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Abstract

Radio-frequency driven atmospheric pressure plasmas are efficient sources for the

production of reactive species at ambient pressure and close to room temperature.

Pulsing the radio-frequency power input provides additional control over species

production and gas temperature. Here, we demonstrate the controlled production

of highly reactive atomic oxygen and nitrogen in a pulsed radio-frequency (13.56 MHz)

atmospheric-pressure plasma, operated with a small 0.1 % air-like admixture (N2/O2

at 4 : 1) through variations in the duty cycle. Absolute densities of atomic

oxygen and nitrogen are determined through vacuum-ultraviolet absorption spec-

troscopy using the DESIRS beamline at the SOLEIL synchrotron coupled with

a high resolution Fourier-transform spectrometer. The neutral-gas temperature

is measured using nitrogen molecular optical emission spectroscopy. For a fixed

applied-voltage amplitude (234 V), varying the pulse duty cycle from 10 % to 100 %

at a fixed 10 kHz pulse frequency enables us to regulate the densities of atomic

oxygen and nitrogen over the ranges of (0.18± 0.03) - (3.7± 0.1)× 1020 m−3 and

(0.2± 0.06) - (4.4± 0.8)× 1019 m−3, respectively. The corresponding 11 K in-

crease in the neutral-gas temperature with increased duty cycle, up to a maximum

of (314 ± 4) K, is relatively small. This additional degree of control, achieved

through regulation of the pulse duty cycle and time-averaged power, could be of

particular interest for prospective biomedical applications.
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1 Introduction

Non-thermal atmospheric-pressure plasma jets (APPJs) enable efficient, non-aqueous

delivery of chemically reactive species to temperature-sensitive materials1. Prospec-

tive applications in materials processing include the surface modification of poly-

mers2,3 and photoresist removal4, and substantial progress has also been made

with respect to a variety of biomedical applications5,6, such as cancer therapy7

and antimicrobial treatments8. A key feature is the capability to efficiently gener-

ate highly reactive neutral particles, including atomic oxygen and nitrogen, which

are important to the surface interaction that occurs during material processing

and also as precursors to longer-lived solvated reactive species that can play a key

role in biological systems9,10.

Low-voltage (∽hundreds of Volts) radio-frequency (rf, ∽tens of MHz) APPJs

are typically operated with a feed gas of helium (selected to minimise thermal in-

stabilities through its relatively high thermal conductivity) with a small molecular

admixture of oxygen and nitrogen (in the order of ∽ 0.1 - 1%) to produce a spa-

tially homogeneous discharge and reproducible fluxes of reactive species including

atomic oxygen and nitrogen. Their stable operating range, between ignition and

an uncontrolled constricted mode, typically spans about an order of magnitude

in terms of the rf power dissipated in the plasma11. There is therefore a limited

range of power that can be dissipated in the plasma, which limits the control over

reactive species production and the neutral-gas temperature.

Enhanced control of time-averaged power dissipation is highly desirable, in

particular for temperature sensitive applications such as biomedical technologies.

Pulse modulation (∽kHz) techniques have proven to be very useful strategies for

3
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low pressure rf plasmas and are broadly applied in industrial applications12–14.

They have also been investigated at atmospheric pressure15–20, and specifically

to plasma sources that generate reactive species. Results to date, which have

focused upon plasma sources operating with pure helium or helium-oxygen gas

mixtures in the plasma core, highlight the promise of pulse modulation techniques

for achieving additional control over reactive species production and the neutral-

gas temperature, and in particular for enabling stable discharge operation at low

average powers21–25.

Gas mixtures that include oxygen and nitrogen, in particular those using an air-

like ratio of 4:1, are especially important for applications requiring the production

of reactive oxygen and nitrogen species in ambient air, for example biomedical

technologies. Atomic oxygen and nitrogen have been shown to play key roles

in the chemical kinetics of these systems26–31. In this study, we have therefore

combined the use of rf pulse modulation with an air-like admixture (0.1 % N2/O2

at 4:1) to a helium-fed APPJ to more closely match the conditions of prospective

applications.

