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One Sentence Summary:  We identify genomic regions that have evolved under selection, and that 18 

explain variation in bill length and fitness in great tits. 19 

 20 

Abstract: We use extensive data from a long-term study of great tits (Parus major) in the UK and 21 

Netherlands to better understand how genetic signatures of selection translate into variation in fitness 22 

and phenotypes. We found that genomic regions under differential selection contained candidate genes 23 

for bill morphology, and used genetic architecture analyses to confirm that these genes, especially the 24 

collagen gene COL4A5, explained variation in bill length. COL4A5 variation was associated with 25 

reproductive success which, combined with spatiotemporal patterns of bill length, suggested ongoing 26 

selection for longer bills in the UK. Finally, bill length and COL4A5 variation were associated with usage 27 

of feeders, suggesting that longer bills may have evolved in the UK as a response to supplementary 28 

feeding.  29 



Main Text: 30 

To demonstrate evolutionary adaptation in wild populations we must identify phenotypes under 31 

selection, understand the genetic basis of those phenotypes along with effects on fitness, and identify 32 

potential drivers of selection. The best-known demonstrations of genes underlying evolution by natural 33 

selection usually involve strong selection (‘hard sweeps’) on genetic variants, that may be recently 34 

derived, with a major effect on variation in preselected phenotypes (1–3). However, most quantitative 35 

phenotypes are polygenic (4) and for these traits selection is likely to act on many pre-existing genetic 36 

variants of small effect (5). Detecting so-called polygenic selection is challenging because selection acts 37 

on multiple loci simultaneously and selection coefficients are likely to be small (6). Most attempts to 38 

detect polygenic selection have focused on gene sets, rather than individual loci (e.g  (7)). Furthermore, 39 

even if population genomics analyses identify genes under selection, these analyses are rarely combined 40 

with detailed ecological and behavioral data (8–10), and as a result linking all three components of the 41 

genotype-phenotype-fitness continuum remains a challenge. In this study we combine fine-scale 42 

ecological and genomic data to study adaptive evolution in the great tit (Parus major), a widespread and 43 

abundant passerine bird and well-known ecological model system (11) with excellent genomic resources 44 

(12). To do so, we analyzed genomic variation within and among three long-term study populations from 45 

the UK (Wytham, n = 949) and the Netherlands (Oosterhout, n = 254 and Veluwe, n = 1812; Fig. 1A). 46 

 47 

 After filtering (see methods), our dataset comprised 2322 great tits typed at 485,122 SNPs. Levels of 48 

genetic diversity were high and linkage disequilibrium (LD) decayed rapidly within all three sample sites 49 

(fig. S1). Admixture and principal component analyses (PCA) both suggest that genetic structure is low 50 

(Fig. 1, B and C). These findings demonstrate a large effective population size and confirm high levels 51 

of gene flow in the species (12, 13), making the long-term study populations well suited to studying 52 

evolutionary adaptation. 53 

 54 



To identify loci under divergent selection between the UK and Dutch populations, we ran a genome-55 

wide association study using the first eigenvector from the PCA as a ‘phenotype’ (EigenGWAS (14)). 56 

We identified highly significant outlier regions of the genome likely to be under divergent selection (fig. 57 

2A, S2), which were supported by FST analyses (fig. S3). The majority of these outlier regions contained 58 

candidate genes (e.g. COL4A5, SIX2, TRPS1, NELL1) involved in skeletal development and 59 

morphogenesis (Fig. 2, A to C, table S1 and external database S1). Genes associated with the ontology 60 

term “palate development” (GO:0060021; genes ALX4, BMPR1A, SATB2, INHBA, GLI3) were more 61 

significantly overrepresented than any other GO term (Fig. 2C; Bonferroni-corrected p = 2.9 x 10-5; 62 

external database S1). The strongest single-marker signal was found at the LRRIQ1 gene (table S1, 63 

external database S1), where there was evidence of selection in Wytham, but not Veluwe (fig. S4). 64 

LRRIQ1 is one of four genes located in the 240kb region associated with beak shape in Darwin’s finches 65 

– arguably the best-known example of a trait undergoing adaptive evolution in the wild (15). Another 66 

EigenGWAS peak contained VPS13B, a gene also associated with bill morphology in the Darwin’s finch 67 

study, and with facial dysmorphism in humans (16).  68 

 69 

Our genetic analyses therefore suggested bill morphology as a key trait involved in differentiation 70 

between UK and Dutch great tit populations. Previously UK great tit populations have been characterized 71 

as a different subspecies (P. major newtoni) compared to the rest of mainland Europe based on bill length, 72 

but this classification is disputed (17) and it is unknown whether any bill length differences are adaptive 73 

in this species. We examined the genetic architecture of bill length in the UK population, using two 74 

complementary approaches. First, we fitted all SNPs simultaneously in a mixture model analysis (18), 75 

and estimated that 3009 (95% credible interval 512-7163), or 0.8%, of the SNPs contributed to bill length 76 

variation, suggesting that bill length is highly polygenic. Collectively these SNPs explained ~31% of the 77 

phenotypic variation. The proportion of variance in bill length explained by each chromosome scaled 78 

with its size, which is also consistent with a polygenic architecture (4) (fig. S5). Second, and consistent 79 



with the mixture model analysis, we found multiple nominally significant SNPs in a GWAS on bill length 80 

in Wytham, but even the most significant (p = 1.6 x 10-6) was not genome-wide significant after 81 

accounting for multiple testing, perhaps as a consequence of small effect size and  modest sample size. 82 

Nonetheless, the SNPs were associated with bill length variation independently of overall body size 83 

(Table S2). Using a sliding window approach, we found that the most significant GWAS regions largely 84 

overlapped with the most significant regions in the EigenGWAS and FST analyses (Fig. 2, A and B, fig. 85 

S3), suggesting that genes involved in bill length have been under divergent selection between 86 

populations. We extracted SNPs from the most significant EigenGWAS peaks, calculated the summed 87 

effect of those SNPs on bill length, and compared this against a null distribution generated by randomly 88 

resampling the same number of SNPs and regions from across the genome. The regions under selection 89 

explained a small amount of variation (0.54%) in bill length in the UK population, but this is more than 90 

expected by chance (p = 0.004; fig. S6). Moreover, genomic prediction analysis using just the SNPs from 91 

the EigenGWAS peaks showed that UK birds had breeding values for longer bills than birds from the 92 

