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Physiological modes of action across species and
toxicants: the key to predictive ecotoxicology†

Roman Ashauer *ab and Tjalling Jager c

As ecotoxicologists we strive for a better understanding of how chemicals affect our environment.

Humanity needs tools to identify those combinations of man-made chemicals and organisms most likely

to cause problems. In other words: which of the millions of species are at risk from pollution? And which

of the tens of thousands of chemicals contribute most to the risk? We identified our poor knowledge on

physiological modes of action (how a chemical affects the energy allocation in an organism), and how

they vary across species and toxicants, as a major knowledge gap. We also find that the key to predictive

ecotoxicology is the systematic, rigorous characterization of physiological modes of action because that

will enable more powerful in vitro to in vivo toxicity extrapolation and in silico ecotoxicology. In the near

future, we expect a step change in our ability to study physiological modes of action by improved, and

partially automated, experimental methods. Once we have populated the matrix of species and toxicants

with sufficient physiological mode of action data we can look for patterns, and from those patterns infer

general rules, theory and models.

Environmental signicance

Humanity designs and produces ever more chemicals and urgently needs to identify those that pose the greatest risk to the millions of species living on earth.

Predictive ecotoxicology would enable risk assessors to project the impact of untested chemicals on environmental organisms, yet we are currently not very

procient at this. We outline a research strategy that will deliver more effective theory and models for environmental risk assessment of chemicals. This strategy

rests on mechanistic toxicokinetic-toxicodynamic modelling, complements efforts to develop quantitative adverse outcome pathways (qAOPs), and will also

enable the design of more efficient quantitative structure-activity relationships (QSARs).

Introduction

The science of ecotoxicology is challenged by two large

numbers: thousands of man-made chemicals are released into

the environment and millions of biological species are

exposed.1 There are two central questions that we need to

answer: which of the many thousands of chemicals pose the

greatest risk to the environment? And which of the millions of

species in the environment are most at risk? This is the central

conundrum of ecotoxicology and we think that the answers

cannot be found with today's approaches. Currently, there are

two main lines of reasoning, each focusing on different aspects

of the central conundrum.

The rst approach relies on high-throughput bioassays of

cellular or molecular markers and promises to upscale the

bioassay results to organisms and beyond.2,3 Those efforts rally

around the idea of quantitative adverse outcome pathways

(AOP, see also glossary in Table 1).4–6 In our view, this approach

will help to solve many important problems, but continues to

struggle with the central conundrum because of a poor link to

the whole organism (life history traits), and because it does not

have easy scalability in the species dimension. We use the term

scalability as it is used in engineering: the ability of a process to

accommodate a growing amount of work. Implementation of

a method consumes most of the costs and effort, applying it

thousands or millions of times adds little extra costs. We can

see that high-throughput testing will likely go a long way to

screening large numbers of chemicals, i.e. we have scalability in

the many chemicals dimension, and quantitative AOPs will aid

interpretation and extrapolation, but the results will initially tell

us something only about a limited number of biological species.

To extrapolate to other, untested, species requires new knowl-

edge that is not available yet. Simply put, we think these

approaches, as they currently are put together, do not have

scalability in the biological species dimension. Extrapolating

quantitative AOPs across species requires the assumption that

molecular pathways and functions are conserved across bio-

logical species. Moreover, it requires that they are conserved not
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only qualitatively, but also that the quantitative response is the

same across biological species. For most species we do not have

this information, and for those where we know something

already, we can see that a notable fraction of receptors and

target sites is not conserved between species.7,8 However,

because a large fraction of receptors and pathways is conserved

across species, the promise is that building blocks of quanti-

tative AOPs can be reused – eventually making their develop-

ment quick and cheap. However we haven't reached that point

yet. The resources required to build quantitative AOPs for a new

species are substantial, and more importantly, they are larger

than simply doing apical toxicity tests with a range of model

toxicants in the new species. To put it more bluntly: currently

the most efficient way of establishing if a previously untested

species is vulnerable to chemical pollutants might be to simply

perform traditional toxicity testing of life-history traits with

a dozen or so carefully selected model toxicants – and not by

embarking on a large research programme with the aim to build

quantitative AOPs around that species. When will that situation

change? The answer hinges on how much quantitative AOPs

differ amongst species – something that we do not know very

much about.