In contrast to one-photon and two-photon laser induced fluorescence, which

are widely used for the measurement of atomic species densities, absorption spec-

troscopy is insensitive to quenching. It is therefore well suited to the highly col-

lisional conditions and complex gas mixtures that are most relevant to applica-

tions in ambient air. The time-honoured technique of resonance absorption spec-

troscopy has previously been applied in the experimentally challenging vacuum-

ultraviolet (VUV) wavelength range for absolute density measurements of atomic

oxygen and nitrogen in low-pressure plasmas32–36. It has also recently enabled the

direct and absolute measurement of these densities in atmospheric-pressure plas-

4
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mas using synchrotron radiation with a high-resolution Fourier-transform spec-

trometer37. This technique is experimentally complex and limited to specialised

plasma sources that provide high vacuum compatibility. While it is important to

note that absorption measurements are spatially integrated and are hence unable

to detect the influence of spatial gradients across the beam cross-section and ab-

sorption length, the results of previous investigations combining experiments and

simulations suggest that the atomic oxygen density remains relatively flat between

the electrodes26. Here, we use this technique to quantify the influence of pulse

modulation on the densities of atomic oxygen and nitrogen.

2 Experimental setup

Experiments are undertaken using the plasma source shown in Figure 1.

Gas inlet

Gas outlet

Coaxial RF cable

Grounded electrode

Insulator

Powered electrode

VUV beam: 5 x 2 mm
2

Plasma channel:
24 x 8.6 x 1 mm

3

O-ring sealing for
MgF windows2

(a) (b)

Figure 1: (a) Schematic cross-section and (b) photograph of the plasma source:
The perpendicular orientation of the synchrotron vacuum ultraviolet (VUV) beam
with respect to the plasma channel is indicated by the dashed rectangle.

This plasma source was designed to operate within the DESIRS (Dichröısme

Et Spectroscopie par Interaction avec le Rayonnement Synchrotron) beamline38 at

the SOLEIL synchrotron facility. The coupling of the VUV DESIRS beamline and

5
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a unique Fourier transform spectrometer (VUV-FTS)39 simultaneously enables

high spectral resolution (resolving power λ/∆λ up to ≈ 1 × 106) and broadband

coverage over the full VUV spectral range40.

The electrode material (stainless steel), length (24 mm) and spacing (1 mm) are

selected to approach that of the well-characterised COST reference microplasma (µAPPJ)

that operates in ambient air41. For vacuum compatibility, the electrode width is

8.6 mm and hence the surface-to-volume ratio of the channel (2.2 mm−1) is smaller

than that of the µAPPJ (4 mm−1). To contain the gas within the vacuum chamber

while allowing optical access, MgF2 windows (1 mm thick) are installed on either

side of the channel.

RF power at 13.56 MHz is coupled to the powered electrode using an arbi-

trary waveform generator (Tabor WS8352, 350 MHz), broadband amplifier (IFI

SCCX100, 220 MHz) and matching network (Coaxial Power Systems MMN150).

The housing of the plasma source forms the other electrode and is electrically

grounded. For continuous operation, 9 W is coupled (amplifier reading: forward

minus reflected power) to generate a homogeneous-glow-like α-mode discharge.

This is lower than the 115 W applied in the previous measurement campaign of

Ref. 37, and is a result of improved coupling efficiency and reduced flow of air-like

admixture (N2/O2 at 4:1) to the 10 slm helium feed gas. The plasma proper-

ties are however considered to be comparable, as confirmed using measurements

of the atomic oxygen and nitrogen densities for continuous power coupling to be

described later. Here, an admixture of 0.1 % is used (on the low end of typical

admixtures in these types of plasmas), which requires less rf power due to lower

molecular dissociation, and minimizes neutral-gas heating at the same time.

A high-voltage probe (PMK, 14 KVrms, 100 MHz) and oscilloscope (LecroyWave-

6

Page 6 of 25AUTHOR SUBMITTED MANUSCRIPT - JPhysD-113689.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



jet 354A, 500 MHz) are used to measure the applied voltage. The peak voltage

amplitude is held constant at 234 V as shown in Figure 2. The pulse rise-time

and fall-time, which are defined as the time for the voltage to increase or decrease

between 10-90 % of its peak value (excluding overshoot), are 2.4 µs and 3.1 µs,

respectively.

Figure 2: Representative rf voltage pulses applied to the plasma channel: 10 kHz
modulation frequency with a duty cycle of 20 %. Helium flux 10 slm, N2/O2 (4:1)
admixture 0.1 %.

To investigate the impact of pulse modulation on the production of atomic

oxygen and nitrogen, two cases are considered: (1) variation of the pulse duty

cycle over 10 - 100 % at a fixed modulation frequency of 10 kHz, and (2) variation

of the pulse-modulation frequency over 1 - 50 kHz at a fixed duty cycle of 50 %.