Netherlands (fig. S7), confirming that inter-population differences in bill length is at least partially 93 

attributable to the loci that have been under recent selection.  94 

 95 

The three genomic regions most notably associated with bill length variation and under likely divergent 96 

selection (Fig. 2, A and B) all contained genes with annotations that make them candidates for 97 

involvement in bill length. SOX6 is a transcription factor, and PTHrP a member of the parathyroid 98 

hormone family; both are essential for bone development (19, 20). COL4A5 is a type IV collagen gene 99 

best known for its association with Alport’s syndrome in humans (21), that has also been identified as a 100 

candidate for craniofacial disorders (22). The ~400kb region of chromosome 4A containing the COL4A5 101 

gene was the region most notably associated with bill length (4 of the 24 most significant SNPs in the 102 

GWAS were in COL4A5; Table S2), and belongs to the top three regions under strongest divergent 103 

selection between birds from the UK and Netherlands (Fig. 2, A and B).  A closer inspection of the 104 



individual SNPs within SOX6 and PTHrP reveals numerous SNPs that are nominally significantly 105 

associated with bill length, but none as strongly as the COL4A5 SNPs; thus we focus on the COL4A5 106 

locus hereafter. Patterns of genetic variation at COL4A5 reveal a clear signature of recent selection for 107 

longer bills in the UK. First, the allele at the SNP that is most significantly associated with increased bill 108 

length (hereafter ‘COL4A5-C’; Fig. 3D), is at higher frequency in the UK (0.54, bootstrap 95% 109 

confidence intervals = 0.52-0.56) compared to the two Dutch populations (Veluwe: 0.28, CI = 0.27-0.29; 110 

Oosterhout: 0.26, CI = 0.23-0.29). Second, extended haplotype homozygosity tests confirm that the 111 

haplotype carrying the COL4A5-C allele extends further than alternative haplotypes within Wytham (Fig. 112 

3, A to C). The COL4A5-C haplotype is longer and more abundant in Wytham compared to Veluwe, and 113 

LD at this locus is much higher in Wytham, suggesting selection is UK-specific (fig. S8). Third, SNP 114 

data from 15 European populations, including 3 UK populations, shows that the COL4A5-C allele is at 115 

a higher frequency across the UK than across Europe (LGS et al. In Prep), consistent with selection on 116 

this gene in the UK. 117 

 118 

To further elucidate how natural selection has shaped variation in bill length across the two populations, 119 

we tested how variation at the COL4A5 locus was related to annual reproductive success. We found 120 

differences in the relationship between COL4A5 genotype and the number of chicks fledged between the 121 

two populations (zero-inflated Poisson GLMM, interaction between genotype and population: n = 3076 122 

breeding attempts from 1790 birds, estimate = -0.40  0.17, p = 0.016, Fig. 3E). The interaction was 123 

significant because the associations between genotype and bill length in the two populations were in 124 

opposite directions; in the UK, the number of copies of the ‘long-billed’ COL4A5-C allele was positively 125 

associated with fledgling production (n = 868 breeding attempts from 516 birds, estimate = 0.23  0.11, 126 

p = 0.046, Fig. 3E; fig. S9), whereas in the Dutch birds COL4A5-C was negatively, but not significantly, 127 

associated with fewer fledglings (n = 2208 breeding attempts from 1274 birds, estimate = -0.16  0.10, 128 



p = 0.093). The relationship between fledgling production and COL4A5 genotype did not arise because 129 

long-billed genotype birds were more likely to produce offspring (binomial GLMM: n = 3076 breeding 130 

attempts from 1790 birds, estimate = -0.20  0.17, p = 0.91); rather, when we only considered 131 

“successful” breeding attempts in which at least one fledgling was produced, long-billed genotype birds 132 

produced more fledglings (Poisson GLMM: n = 2690 breeding attempts from 1612 birds, estimate = 133 

0.058  0.024, p = 0.018).  Thus, we suggest that the COL4A5 allele associated with longer bills confers 134 

a fitness advantage in the UK population. 135 

 136 

To better understand the evolutionary consequences of selection for longer bills in the UK population, 137 

we examined spatiotemporal variation in bill length. In museum samples from the UK and mainland 138 

Europe, the UK individuals had considerably longer bills (n = 291, estimate = 0.40  0.06 mm, p = 5.2 139 

x 10-12, R2 = 0.16, Fig. 4A), in accordance with a previous study (17). Using a 26-year dataset from live 140 

birds in Wytham, we found that bill length has increased significantly over recent years (1982-2007; n = 141 

2489, estimate = 0.004  0.001 mm per year, p = 0.0038, R2 of year effect = 0.004, Fig. 4B, table S3; 142 

with tarsus length fitted as a covariate, the significant temporal increase in bill length remained 143 

significant - n = 2485, estimate = 0.005  0.001 mm per year, p = 0.0001, R2 of year effect = 0.003). This 144 

effect, though weak in terms of the variance explained, is not due to stochastic variation among years 145 

(randomization test, P = 0.02, Supplementary Materials), and is equivalent to an evolutionary rate of 146 

change of 0.0154 Haldanes; in a large review of phenotypic change in wild animal populations this rate 147 

was exceeded in just 641 of 2420 estimates (23). 148 

 149 

Selection on bill-length has been documented multiple times in birds, and is typically associated with 150 

variation in food availability (24). No differences in the natural diet of great tits between the UK and 151 

mainland Europe are known. In contrast, bird feeding by the public has been widespread in the UK since 152 



the 19th Century; it is estimated it occurs in over 50% of gardens (25) and that the UK’s expenditure on 153 

bird seed is twice that spent in the whole of mainland Europe (26). Great tits are particularly good at 154 

exploiting bird feeders (27), and therefore we investigated whether supplementary feeding could have 155 

been a driver of selection on bill length in UK great tits, similar to that proposed in UK blackcap (Sylvia 156 

atricapilla) populations (28). Radio Frequency Identification (RFID) bird feeders throughout Wytham 157 

recorded RFID-tagged great tit utilization of supplementary food over the course of three winters (29). 158 

We found that COL4A5-C homozygotes displayed a higher propensity to use the feeders compared to 159 

heterozygotes or short-billed homozygotes (n = 444, estimate = -0.17  0.08, p = 0.03, Fig. 3F). There 160 

was some variation in the extent of this effect across winter seasons (Fig. S10), and the strength and 161 

consistency of this effect, along with the mechanisms behind it, requires further investigation. 162 