The second approach to tackle the conundrum of large

numbers views ecotoxicology as chemical stress ecology.9,10 A

large body of literature, including some high level reviews, calls

for more ecological relevance and realism in the environmental

risk assessment of chemicals.11 This school of thought recog-

nizes that, in the environment, chemical stress is just one of

many stress factors that inuence an organism, a population,

community or ecosystem.12 Ecological impacts of toxicants are

conditional on environmental variables as well as ecological

factors. Also, there is clear evidence that the environment is

degraded in many locations,13 and the question arises how

much of that environmental degradation and biodiversity loss

can be attributed to man-made, synthetic chemicals. Ecology

provides tools to study stress at different biological scales

(organisms, populations, communities, ecosystems) and there

are concepts of what makes a biological species vulnerable to

toxicants.14 However these approaches are all limited by a lack

of quantitative models for multiple stressors, in particular how

organisms respond to chemical stress in realistic environ-

mental situations, which will inevitably include multiple stress

factors. As individual organisms are the building blocks of

populations, communities and ecosystems, and as they are well

dened systems subject to the laws of mass and energy

conservation as well as evolution, we have good reasons to start

building theory and models for the effects of toxicants on the

organism level.15 If we had a quantitative model to predict

Table 1 Glossary

Term Abbreviation Meaning

Toxicokinetics TK What an organism does to a chemical, including uptake,

biotransformation, distribution and elimination. Process

that links the external concentration to a change in the

concentration at the target site, oen studied over time

Toxicodynamics TD What a chemical does to an organism. Process that links

the concentration at the target site to toxicity. Encompasses all

kinds of effects (e.g. on growth, reproduction, behavior,
survival, etc.) & oen studied over time

Adverse outcome pathway AOP A way to organise and structure toxicological knowledge.
Diagrams with boxes and arrows connecting cellular,

physiological and individual level variables. Sometimes

viewed as a framework for (eco)toxicity

Dynamic energy budget model with toxicity module DEBtox A famility of models following from DEB theory. Used to simulate

how organisms acquire and use energy to live, grow and reproduce,

and how chemicals change those energy ows

Physiological mode of action pMoA A distinct way in which a chemical interferes with the energy

uxes in an organism, and thereby affects life-history traits.

Different pMoAs are dened within DEBtox

Fig. 1 Two contrasting approaches to the challenges in ecotoxicology

drift further and further apart and differ in their respective aims (see

text for details). We propose to study physiological modes of toxic

action because that will enable us to solve some of the challenges

ahead and will mechanistically connect both approaches.

Environ. Sci.: Processes Impacts This journal is © The Royal Society of Chemistry 2017
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effects of toxicant exposure on organisms' life history traits

under multiple stress, then ecology provides us with the theory

and tools to extrapolate those effects to populations,16

communities17 and ecosystems.18

We take a closer look at the current limitations of ecotox-

icological theory and models, and we will illuminate the inter-

face of the rst and second approach: effects of toxicants at the

level of the whole organism's life history (Fig. 1). We will explain

how progress on both challenges, the development of quanti-

tative adverse outcome pathways and ecologically-relevant

multiple-stress assessments, is limited by the same issue:

a poor understanding of how the physiological mode of action19

(pMoA) varies across toxicants and biological species.