To measure changes in gas heating, the neutral-gas temperature is determined

using nitrogen molecular optical emission spectroscopy. A Czerny-Turner spectro-

graph (Andor SR500i, 0.5 m focal length, 2400 grooves/mm) with an attached non-

intensified charge coupled device camera (Andor Newton DU940P-BU2, 2048×512

array of 13.5 µm2 pixels) is used to measure the optical emission spectrum of the N2

7
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second-positive system (C 3Π → B 3Π, ν = 0 → 2). Simulated spectra are fitted to

the measurements to determine the gas temperature, by assuming that the rota-

tional distribution is in thermal equilibrium with the neutral-gas temperature42,43

as previously undertaken in high-pressure discharges for applications including,

e.g. combustion44, electric propulsion45 and biomedicine46–48. Our spectrum sim-

ulation is based on molecular constants from Ref. 49 and line strength expressions

from Ref. 50 for intermediate coupling of upper and lower state between Hund’s

case (a) and (b). The first rotational lines are treated according to Ref. 51, and

Lambda-doubling is omitted. A Gaussian apparatus function is used in the anal-

ysis, and the spectral fitting routine is estimated to be accurate within ±4 K.

However, results of the overall diagnostic technique should be treated conserva-

tively43 and for these conditions we consider the overall systematic uncertainty to

be ±10 K.

Absolute densities of atomic oxygen and nitrogen, spatially averaged over the

1 mm electrode gap at the longitudinal midpoint of the plasma channel (VUV

beam cross-section ∽ 5 × 2 mm2), are determined using VUV-FTS transmission

spectra as described in Ref. 37. The O-atom and N-atom Doppler widths are

∆σO
D(308 K) = 0.24 cm−1 and ∆σN

D(308 K) = 0.28 cm−1, respectively, for a

neutral-gas temperature of 308 K, representing the mean value found across all

of our measurements. Representative transmission spectra for atomic oxygen and

nitrogen are shown in Figure 3 and Figure 4, respectively, for a 10 kHz pulse-

modulation frequency and duty cycle of 20 %.

8
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Figure 3: (a) Measured spectrum (not normalized or deconvoluted) and (b) nor-
malized spectrum (J = 2 component) used to determine the density of atomic
oxygen, O(2p4 3PJ → 3s 3S*1). Helium flux 10 slm, N2/O2 (4:1) admixture 0.1 %,
pulse voltage 234 V, pulse duty cycle 20 %, pulse frequency 10 kHz.
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Figure 4: (a) Measured spectrum (not normalized or deconvoluted) and (b) nor-
malized spectrum (J

′

= 5/2 component) used to determine the density of atomic
nitrogen, N(2p3 4S∗

3/2 → 3s 4PJ
′ ). Helium flux 10 slm, N2/O2 (4:1) admixture

0.1 %, pulse voltage 234 V, pulse duty cycle 20 %, pulse frequency 10 kHz.
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3 Results

The variation of the atomic oxygen and nitrogen densities and neutral-gas tem-

perature are shown in Figure 5 as a function of the pulse duty cycle. To confirm

repeatability, two measurements were undertaken for the atomic oxygen density at

a representative duty cycle of 20 %. Similarly, the density of atomic nitrogen was

measured three times at a duty cycle of 90 %. The displayed data points represent

average values. It is important to note that the expected decay time of the atomic

densities, previously observed to be ∽ms26,31, is significantly longer than the time

interval between pulses.
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Figure 5: (a) Densities of atomic oxygen and atomic nitrogen, and (b) neutral-gas
temperature with respect to pulse duty cycle. Helium flux 10 slm, N2/O2 (4:1)
admixture 0.1 %, pulse voltage 234 V, pulse frequency 10 kHz.

The densities of atomic oxygen and nitrogen, shown in Figure 5 (a), were first

measured for continuous power coupling (100 % duty cycle). They are observed to

agree reasonably well (17 % increase and 23 % decrease, respectively) with that of

Ref. 37 for the same gas mixture and low power, homogeneous-glow-like α-mode

of operation.

In our previous investigation using continuous power coupling, we observed the

densities of atomic oxygen and nitrogen to be maximal at 0.35 % and 0.1 % dry-
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air admixture, respectively37. Therefore, in this work at a dry-air admixture of

0.1 %, we operate the source under a condition of maximal production of atomic

nitrogen, while the maximal production of atomic oxygen is expected to occur at

a slightly higher dry-air admixture.