Encouragingly, however, a follow-up analysis using a more recent dataset gathered from high-resolution 163 

RFID feeders (but on un-genotyped birds) showed a positive relationship between feeding propensity 164 

and bill length (n = 1806 observations of 183 birds, estimate = 0.15  0.05, p = 0.004, Fig. S11). 165 

 166 

Together, our results provide a detailed example of natural selection in a wild animal. Starting with a 167 

bottom-up analysis of genomic data, and no-preselected phenotypes, we have demonstrated polygenic 168 

adaptation by providing associations between loci that have responded to selection, fitness variation, 169 

phenotypic variation, microevolutionary change and a possible driver of selection. Combining large-170 

scale genomic and ecological data in natural populations will significantly enhance our understanding of 171 

both the mechanistic basis and evolutionary consequences of natural selection.  172 
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 286 
Fig. 1. Population structure of Western European great tits. (A) Worldwide distribution of P. major 287 

and sampling locations in Wytham (Ÿ) Oosterhout (Ŷ) and Veluwe (Ɣ). (B) Principal component 288 

analysis of genotype data. (C) ADMIXTURE plot with K=3, which is both the most likely number of 289 

clusters and the number of geographically distinct sampling sites. Levels of genetic structure are low 290 

(FST Veluwe-Wytham = 0.006, and FST Veluwe-Oosterhout = 0.003). 291 

 292 

Fig. 2. Differentiation and regions under selection across two great tit populations. (A) Upper panel: 293 

EigenGWAS on PC1 across all autosomes, averaged over 200kb sliding windows. Genes surrounding or 294 

covering peaks are indicated. Gene names highlighted in bold green belong to the most significant GO-295 

term 'palate development'. Lower panel: GWAS for bill length in the UK population, averaged over 296 

200kb sliding windows. Color-highlighted regions indicate peaks found in both the GWAS and 297 

EigenGWAS analyses. (B) EigenGWAS p-values in relation to bill length GWAS p-values averaged 298 

over 200kb windows. Color-highlighted points correspond with the highlighted regions in (A). (C) Gene 299 

Ontology network of genes in or surrounding the EigenGWAS peaks. Size of circles indicates 300 

significance and line thickness indicates proportion of shared genes.  301 

 302 



Fig. 3. COL4A5 locus on chromosome 4A. (A) 2Mb zoom of EigenGWAS (green triangles) and GWAS 303 

(black circles) p-values at the COL4A5 region (highlighted blue in Fig. 2A). Red horizontal bars indicate 304 

gene locations (B and C) Bifurcation diagram for haplotypes in Wytham, starting from the two alleles at 305 

the most significant GWAS SNP. Note the extended haplotype at the COL4A5-C-allele in (C), relative 306 

to the shorter haplotypes at the COL4A5-T allele in (B), consistent with a recent selective sweep around 307 

the COL4A5-C allele in the UK. (D) Bill length and COL4A5 genotype; the C allele is associated with 308 

longer bills (R2 = 0.035). (E) The COL4A5-C allele is associated with greater annual fledgling production 309 

in the UK population (R2 = 0.015). (F) COL4A5-C allele birds display greater winter feeding site activity 310 

– the y axis is log10 transformed cumulative activity records (R2 = 0.01). Lines and shaded areas in d-f 311 

are fitted values and 95% confidence limits from general(ized) linear models (full data are plotted in Figs 312 

S8 and S9). 313 

 314 

Fig. 4. Spatiotemporal variation in bill length. (A) Bill lengths of museum samples from the UK and 315 

mainland Europe.(B) Temporal variation in bill length in the Wytham population plotting annual 316 

means with standard error from 1982-2007. Line and (narrow) shaded area in b are fitted values and 317 

95% confidence limits from a linear regression (R2 = 0.004); note different scales on axes in A and B. 318 



 
 

1 
 

 
 

 
 

Supplementary Materials for 
 
Recent natural selection causes adaptive evolution of an avian polygenic 

trait 
 Mirte Bosse, Lewis G. Spurgin, Veronika N. Laine, Ella F. Cole, Josh A. Firth, Phillip 

Gienapp, Andrew G. Gosler, Keith McMahon, Jocelyn Poissant, Irene Verhagen, Martien 
A. M. Groenen,  Kees van Oers, Ben C. Sheldon, Marcel E. Visser, Jon Slate 

 
correspondence to:  j.slate@sheffield.ac.uk 

 
 
This PDF file includes: 
 

Materials and Methods 
Supplementary Text 
Figs. S1 to S11 
Tables S1 to S3 
Caption for database S1 

 
Other Supplementary Materials for this manuscript includes the following:  
 

Database S1 as zipped archives:  Markers used and results from gene ontology 
analyses 
 
 
 

  



 
 

2 
 

Materials and Methods 
 
Sampling 
Sample sites: Samples were collected from three distinct forest areas in Western Europe 
(Fig. 1A): Wytham (UK); Oosterhout (Netherlands) and Veluwe (Netherlands). All three 
sample locations are long-term study sites for great tit research. 
  
Sampling: Blood was collected from a total of 949 specimens in Wytham, 254 in 
Oosterhout and 2058 in Veluwe. Blood samples were stored in either 1 ml Cell Lysis 
Solution (Gentra Puregene Kit, Qiagen, USA) or Queen’s buffer. DNA was extracted from 
these samples by using the FavorPrep 96-Well Genomic DNA Extraction Kit (Favorgen 
Biotech corp.). DNA quality and DNA concentration were measured on a Nanodrop 2000 
(Thermo Scientific).  
 
 
Genotyping and filtering 
Great tits were genotyped using a custom made Affymetrix® great tit 650K SNP chip at 
Edinburgh Genomics (Edinburgh, United Kingdom).  
 
Netherlands birds: A total of 2066 female great tits were genotyped and passed quality 
control. SNP calling was done following the Affymetrix® best practices steps in Axiom® 
Genotyping Solution Data Analysis Guide by using the Affymetrix® Genotyping console 
4.2.0.26. Eight individuals with dish quality control value of <0.82 were discarded. SNP 
quality control was done by using Affymetrix Power Tools software package 1.16.1 and 
the functions Ps_Metrics and Ps_Classification. The recommended SNP group consisted 
of 505,604 SNPs while 105 366 SNPs were discarded because their call rate was below the 
threshold (<0.97), because they were “off-target” variants or because they belonged to the 
“other” group of suboptimal SNPs. In addition to the SNPs that did not pass the Ps_Metrics 
and Ps_Classification steps, an additional 388 SNPs were removed because they were 
duplicates or the genomic position was missing. Altogether 505,216 SNPs passed initial 
quality control. 
 