How can we quantitatively link toxicity
across levels of biological
organization?
Upscaling from cellular toxicity to organism-level effects –

missing theory

There is a gap in our understanding and theoretical frame-

works. What we have are tools to study toxicity at the cellular

andmolecular level,20,21 but no general theory or generic models

to link these effects to changes in the life-history traits over

ontogeny (as would be required to move to the population level,

and higher). Despite repeated attempts to derive toxic effects on

life-history traits of organisms based on cellular toxicity22–24 we

still lack a systematic way to do this and we lack a testable,

quantitative theory of ecotoxicology that helps bridge the

cellular to whole organism divide. This is a huge knowledge gap

in ecotoxicology.15 We need to develop the missing theory that

explains macroscopic (organism) toxicity as a consequence of

microscopic (cell) toxicity, just as statistical mechanics (theory)

explain the macroscopic gas law in physical chemistry based on

molecular interactions (Fig. 2).

The development of AOPs promises to ll parts of this gap,

but there are very few quantitative AOPs to date4,25–28 and those

that have been developed do not provide a general method for

scaling cellular toxicity up to the level of the organism's life

history. As a rst step (necessary but not sufficient), we argue

here that signicant advances can only be made by exchanging

the traditional organism level dose-response models with bio-

logically based dose-response models, namely those based on

energy-budget considerations. There are many shortcomings of

the traditional descriptive dose-response models and the asso-

ciated summary statistics like LD50, ECx or NOEC values,29,30

but it is these crude metrics that in vitro and in silico methods

aim to predict. Is it really the best way forward to build quan-

titative models around AOPs or cellular bioassays with the aim

to predict adverse outcomes by proxy of LD50, ECx or NOEC

values? We can do better by using energy-budget models

instead, and predicting the parameters of those models. Why is

this better? Simply put, organisms require resources to grow,

develop and reproduce; it is these traits that we ultimately

require to link AOPs to ecological theory, and upscale to the

population level and higher. In particular for sub-lethal

responses, like changes in growth and reproduction, it is the

acquisition and use of resources (or in general: energy) that

links the different life-history traits and determines how they

develop over ontogeny. Changes in energy-demanding traits,

such as growth and reproduction, as a consequence of toxicant

or environmental stress, logically imply changes in the energy

budget. Hence we can model organism's life history using

Fig. 2 Upscaling from molecular to macroscopic scale in physical chemistry and ecotoxicology. The equations that describe a macroscopic

system (perfect gas, e.g. Boyle's law) derive from the equations of the molecular scale model (kinetic model of gases). In ecotoxicology we have

models at the cellular and the organism level, but the connecting theory is missing. At the macroscopic scale DEBtox and its pMoAs provide

a starting point (stress: degree of stress on DEBmodel parameter,CT: internal tolerance concentration,CV: internal concentration of toxicant,C0:

threshold38).

This journal is © The Royal Society of Chemistry 2017 Environ. Sci.: Processes Impacts
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dynamic energy budget (DEB) theory,31 and we can describe

toxic effects on life-history traits of organisms (growth, repro-

duction) as changes in their energy allocation.32,33 Energy-

budget models can identify where energy allocation has

changed due to a stressor – the physiological mode of action -

and by how much. This type of physiological information offers

far more opportunities to link to the microscopic level, as well

as to the population level, than descriptive summary statistics

like the ECx values.15 We propose that predicting the energy-

budget parameters from sub-organismal bioassays is likely far

more robust and accurate than predicting ECx values because

those model parameters have a clear biological interpretation.

Toxicodynamic model parameters reect biochemistry – key

to upscaling?

When analyzing toxicity data for a set of compounds or species,

one can separate the information relating to toxicokinetics from

that relating to toxicodynamics.34 Accounting for variation in

toxicity due to toxicokinetics is necessary if we want to learn

about toxicodynamics. Accounting for toxicokinetics can be

achieved by approximating the internal dose based on physical-

chemical properties, by measuring body burdens or cell internal

concentrations, or by using calibrated toxicokinetics models.

