishers Group, 1990.

[6] V. M. Buchstaber and D. V. Leykin. Polynomial Lie algebras. Functional Anal. Appl.,
36(4):267-280, 2002.

[7] K. Mackenzie. The General Theory of Lie Groupoids and Lie Algebroids. Cambridge
University Press, 2005.

[8] V. I. Arnold. Wave front evolution and equivariant Morse lemma. Comm. Pure Appl.
Math., 29(6):557-582 [correction 30:6 (1977), 823], 1976.

[9] B. Enriquez and V. Rubtsov. Commuting families in skew fields and quantization of
Beauville’s fibration. Duke Math. J., 119(2):197-219, 2003.

[10] V. M. Buchstaber. Polynomial dynamical systems and the Korteweg—de Vries equation.
Proc. Steklov Inst. Math., 294:176-200, 2016.

[11] V. M. Buchstaber, V. Z. Enolskii, and D. V. Leikin. Hyperelliptic Kleinian functions
and applications. In Solitons, Geometry and Topology: On the Crossroad, volume 179 of
Amer.Math. Soc. Trans., Ser. 2, pages 1-33. Amer. Math. Soc., Providence, RI, 1997.

24