UK birds: SNP calling was performed using the Affymetrix Axiom Analysis Suite 
1.1.0.616, the successor of the Genotyping Console described above. The same quality 
control thresholds were used as for the Netherlands birds; samples with dish QC < 0.82 or 
call rates <0.95 were discarded, as were SNPs with call rates <0.97. A total of 1,846 
samples typed at 498,036 SNPs were retained for analysis. 996 of the samples, which 
included replicates for error checking, were from Wytham Woods – the remainder were 
from other populations that are not the focus of this study. Replicated error samples 
suggested a per SNP genotyping error rate of 0.004 (among samples with call rates >0.98, 
the error rate was 0.002). 
 
After this initial filtering, the two datasets were merged. Only SNPs that passed filtering 
steps in both populations were selected for further analysis. This final step resulted in 
485,122 SNPs that passed our quality control steps in both populations. 
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Genetic diversity analyses 
Pairwise relatedness between individuals and linkage disequilibrium for all SNP pairs up 
to 200kb apart within populations were calculated per population in PLINK v1.90b3x (30). 
Based on a visual inspection of the distribution of relatedness values, we removed 
individuals from pairs with relatedness > 0.4 for all further analyses, leaving us with 2322 
birds from the three sample sites. Pairwise FST between the three populations was 
calculated in PLINK. The filtered dataset was LD-pruned in PLINK (Variance Inflation 
Factor>2) which resulted in 375,846 SNPs. Principal component analysis was performed 
on the filtered and pruned dataset using the GCTA package (31). A small percentage of 
birds from all three populations displayed atypical clustering based on SNPs on 
chromosome 1A, possibly representing a large inversion (data not shown). Therefore, 
chromosome 1A, as well as chromosome Z and the small linkage groups were excluded 
from PCA analysis. Admixture analysis was performed on the filtered and pruned data 
using the software package ADMIXTURE v1.23 (32) with K ranging from 2 to 5.   
 
 
Selection analyses 
The populations were screened for between-population signatures of selection with two 
distinct measures. The EigenGWAS package (14) was used to apply a GWAS framework 
to the first two eigenvectors of the principal component analysis. The main rationale for 

using EigenGWAS over an FST outlier locus test, is that it is more flexible. There is no 

need to predefine populations (although clearly we can do so here), and the analysis 

accounts for population stratification (e.g. due to the presence of relatives). The 

EigenGWAS is quick and easy to implement, and the results are conceptually comparable 

to a standard GWAS (i.e. where markers are used to identify genomic regions that explain 

phenotypic variation). Chromosome 1A was excluded from the PCA but included in the 
EigenGWAS, due to the potential inversion (see above). As a comparison to the 
EigenGWAS test, we also calculated single-marker pairwise FST using PLINK, with 
predefined clusters according to sampling sites. FST and EigenGWAS results were almost 
identical (fig. S2) We used Pearson's product-moment correlation in R(33) to test for 
correlation between the EigenGWAS corrected p-value and FST between Veluwe and 
Wytham. 
 
We screened the populations for more recent selective sweeps at the COL4A5 locus with 
an extended haplotype homozygosity (EHH) test (34). First, the full dataset was phased 
with Shapeit v2 (35) with inclusion of pedigree information. After filtering for related 
individuals (IBD > 0.4), EHH was generated for each SNP in both populations, identifying 
long and frequent haplotypes as implemented in the R package rehh (36). We screened for 
population-specific extended haplotypes with Rsb, a statistic that compares EHH between 
populations to detect between-population selection (37). At the most significant GWAS 
marker at the COL4A5 locus the p-value was generated from the normal cumulative 
density function for genome-wide Rsb values. Starting from the core marker with highest 
GWAS p-value, a bifurcation diagram was created for both alternative alleles using rehh. 
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Gene ontology analyses 
Regions under selection were tested for an overrepresentation of genes belonging to 
specific gene ontology terms. Candidate genes for all EigenGWAS peaks containing 
markers with p-value <10-9 were extracted if they were 1) overlapping the most significant 
marker; 2) surrounding the peaks if no overlapping gene was present. Since the peaks are 
relatively narrow, mostly only one or two genes overlapped the peaks (see Additional Data 
table S1). Candidate genes were extracted from the great tit reference annotation (NCBI 
Parus major Annotation Release 100).  
 
Functional relatedness of Gene Ontology (GO) terms was performed using the Cytoscape 
plugin ClueGO 2.2.4 (38). ClueGO constructs and compares networks of functionally 
related GO terms with kappa statistics. A two-sided hypergeometric test 
(enrichment/depletion) was applied with GO term fusion, network specificity was set to 
‘medium’ and false discovery correction was carried out using the Bonferroni step down 
method. We used both human (8.3.2016) and chicken gene ontologies (9.3.2016) for 
comparison. With human gene ontologies we detected 16 functional groups of GO terms 
(Supplementary Data). These groups were mainly involved in functions concerning palate 
development, positive regulation of osteoblast differentiation and mesoderm formation. 
When using the chicken orthologues the results were comparable, but with more significant 
GO groups (26 groups) and with higher P values (Supplementary Data). This is because 
the chicken genes were not as well GO-annotated as the human genes. 
 
 
Genetic architecture of bill length 
To understand the genetic architecture of bill length we used two fundamentally different 
approaches. First, a genome-wide association study (GWAS) was performed to test for 
associations between SNP genotypes and the focal trait, fitting one SNP at a time. 
However, a GWAS on a dataset of this magnitude is unlikely to detect genome-wide 
significant loci, unless there are major effect loci affecting the trait. Second, to further 
understand the architecture of bill length we ran analyses that fitted all SNPs in one model; 
hereafter we call this the ‘BayesR’ analysis after the method (39) and software (18) used 
to perform the analysis. BayesR can simultaneously estimate effect sizes of individual 
SNPs, making it possible to estimate a trait’s heritability, partition variation across the 
genome, and perform genomic prediction. There were several rationales for performing 
this analysis. First, we could investigate whether bill length is a polygenic trait. Second, 
we could estimate the effects of all SNPs on bill length in one model, and then use these 
estimated effects to ask whether regions under selection disproportionately contribute to 
bill length variation. Third, we could perform genomic prediction to test the extent to which 
the differences in bill length between the UK and Netherlands populations are caused by 
the SNPs under selection. 
 