The key in all these approaches is that the driving variable for

the toxicodynamic model is a proxy for the concentration at the

target site. A recent study in the freshwater arthropod Gamma-

rus pulex, and across 14 toxicants, identied patterns in tox-

icodynamic model parameters for the endpoint survival34

(Fig. 3). The toxicodynamic model represents the organism

level, and it was an important nding that parameter values of

the TD model clustered according to the chemical class of the

toxicants. The toxicants covered ve chemical classes (organo-

phosphates, carbamates, baseline toxicants, uncouplers, reac-

tive toxicants), each representing a distinct molecular initiating

event and toxicity pathway at the cellular level. Finding those

distinct cellular toxicity pathways reected in organism level

apical endpoint data, even if it is just for the endpoint survival,

demonstrates that toxicokinetic-toxicodynamic modelling

could provide the key to quantitatively link cellular toxicity

pathways to organism level apical endpoints (e.g. changes in

life-history traits). It means that using TK-TD models to char-

acterize toxicity at the organismal level could improve in vitro to

in vivo toxicity extrapolation and quantitative adverse outcome

pathways.

TKTD model for organism level effects on growth and

reproduction

The endpoint measured in the example above was survival, and

the toxicokinetic-toxicodynamic modelling used the General

Unied Threshold model of Survival (GUTS).35 However,

survival (i.e. mortality), although important for population

dynamics, is unlikely to be the most sensitive endpoint, and in

practice it is oen more relevant to understand toxicant effects

on sub-lethal endpoints, such as the life-history traits growth

and reproduction. Hence we need a mechanism-based tox-

icodynamic model for growth and reproduction, and, as already

explained, this requires us to focus on the energy budget. A

family of TKTD models originating from DEB theory31,36 has

been developed over the last decades,37 and is currently the

most advanced framework for such thinking, modelling and

data analysis. In these models, effects of toxicants are modelled

as changes in energy allocation. The way in which a toxicant

alters the dynamic energy budget is termed the physiological

mode of action (pMoA).19,38 The ve that have been commonly

used in ecotoxicology are a decrease in assimilation, an increase

in the costs for maintenance, growth or reproduction, and

a direct hazard to the embryo.38

Fig. 3 Upscaling frommolecular to macroscopic scale with toxicokinetic-toxicodynamic (TK-TD) models at the organism level. Toxicodynamic

model parameters cluster according to the biochemical mechanism of toxicity (adapted from Ashauer et al. 201634). In this example tox-

icokinetics and toxicodynamics were accounted for separately using a TK-TDmodel at the organism level. The toxicants were from five chemical

classes (organophosphates, carbamates, baseline toxicants, uncouplers, reactive toxicants), each representing a distinct molecular initiating

event and toxicity pathway at the cellular level (different symbols in plot). Finding those distinct cellular toxicity pathways reflected in organism

level apical endpoint data (as clusters in the plot), even if it is just for the endpoint survival, demonstrates that biochemistry is reflected at the

organism level in the values of TD model parameters.

Environ. Sci.: Processes Impacts This journal is © The Royal Society of Chemistry 2017
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Physiological mode of action in different combinations of

species and toxicant

Fitting an energy-budget model to measured data on growth

and reproductive output under chemical stress yields the pMoA

– a descriptor that allows comparing very different biological

species and toxicants. How does the pMoA vary across species

and toxicants? Are there patterns? We have collected a crude

overview from previously published studies in Fig. 4. The rst

observation is that the matrix of species vs. toxicants is very

sparsely populated; clearly, there is a need for more (and more

structured) experimental effort and perhaps some coordination

amongst researchers. We need to populate the pMoA matrix,

make it quantitative, and we need to systematically expand the

species and toxicants covered. Understanding how pMoA varies

across species and toxicants will not only provide the framework

for better predictive ecotoxicology (e.g. read-across, QSARs) but

also provides evidence to test one of the key assumptions

(implicitly) underlying the adverse outcome pathway concept:

the same molecular initiating event leads to the same pMoA,

and thus to the same patterns of effects on life history (or

‘adverse outcome’).4 Interestingly, this important assumption,

or rather hypothesis, is a matter of debate within the AOP

literature with some arguing that perturbation of a single

molecular initiating event can lead to different adverse

outcomes.39 If AOPs are explicitly dened as being chemical

agnostic, meaning that it is the molecular initiating event that

triggers the adverse outcome pathway, then different chemicals

that trigger the samemolecular initiating event must lead to the

same adverse outcome.4 This would suggest that chemicals of

the same class – triggering the samemolecular initiating event –

should result in the same pMoA. Is this hypothesis supported by

the evidence? The matrix in Fig. 4 is too sparsely populated to

properly answer this question, but the little evidence therein does

not provide strong support for this hypothesis. For example, the

baseline toxicants should lead to the same pMoA in a given

biological species. What we see in Fig. 4 is that the baseline

toxicants lead to different pMoAs in D. magna, including effects

on maintenance for pyridine, and direct effects on reproduction

for uoranthene, pyrene and 3,4-dichloroaniline. Firstly, it

should be noted that it is very hard to distinguish between the

pMoAs reproduction costs (R) and hazard to embryo (H) in

practice; both only affect reproduction and do so with a different

shape of the relationship between internal concentration and the

Fig. 4 Currently known physiological modes of action across toxicants and biological species. Physiological mode of action: M ¼maintenance,

A¼ assimilation, G¼ growth costs, R¼ reproduction costs, H¼ hazard to embryo (list of studies in ESI†). First column: ECOSAR class (Ecological

Structure Activity Relationships (ECOSAR) Predictive Model v1.11, US EPA); (1): insecticide, inhibits oxidative phosphorylation; (2): metals classified

by us; n.a.: not applicable. Physiological modes of action are extracted from the scientific literature: A. nanus,19 C. elegans,23,48–54 D. octaedra,55 L.

rubellus,56–58 C. teleta,59 F. candida,60–62 D. magna,32,57,63–67 M. micrura,68 M. californianus,69 M. galloprovincialis,57,69,70 M. edilus,57 C. gigas,57 L.

stagnalis,71–73 D. rerio,57,74 S. droebachiensis.75

This journal is © The Royal Society of Chemistry 2017 Environ. Sci.: Processes Impacts
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reproduction rate. This means that the pMoA for 3,4-dichlor-

oaniline might be the same as for uoranthene and pyrene,

which would only leave pyridine as the odd one out amongst the

baseline toxicants in D. magna. When considering the baseline

toxicants in C. elegans we nd that two of them exhibit the same

pMoA (G + R) whereas atrazine (M) is the outlier. But perhaps

atrazine does not act via baseline toxicity in C. elegans whole life

cycle tests? If this were the case, there is more hope for general

patterns of pMoAs emerging.

In Fig. 4 we list the chemical class from ECOSAR (Ecological

Structure Activity Relationships Predictive Model v1.11, US EPA)

in the rst column. This classication is based on themolecular

structure and existing toxicity data. It is important to realize

that the mode of toxic action classication of chemicals itself is

subject to variation depending on which method is used.40

We advocate populating the pMoA matrix until we can see

patterns. From those emerging patterns we can then derive new

classication schemes for chemicals, which will then corre-

spond to the chemicals' physiological mode of action. Devel-

opment of new quantitative structure activity relationships will

follow. In addition to populating the pMoAmatrix, we also need

to map AOPs onto pMoAs. In other words: for each AOP we

should carry out experiments with toxicants triggering the same

molecular initiating event and calibrate an energy-budget

model to test how widely the assumption of AOPs being

chemical agnostic holds.

AOPs and pMoAs are complementary, in our view. AOPs are

detailed at the molecular/cellular level, but sketchy about the

‘adverse outcome’, i.e., the effects on the life-history traits of the

organism. The pMoAs (and the associated energy-budget

model) provide a direct link to growth, development and

reproduction, over the entire life cycle of the organism, and

thereby a direct connection to higher levels of biological orga-

nization. However, the pMoAs are extremely sketchy at the sub-

individual level as they consider rather abstract, lumped, energy

uxes such as assimilation and maintenance. We propose to

populate the species & chemicals matrix to test the hypothesis

that similarly acting chemicals will result in the same pMoA.