When the plasma is pulsed, the densities of atomic oxygen and nitrogen are

observed to increase linearly with duty cycle, varying between (0.18 ± 0.03) -

(3.7 ± 0.1) × 1020 m−3 and (0.2 ± 0.06) - (4.4 ± 0.8) × 1019 m−3, respectively, for

duty cycles of 10 - 100 %. A linear increase in both densities with respect to the

pulse duty cycle is consistent with the linearly increasing time-averaged rf power.

It is important to note that the control in atomic-species density can be achieved in

addition to that obtainable by changing the on-phase power level (not undertaken

here), extending the range down to lower fluxes while ensuring stable plasma

operation. The neutral-gas temperature, shown in Figure 5 (b), also exhibits a

linear increase with duty cycle, where the gas temperature is measured to vary

from (303± 4) - (314± 4) K for duty cycles of 10 - 100 %. These values are of

significant interest as they can be used to benchmark future plasma chemistry

models that incorporate both oxygen and nitrogen species.

The results as the pulse-frequency is varied for a fixed duty cycle of 50 % are

shown in Figure 6 for (a) densities of atomic oxygen and nitrogen and (b) neutral-

gas temperature.
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Figure 6: (a) Densities of atomic oxygen and atomic nitrogen, and (b) neutral-
gas temperature with respect to pulse-modulation frequency. Helium flux 10 slm,
N2/O2 (4:1) admixture 0.1 %, pulse voltage 234 V, pulse duty cycle 50 %.

In this case, the time-averaged power remains constant, independent of pulse

frequency. Consistent with this, the neutral-gas temperature is observed to remain

relatively constant for pulse frequencies of 1 - 50 kHz. The density of atomic

oxygen is observed to be relatively independent of the pulse frequency, except

above 20 kHz, where a small decrease is seen as shown in Figure 6 (a). This
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agrees qualitatively with the results of recent fluid simulations of a capacitively

coupled atmospheric-pressure plasma source (2 mm electrode separation) operating

in helium with oxygen admixtures of 0 - 1 %23.

The observed decrease in the atomic densities measured for a modulation fre-

quency of 50 kHz could be attributed to the relatively large pulse rise-time com-

pared to its duration (2.4 µs and 10 µs, respectively). However, as this is partially

compensated by the pulse fall-time (3.1 µs) a more detailed experimental inves-

tigation of the temporal evolution in the afterglow remains the subject of future

work.

4 Conclusion

The absolute densities of atomic oxygen and nitrogen have been measured in an rf-

driven and pulse-modulated atmospheric-pressure plasma jet operating in helium

with a small 0.1 % air-like admixture (N2/O2 at 4:1). The atomic densities were de-

termined by vacuum-ultraviolet absorption spectroscopy using the DESIRS beam-

line at the SOLEIL synchrotron coupled with a high resolution Fourier-transform

spectrometer. The neutral-gas temperature was measured using nitrogen molec-

ular optical emission spectroscopy. The densities of atomic oxygen and nitrogen

increase linearly with respect to pulse duty cycle, which is consistent with linear

increases in the time-averaged power and neutral-gas temperature. Pulse mod-

ulation of the driving voltage enables stable operation of the discharge at lower

average power compared to continuous operation, providing a lower neutral-gas

temperature and densities of atomic oxygen and nitrogen. The direct and abso-

lute measurement of reactive atomic species densities, without assumptions about

15

Page 15 of 25 AUTHOR SUBMITTED MANUSCRIPT - JPhysD-113689.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



the ambient quenching conditions, provides valuable information for the ongoing

development of plasma chemistry models. This will in-turn drive the development

of experimental techniques for achieving enhanced precision in the production of

reactive gas chemistry for prospective technological and biomedical applications.
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[50] I. Kovács. Formulae for rotational intensity distribution of triplet transi-

tions in diatomic molecules. The Astrophysical Journal, 145:634–647, 1966.

doi:10.1086/148802.

[51] A. Schadee. Theory of first rotational lines in transitions of diatomic

molecules. Astronomy and Astrophysics, 41:203–212, 1975. URL http:

//adsabs.harvard.edu/abs/1975A%26A....41..203S.

25

Page 25 of 25 AUTHOR SUBMITTED MANUSCRIPT - JPhysD-113689.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60