 
 GWAS analysis 
A GWAS was conducted on bill length in using a dataset of 150 measurements from 89 
Wytham birds, using the GenABEL package (40). Due to repeated measures, a mixed 
effects model was first fitted to extract individual random effects for bill length. Random 
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effects in the model included individual identity, year of birth and age category (used to 
distinguish recent fledglings, adult birds of different ages and birds of unknown age). Sex 
was fitted as a fixed effect. The GenABEL functions polygenic and grammar were used to 
run a GWAS that uses genomewide realized relatedness to control for population structure 
caused by the presence of related individuals (41). To test whether the effect was caused 
by correlated traits, we ran the same analysis on bill length with bill depth and tarsus 
lengths for the same birds included as covariates in the model.  
 
 
BayesR analysis 
The BayesR analysis was performed using default parameters - SNP effects were assumed 
to be drawn from a mixture of 4 normal distributions, with SNPs having a variance of 0, 
0.0001, 0.001 or 0.01 of the genetic variation. MCMC chains were run for 50,000 samples, 
with a 20,000 sample burn-in, followed by every 10th sample being used. This gave a total 
of 3000 used samples. For each sample the number of SNPs in the non-zero effect size 
distributions were counted. The mean and 95% confidence intervals for the number of 
SNPs contributing to trait variance was determined from the 3000 samples. SNP effect 
sizes (ß) were reported in terms of the phenotypic change caused by an allelic substitution 
from one allele to another. The proportion of trait variation explained by each SNP was 
then estimated as VSNP = 2 * ß2 * p * (1-p) where p is the frequency of the minor allele. 
BayesR also returns an estimate of trait heritability and the number of typed SNPs that 
contribute to trait variation (or, more likely, tag causal variants because they are in LD with 
them). 
 
If a trait is polygenic, then the proportion of variance explained by each chromosome 
should scale with chromosome size (4). We tested this by estimating the proportion of 
variance explained by each chromosome. This was done by summing, across 
chromosomes, the effect sizes of all SNPs from the non-zero distributions, and estimating 
the proportion of additive genetic variance explained by each chromosome. The process 
was performed for each of the 3000 samples, from the MCMC chain. 
 
 
Do SNPs under selection explain bill length variation? 
The GO term analysis suggested that the EigenGWAS SNPs under selection (‘candidate 
SNPs’) should affect craniofacial traits, and in particular bill length. To test for an overlap 
between the most significant EigenGWAS regions and peaks in the GWAS on bill length, 
we used a sliding window approach, averaging the signal from all markers within 200kb 
windows sliding in steps of 50kb along the genome. The rationale for this is that due to low 
LD between sites, allele frequency differences and SNPs imperfectly tagging sites under 
selection, single markers in a significant region do not necessarily result in a high signal 
for both EigenGWAS and GWAS statistics, even when the underlying region is the same. 
Sliding window based approaches are therefore more powerful for identifying regions that 
overlap between the EigenGWAS and GWAS. 
 
We also tested whether regions under selection (i.e. those with low EigenGWAS p-values) 
disproportionately contributed to bill length variation using a randomization test on the 
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BayesR estimates of SNP effect sizes. We first defined which SNPs were included in the 
EigenGWAS peaks. For all eigenGWAS peaks (peaks where P <10-9), the core SNPs with 
the lowest EigenGWAS p-values were extracted (17 regions in total, see Table S1). Starting 
from these core SNPs, flanking markers were included until 10 consecutive markers did 
not include 1 marker with an EigenGWAS signal within the top 1% of most significant 
EigenGWAS p-values. This way, 16 genomic candidate regions were extracted with a total 
number of 1530 SNPs. The randomization test sampled the same number of SNPs, in the 
same number of regions, at randomly chosen positions in the genome, and then summed 
the effects of those SNPs on bill length variation. By sampling the genome 1000 times, we 
were able to generate a null distribution for the amount of bill length variation explained 
by 1530 SNPs. We tested our observed data from the eigenGWAS candidates against this 
null distribution.  
 
 
Genomic prediction 
We predicted that the SNPs that were under selection in the eigenGWAS analysis would 
cause the UK birds to have longer bills than NL birds. Genomic prediction uses estimates 
of SNP effects in one population (a ‘training’ population), to then predict genomic 
estimated breeding values (GEBVs) in a second population that has been genotyped at the 
same SNPs (the ‘test’ population). Note that the phenotypes in the ‘test’ population are not 
used to estimate breeding values in that population. Therefore, inter-population differences 
in GEBVs should be attributable to genetic differences between the two populations. 
Genomic prediction analyses were performed using the –predict command in BayesR. The 
test was done reciprocally, using the eigenGWAS candidate SNP. First, SNP effects were 
estimated in 87 UK birds and used to predict genomic estimated breeding values  (GEBVs) 
in 194 genotyped Netherlands birds (fig. S6). Next, the SNP effects were estimated from 
the 194 Netherlands birds and these estimates were used to predict GEBVs in the 87 UK 
birds. The sample sizes are small, making it hard to reliably predict variation in breeding 
values within a population, but because inter-population variation is typically greater than 
intra-population variation, the analysis should be capable of detecting population 
differences. Comparisons between the GEBVs of each population were performed by two 
sample t-tests with Welch’s correction for unequal variances.  
 
 
Spatiotemporal trends in bill length 
We investigated spatiotemporal variation in bill length, using both 291 museum specimens 
from across Europe and temporal data available from Wytham. The museum specimens 
and Wytham data were each measured by a single measurer (KM and AGG, respectively), 
following a standardized methodology (42). Using the museum specimens, we tested for a 
difference in bill length between UK and mainland European samples using a general linear 
model, with bill length as the response variable, and population ID, year of collection, age 
and sex as explanatory variables. 
 