The outcome of this exercise is totally open. It is also conceiv-

able that one molecular initiating event will inuence several

energetic uxes, and the chemical will thus have a pMoA that is

made up of multiple energy uxes. The AOP framework has not

yet resulted in quantitative models that are general enough to

test the above hypothesis.

Towards better in vitro to in vivo toxicity extrapolation

We suggest a research program with the aim to establish

quantitative models that predict ecologically-relevant, sub-

lethal, organism-level endpoints (i.e., life-history traits) based

on input from in vitro assays. In order to anchor such an in vitro

to in vivo toxicity extrapolation (IVIVE), we rst need to select

a suitable mathematical TD model for the organism. We think

that ‘DEBtox’ models are currently the most suitable candi-

dates. Here, we dene DEBtox broadly as a TKTD model that

includes some form of DEB model to link a toxicokinetic model

to life-history traits over ontogeny.37 DEBtox models offer very

simple rules to model toxicant effects, so that only one or two

model parameters are affected by the toxicant (the pMoA). We

need to nd in vitro bioassays that are predictive for the pMoA

as well as for the actual value of the model parameters gov-

erning the toxic effect (Fig. 5). It helps that the DEBtox model

parameters that we want to predict with bioassays are time

independent and have a biological interpretation, which can

guide bioassay selection. The research programme leading to

improved IVIVE comprises calibrating DEBtox for a large

number of toxicants, and then establishing bioassays that show

a strong correlation with the values of the model parameters (or

the stress factors on the affected energetic process) across the

toxicants. Once that quantitative link is established, the bioas-

says can be used to predict DEBtox model parameters, which in

turn can be used for predicting toxicity in various prioritization,

hazard or risk assessment schemes.

We view the proposed research programme into pMoAs as

complementary to the development of AOPs and AOP-based

quantitative models. We can simply view the pMoA in DEBtox

terminology as the ‘adverse outcome’ in AOP terminology. What

is missing in the AOP concept, is the explicit use of a dynamic

biological model to describe the organism and the physiological

context within which an adverse outcome manifests itself.

DEBtox models can ll this gap. Note however, that different

AOPs can map onto the same pMoA. For example we can

imagine many pathways by which a toxicant can affect the

assimilation process, or each of the other pMoAs.

The rst key challenge for IVIVE is that for most combina-

tions of toxicant and biological species we do not know the

pMoA yet (Fig. 4). The second is that it can be difficult to identify

the pMoA from, typically noisy, experimental data. The third

challenge is that DEBtox parameterization requires rather

extensive animal testing with growth and reproductive output

measured over time for a good part of the life cycle, and with

sufficiently strong chemical effects.

At the modelling side, there are several practical issues that

need to be addressed. Firstly, DEBtox is not a single model but

rather a family of closely-related models.37 It is highly unlikely

that different DEBtox models will identify a different pMoA, but

the quantitative comparison of TD parameter values is best

served by selecting a single model for all analyses. Further

aspects that require more research are the identication of the

relevant dose metric at the target site (e.g., the membrane

concentration for baseline toxicants) and the quantitative link

between the level of target occupation and the associated energy

ux in the DEBtox model. Currently, most applications have

relied on the linear-with-threshold relationships as presented

by Kooijman and Bedaux.41 However, there are no strong theo-

retical reasons to dismiss other possible relationships. Further

complications arise because we cannot observe the energy

uxes, and thus the pMoAs, themselves. They are derived from

observations on growth and reproduction over time, and linked

to the underlying uxes with auxiliary assumptions. This may

hamper the identication of patterns in pMoAs across species

and chemicals and constitutes one more reason why we need

high-throughput testing with whole organisms (see next section

below).
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Many animals require some modication of the DEB model

to t their life cycles; biological reality is oen more complex

than can be captured by the simplicity of generic models. This

requires more parameters to be tted, and thus more extensive

testing efforts. However, this only needs to be done once in

detail for each species to build the DEB model. Aer that, the

DEB part of the TD model remains the same, and only the

toxicological part needs to be calibrated for each toxicant. In

general, partial life-cycle testing suffices to identify the pMoA

and to t the toxicological parameters, following growth and

reproduction over a substantial part of the life cycle (starting

with juveniles, and continuing until a number of reproduction

events has been observed). An oen-overlooked aspect in such

tests is that toxicants may affect the investment per offspring.