To test for temporal trends in the UK population, we used a large number of bill length 
measurements taken from live birds from the Wytham population between 1982 and 2007. 
The data presented in the main text were collected on 2489 birds measured in May or June 
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when aged 1 year old. A small number of birds were measured more than once, and for 
these individuals a mean measurement was taken. Sex and Year of Birth were fitted as 
main effects in a linear model. One bird had an exceptionally long bill, but was retained in 
the model. The results are robust to its exclusion. We confirmed that temporal changes in 
bill length were not due to trends in overall body size, by rerunning the models with tarsus 
length, an indicator of overall body size, fitted as a covariate. We measured the rate of 
change in bill length in Haldanes, using the framework described in Hendry et al (23). The 
difference in bill length between the start and end of the time series was divided by the 
product of the standard deviation of bill length and the number of generations that had 
elapsed during the time series. Thus, the rate of change is measured in standard deviations 
per generation. Bill length was natural log-transformed prior to estimation. Generation 
length was assumed to be 1.81 years, following Bouwhuis et al. (43). The difference in bill 
length between the UK and NL populations is approximately 1.27 standard deviations.  
 
A larger dataset contained 9980 records collected on 5145 birds. Modelling this data was 
more complex as birds were of different ages and measurements were taken at different 
times of year - bill length is known to vary seasonally (39). Therefore, a linear mixed effects 
model implemented in MCMCglmm (44) was fitted. Fixed effects were year of birth 
(mean-centered) and sex, while random effects included ID, month of measurement, age 
category at measurement, and whether or not the bird was an immigrant. 
 
To check that our observed change in bill length over time (see results) could not come 

about due to stochastic, yet highly significant, year-to-year variation, instead of a temporal 

trend, we performed a simple simulation. We randomly re-assigned cohort years, while 

keeping the same individuals “together” in cohorts. Using such an approach, we expect 
high levels of year-to-year variation, but this variation should be random with respect to 

variation over time. We generated 500 randomised datasets in this way, and performed a 

linear model of bill length against (randomised) birth year in each dataset. 

 
 
 
COL4A5 and reproductive success 
We tested how variation at COL4A5 was related to fitness in the UK using long-term data 
from the Wytham population. We used variation at the SNP identified as being most 
significantly associated with bill length using GWAS as numerical explanatory term (with 
individuals coded as having 0, 1 or 2 copies of COL4A5-T, the ‘short billed’ allele). We 
tested how variation at COL4A5 was related to reproductive success, using generalized 
linear mixed models implemented in the R package glmmADMB. We used a zero inflated 
Poisson model, with the number of fledglings produced in an individual year as a response. 
COL4A5 genotype, age and sex were fitted as explanatory terms and year and individual 
ID were fitted as random effects. We also ran separate GLMMs to test whether the effect 
of genotype on fledgling production was due to the production of fledglings versus no 
fledglings (binomial error structure, using all observations), or the number of offspring 
produced (Poisson error structure), when excluding observations where no offspring were 
produced. 
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Visits to supplementary feeding sites in Wytham 
We tested how variation at COL4A5 was related to the propensity for individuals to use 
supplementary food resources. Since 2007, all captured great tits have been fitted with 
Radio Frequency Identification (RFID) tags for studies of social behavior (29). These tags 
allow the automated recording of their visits to bird feeders fitted with RFID antennae and 
filled with sunflower seeds (hereafter ‘RFID feeders’). We used data over three winters 
(2007-2010), for which we had reasonable sample sizes of genotyped birds (N = 167 for 
2007-2008, 142 for 2008-2009 and 135 for 2009-2010).  
 
The RFID feeding locations comprised of a stratified grid of 67 locations throughout 
Wytham Woods, but whether or not an RFID feeder was present at each location at any 
given time depended on the temporal feeding regime. Through these winters, 16 of the 67 
locations contained RFID feeders at any one time. In winters beginning 2007 and 2008, 
RFID feeders were rotated every 4 days in a structured random design so that each of the 
eight similarly sized sections of Wytham contained two feeders. In 2009, rotations took 
place on a 7-day basis. In this way, each of the 67 grid locations contained an RFID feeder 
twice a month in the winters beginning in 2007 and 2008, and once a month (but for a 
longer period) in 2009. The RFID feeders utilized over these periods scanned for RFID 
tags 16 times per second, and observations showed that >99% of visits by RFID-tagged 
birds to the feeder were successfully recorded. During the winters 2007-2010, the RFID 
feeders automatically binned all records of the same bird into 15s time intervals i.e. for 
each minute, only one record of each bird would be stored in the time intervals of 0-14s, 
15-29s, 30-44s and 45-59s of that minute. More recently (2012 onwards), higher resolution 
RFID feeders have been deployed which store up to two records by each bird each second. 
This high resolution data has allowed fine-scale estimates of actual seed consumption to 
be determined (29).  However, upon binning the high resolution data into 15s time bins, 
we found that the raw number of records from this procedure correlates strongly with the 
actual estimated number of seeds consumed (r = 0.98). Therefore, bird feeder activity 
recorded in this way is likely to be an ecologically relevant measure of supplementary food 
usage. 
 
From the RFID feeder records, we then calculated three measures of individual activity on 
bird feeders for each of the winter seasons (2007-08, 2008-09, 2009-10) separately. First, 
we calculated the mean number of records each bird showed per day it was recorded. 
Second, we calculated the number of days each bird was recorded utilizing the feeders. 
Finally, we summed the total number of records for each bird over the winter season. We 
then ran GLMMs with a poisson error distribution, using each of these measures as the 
response variable. Genotype was modeled as a continuous variable (0 = CC, 1 = CT and 2 
= TT) to reduce the degrees of freedom. Sex, month (ordinal from start of winter, with a 
quadratic term fitted) and season were also included as fixed effects, individual ID was 
fitted as a random effect, and an observation-level random effect was fitted to the GLMMs 
to account for overdispersion. 
 
After the genotyping study period had been completed, we also collected data on un-
genotyped birds’ bill length from April 2016. This resulted in 384 beak measurements of 
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341 great tits, taken by the same individual (KM). This allowed us to directly test, using an 
entirely separate dataset, whether bill length was related to activity at bird feeders. In 
January-March of 2016 and 2017, as part of a wider study of great tit behaviour at Wytham 
(29), RFID- feeders in fixed locations (as described above) were open every weekend, 
scanning for RFID-tags from pre-dawn until post-dusk.  Although the data set provides less 
information on feeding and seed consumption over the entire winter (due to shorter time 
span and fewer days of recording), the modern RFID-feeders provide high-resolution data 
(two records per second rather than 15s bins) that allows fine-scale assessment of activity 
upon the feeders. Therefore, GLMMs with a poisson error distribution were fitted in 
exactly the same way as the feeder/genotype models above, but with fine-scale daily 
feeding activity as the response variable, and bill length replacing genotype as a covariate. 
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Supplementary Figures 

 

Fig. S1. Linkage disequilibrium (LD) decay in the three great tit populations. Distance 
between markers in base-pair is displayed along the x-axis and r2 between markers on the 
y-axis. Lines represent mean values between all pairs of markers in 100bp distance bins.  
LD drops rapidly in all populations along the first ~2000bp.  
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Fig. S2. Single marker (-log10) p-value for EigenGWAS on PC1 (green and blue dots, 
above) and GWAS on bill length (gray tones, below). Genomewide significance thresholds 
were generated by performing Bonferroni correction on the effective number of 
independent tests, estimated with the Genetic Type 1 Error Calculator (downloadable at 
http://grass.cgs.hku.hk/gec/). The EigenGWAS peak on Chromosome 1A is over the 
LRRIQ1 and ALX1 loci (see fig. S4). 
  

http://grass.cgs.hku.hk/gec/
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Fig. S3. FST and EigenGWAS analyses reveal identical patrterns of divergent selection, 
including at genes associated with bill length. A 200kb sliding window FST and B 200kb 
sliding window p values from a GWAS of bill length. Shaded regions correspond to the 
same shaded regions in figure 2 in the main text. C FST values and GWAS p values are 
correlated, with three shaded regions showing high levels of structure  and associations 
with bill length. D The reason the effects are identical is that FST and EigenGWAS (PC1) 
p-values are highly correlated (r = 0.98, P < 10-16). 
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Fig. S4. (A and B) Zoom of the LRRIQ1 and ALX1 region on Chromosome 1A. Black dots 
represent bill length GWAS (-log10) p-values (left y-axis) and bright green triangles 
represent EigenGWAS (-log10) p-values (right y-axis). (C) Rsb across the same region. 
Values higher than zero indicate selection for longer haplotypes at higher frequency in 
Wytham compared to Veluwe, while values below zero indicate selection in Veluwe. The 
region under selection in Wytham covers LRRIQ1 (blue lines) but not ALX1 (red lines). 
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Fig. S5. The proportion of additive genetic variance of bill length explained by a 
chromosome in relation to chromosome size. Estimates are obtained from 3000 samples of 
the MCMC chain. Mean values for each chromosome are overlaid onto the boxplots (red 
diamonds). Only the largest 6 chromosomes are labelled. In 85.2% of samples, 
chromosome length was significantly associated with the proportion of variance explained 
by the chromosome. The proportion of variance explained by chromosome size across the 
3000 samples had a mean = 0.40 (SE = 0.005), and increased with chromosome size. 
Therefore, the data are consistent with bill length being explained by a large number of 
loci, of small effect, spread approximately evenly across the genome.  



 
 

15 
 

 

 
 
Fig. S6. Randomization test for summed SNP effect on bill length.  Distribution of summed 
SNP effects across 1000 randomized datasets in Wytham. The arrow indicates the observed 
summed SNP effects, expressed as a proportion of additive genetic variance explained 
(~0.54%), for the EigenGWAS candidate SNPs. The p value (p = 0.004) represents the 
proportion of simulated datasets in which the summed SNP effects are larger than the 
observed value. Therefore, even though bill length is highly polygenic, we were able to 
detect an elevated contribution of our candidate regions under selection to bill length 
variation. 
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Fig. S7. Genomic estimated breeding values (GEBVs) for bill length. (A) GEBVs for 
Wytham using candidate SNP effect sizes, predicted from Veluwe as a training population. 
Wytham GEBVs are greater than Veluwe GEBVs  (t = 4.897, d.f. = 246.14, p = 1.8 x 10-

6) (B) GEBVs for Veluwe using candidate SNPs effect sizes, predicted from Wytham as a 
training population are shorter than Wytham GEBVs (t = 3.592, d.f. = 94.04, p = 0.0005). 
In both panels the training populations are zero-centered.  
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Fig. S8. Distribution of the Rsb statistic (A) and p-values (B) for all SNPs. Rsb values 
greater than zero represent selection for longer and more frequent haplotypes in Wytham, 
while negative values represent selection in Veluwe. Horizontal lines indicate the Rsb and 
p-value for the most significant GWAS marker at COL4A5, highlighting that the region 
surrounding this marker is under strong selection in Wytham.  
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Fig. S9. (A) Mean-centered bill length in relation to genotype in the UK and Dutch 
populations. (B) Number of fledglings per year in the UK population in relation to genotype 
at the most significant bill-length GWAS SNP at COL4A5. 
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Fig. S10. Activity at feeding stations and COL4A5 genotype. (A). Genotype and mean 
number of activity records per day for each bird across three seasons (n = 444, estimate = 
-0.37, p = 0.45). (B) Genotype and number of days the birds visited the feeding site across 
the season. CC birds visited the feeder more often than CT or TT birds (n = 444, estimate 
= -0.12, p = 0.03. (C). Genotype and total number of activity records for each bird over the 
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season. CC birds consume more seeds across the winter than CT or TT birds (n = 444, 
estimate = -0.16, p = 0.04) We found no evidence for an interaction between genotype and 
season for any of the three models (linear models with genotype x season interaction fitted, 
all p > 0.2). 
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Fig. S11. Activity at feeding stations (number of activity records per day; see methods) 
and bill length. For bill length, we used the measurement taken at the nearest capture to the 
day of the feeding record.  
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Table S1. List of most significant markers in EigenGWAS peaks. Regions included in the genomic prediction and BayesR analysis 
surrounding the top markers are indicated, and candidate genes for those regions are listed. Start and Stop refer to the locations of the 
entire EigenGWAS peaks, not gene locations. Numbers in brackets indicate total number of genes in the region. 
 