These differences are not only extremely relevant to identify and

quantify the pMoA in the energy-budget context, it is also

essential for an accurate prediction of population-level effects.16

From a practical perspective, it will be important to start with

species that have very little variation between individuals (e.g.,

clones), and that do not require a sexual partner (e.g., parthe-

nogenetic species). To prove the concept, and to allow high-

throughput testing, we would suggest starting with a small

animal species that has a fast life cycle, such as some daphnids,

rotifers, nematodes or even protozoans. Once such a proof-of-

concept is rmly established, and patterns in pMoA's and

model parameters identied, subsequent testing with other

animal species can likely be more focused.

Looking forward

Ecotoxicology and environmental risk assessment of chemicals

will benet from the shi towards using the biologically

meaningful models at the individual level that we advocate.

Dose-response modelling, and the use of simple summary

statistics (LC50s, ECx values, NOECS, etc.), carries too many

limitations.29 Replacing traditional dose-response models with

data analysis using DEBtox or other biologically-meaningful

models will have a positive impact on several aspects of eco-

toxicology (Table 2). The development of efficient quantitative

structure-activity relationships, in vivo to in vitro toxicity

extrapolation, and high-throughput testing will all benet from

using biologically meaningful model parameters as descriptors

of toxicity instead of traditional summary statistics. However,

new types of databases, populated with biologically meaningful

model parameters for different combinations of species and

compound, are needed to support this paradigm shi.

There is a large gap in our theory and modelling capability

when it comes to linking across scales of biological organiza-

tion, but there must be a link between what happens at the

cellular level and what happens on the energy budget, the tricky

part is to nd it. To ll this gap, the bottleneck might,

surprisingly, not be a lack of detailed molecular understanding,

but rather the effort required to generate suitable data on whole

organism life history traits under chemical stress. Technolog-

ical innovation is needed to achieve the large number of toxicity

tests that we envision. There are already methods, oen based

on image analysis, to speed up ecotoxicity testing.42–45 As far as

we know none of those have led to the high-throughput

organism level data generation capability that we need, but it

might be only one step away (e.g. C. elegans growth assay46).

Generally, we need to make greater efforts to lay open,

discuss and research the validity of assumptions of models in

ecotoxicology. Models are simply tools to deduce quantitative

conclusions from a set of assumptions and data, nothing more.

It is good to remember that most ecotoxicity models fall into

the category of ‘phenomenological’ models,47 although DEB

models at least consider some fundamental physics, such as the

inclusion of the factor ‘time’ and adherence to the laws for

energy and mass conservation. But perhaps it would be

misleading to require that models in biology must be based on

Fig. 5 Upscaling from molecular to macroscopic scale with DEBtox. As DEBtox is an organism model, its parameters have a biological inter-

pretation and we can develop bioassays that predict changes in those DEBtox parameters. That combination is a framework for high-throughput

ecotoxicity testing which would account for reduced growth or reproduction due to toxic chemicals changing energy budgets. There must be

a link between cellular toxicity and changes in energy budgets – the trick is to find it. Hence we propose a research programme to that end.

This journal is © The Royal Society of Chemistry 2017 Environ. Sci.: Processes Impacts
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fundamental physics. Or, to use Jeremy Gunawardena's words:47

“Keep it simple. Including all the biochemical details may

reassure biologists but it is a poor way to model.” It is more

important that models are t for purpose and that means

nding the right level of abstraction for the question asked. In

ecotoxicology, the individual organism response is what

connects the research programs aiming at high-throughput

testing and those efforts aimed at increasing ecological

realism and relevance, including multiple stressors. Hence it

appears that a useful level of abstraction for ecotoxicology

models and theory is the individual organism and its energy

budget – and that means we need to study physiological modes

of action.
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