SNP CHR BP Freq Pgc Start Stop Candidate 

AX-100016177 1 77,696,913 0.216 7.45E-21 77,663,865 77,762,204 HEPHL1 

AX-100056392 2 52,689,192 0.132 2.08E-33 52,658,347 52,748,564 GLI3 

AX-100827868 2 129,918,616 0.209 4.88E-15 129,804,789 129,938,703 VPS13B 

AX-100550602 2 136,196,505 0.205 2.47E-19 136,026,079 136,211,161 TRPS1 

AX-100957595 3 25,770,657 0.252 5.91E-17 25,579,744 26,000,833 SRBD1/ SIX2/ SIX3 

AX-100923788 3 26,810,200 0.19 2.23E-22 26,722,719 28,252,952 SOCS5 (10) 

AX-100516656 3 29,160,891 0.368 1.84E-17 28,442,822 31,002,208 DAAM2 (39) 

AX-100959055 5 10,662,578 0.122 3.90E-36 10,449,814 11,190,618 SLC17A6/ ANO5/ 
LOC107206397/ NELL1 

AX-100690978 5 21,629,221 0.297 7.36E-19 21,567,485 21,675,638 ALX4 CD82 

AX-100474351 5 34,236,075 0.229 2.33E-18 34,222,212 34,237,466 LOC107205269/ 
LOC107205369 

AX-100471694 6 7,561,954 0.218 6.29E-23 6,927,592 8,874,881 LDB3/BMPR1A (19) 

AX-100402843 6 8,342,760 0.218 3.52E-23 6,927,592 8,874,881 CDHR1/NRG3 (19) 

AX-100289034 6 17,406,899 0.223 8.44E-20 17,383,685 18,150,016 SHD24B (6) 

AX-100326794 7 10,164,383 0.15 1.35E-14 10,143,016 10,241,782 SATB2/ LOC107207327 

AX-100350351 11 16,307,406 0.282 9.72E-11 16,245,749 16,358,113 VAT1L/ ADAMTS18 

AX-100642371 1A 39,481,264 0.205 1.49E-49 39,454,093 39,504,418 LRRIQ1 

AX-100712161 4A 12,433,942 0.062 1.04E-33 11,810,428 13,263,572 COL4A5 (27) 
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Table S2. List of most significant markers in the GWAS for bill length. The P value is corrected using a lambda inflation factor. The 
Last three columns report the results with bill depth and tarsus length fitted as covariates. Effect size and SE are the effect of an allelic 
substitution in mm. Where SNPs are within genes, the gene name is reported. SNPs significant at 5x10-5 are reported.  

SNP CHR Position P Effect SE Gene P Effect SE 

   Without covariates  
Tarsus length & bill depth as 

covariates 

AX-100161487 2 134,506,393 1.60E-06 0.361 0.075  3.84E-07 0.382 0.075 

AX-100162335 4 15,291,962 3.40E-06 0.546 0.118  4.56E-07 0.587 0.116 

AX-100219258 18 9,840,163 5.20E-06 0.441 0.097 MYOCD 4.04E-06 0.441 0.096 

AX-100772359 1 60,802,871 8.70E-06 -0.392 0.088 LRCH1 3.02E-05 -0.375 0.090 

AX-100866146 4A 11,968,430 8.90E-06 -0.387 0.087 COL4A5 1.91E-05 -0.375 0.088 

AX-100415796 4A 15,974,127 1.33E-05 -0.884 0.203 CMC4 2.25E-05 -0.866 0.204 

AX-100790037 4A 11,948,539 1.35E-05 0.376 0.086 COL4A5 3.28E-05 0.361 0.087 

AX-100763101 3 45,380,348 1.55E-05 -0.343 0.079  1.11E-05 -0.348 0.079 

AX-100983338 4A 11,971,129 1.55E-05 -0.374 0.086 COL4A5 2.88E-05 -0.363 0.087 

AX-100427980 7 6,552,913 1.68E-05 -0.541 0.126  1.28E-05 -0.550 0.126 

AX-100121530 3 45,463,659 1.81E-05 -0.834 0.194  2.91E-05 -0.809 0.194 

AX-100317140 8 29,545,515 1.97E-05 -0.330 0.077 CACHD1 5.92E-05 -0.312 0.078 

AX-100344380 2 91,033,979 1.97E-05 0.475 0.111 ERP44 4.21E-05 0.455 0.111 

AX-100551558 2 9,029,184 2.10E-05 -0.488 0.115 PTPRN2 2.45E-05 -0.484 0.115 

AX-100268275 1A 42,273,688 2.32E-05 -0.565 0.134 EEA1 4.04E-06 -0.616 0.134 

AX-100043541 3 39,378,229 2.71E-05 -0.400 0.095  2.56E-05 -0.401 0.095 

AX-100395747 2 35,488,576 3.34E-05 0.363 0.088 TBC1D5 1.33E-05 0.381 0.088 

AX-100354346 2 15,476,538 3.47E-05 1.136 0.274 MPP7 1.49E-05 1.198 0.277 

AX-100510816 2 15,509,848 3.47E-05 1.136 0.274 MPP7 1.49E-05 1.198 0.277 

AX-100855556 2 15,493,743 3.47E-05 1.136 0.274 MPP7 1.49E-05 1.198 0.277 

AX-100537714 4A 11,971,623 3.59E-05 0.343 0.083 COL4A5 7.24E-05 0.332 0.084 

AX-100928290 1A 26,968,602 3.89E-05 -0.352 0.086 CNTN1 4.17E-05 -0.349 0.085 

AX-100605138 1A 52,409,448 4.56E-05 -0.470 0.115 TXNRD1 1.54E-04 -0.444 0.116 

AX-100277824 6 5,560,627 4.68E-05 -0.682 0.168 CCDC6 4.11E-05 -0.685 0.167 
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Table S3: Summary of general linear mixed model of temporal trends in bill length in 
Wytham dataset (9980 measurements taken on 5145 birds between 1976 and 2010). 
Repeatability of bill length is 0.62 (95% CI = 0.60-0.64). 
 
 
 
 
Random Effects 
 
Term Variance* 95% CI ǻDIC 
ID 0.1256 0.1194 - 0.1341 5924.13 
Month measured 0.0136 0.0065 - 0.0532 912.97 
Age Category 0.0007 0.0001 - 0.0096 27.72 
Resident / Immigrant 0.0001 0.0000 - 0.3033 6.67 
Residual 0.0750 0.0721- 0.0782  

*Posterior mode 
 
Fixed Effects  
 Posterior mode 95% credible interval pMCMC 
Intercept 13.42 mm 13.24 - 13.64 < 0.001 
Birth year 0.0020 mm p.a 0.0007 - 0.0037 0.004 
Sex - male -0.041 mm -0.063 - -0.018 0.002 

 
 
As with the restricted dataset (1 year-old birds) a temporal trend for increasing bill lengths 
was significant (increase = 0.0020mm p.a., 95% credible interval = 0.0007-0.0037 mm 
p.a., pMCMC < 0.001)  
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Additional Data table S1 (separate file) Markers used and results from gene ontology 
analyses 

 


