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Highlights 

“Emulsification performance and interfacial properties of enzymically hydrolyzed peanut 

protein isolate pretreated by extrusion cooking” by Chen et al. 

Food Hydrocolloids. 

 Extrusion pretreatment increased the protease accessibility of peanut protein isolate.  

 The insoluble protein particles in peanut protein isolates tended to induce bridging 

flocculation of emulsion droplets during homogenization. 

 Hydrolysates of extruded peanut protein isolate showed a high protein solubility of ~90%. 

 The production of surface active peptides during enzymic proteolysis of peanut protein isolate 

was promoted after extrusion pretreatment. 

 Extrusion pretreatment produced noticeable benefits in improving emulsification 

performances of protein hydrolysates. 
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23 Abstract 

24 In this study, peanut protein isolate (PPI) was modified with extrusion pretreatment and papain-

25 induced proteolysis. SDS-polyacrylamide gel electrophoresis showed that extrusion pretreatment 

26 conducted at 130 °C substantially increased the protease accessibilities of the major constitutive proteins 

27 (conarachin and arachin) in EPPI (extrudates of PPI), resulting in a remarkable increase in the degree 

28 of hydrolysis (DH) and protein solubility for the hydrolysates. Analysis of droplet size distributions and 

29 microstructures of oil-in-water model emulsions formed by PPIH (PPI hydrolysates) and EPPIH (EPPI 

30 hydrolysates) with different DH showed that extrusion pretreatment led to a marked enhancement in 

31 the emulsification performance for the hydrolysates. EPPIH (6.2% DH) was capable of producing a 

32 stable emulsion (20 vol.% sunflower seed oil) with fine droplets (d32=0.4 μm, d43=1.6 μm) at 2.5% (w/v) 

33 sample content, whilst the equivalent emulsions made with control PPI and PPIH (0.9% DH) required 

34 6.5% and 5.5% (w/v) level of sample, respectively. Based on investigations of surface pressure versus 

35 sample concentration profiles and saturation surface Loads (Γsat) for some selected PPIH and EPPIH, it 

36 was found that with most insoluble protein particles in EPPIH being enzymically hydrolyzed and 

37 becoming soluble, the production of surface active peptides with low Γsat was substantially promoted 

38 during enzymic proteolysis, which was responsible for the efficient use of EPPIH (6.2% DH) on 

39 generating and stabilizing small emulsion droplets against bridging flocculation during 

40 homogenization. These results indicated that hydrolyzed PPI could be used an efficient food 

41 emulsifying agent with extrusion pretreatment substantially increasing its protease accessibility.    

42 Keywords: peanut protein isolate; extrusion pretreatment; protease accessibility; emulsification 

43 performance; saturation surface load; surface pressure 

44
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45 1. Introduction 

46 Many legume protein isolates have been investigated as possible emulsifying agents in emulsion-

47 based food (Benjamin, Stilcock, Beaucham, Buettner, & Everett, 2014; Ghatak & Sen, 2013; Karaca, 

48 Low, & Nickerson, 2011; Ma, Boye & Simpson, 2016). Among them, peanut protein isolate (PPI) is 

49 usually preferred due to the good surface active properties of its major constitutive proteins arachin 

50 and conarachin, which have shown to be able to substantially lower the oil/water interfacial tension 

51 (Benjamin et al., 2014; Karaca et al., 2011). In addition, PPI has been considered as a good nutritional 

52 source due to its high content of essential amino acids, low risk of allergic reactions and steady supply, 

53 which has gained preference among both consumers and producers (Ghatak et al, 2013). However, 

54 due to the rigid globular structures of native peanut proteins, PPI is less capable as an emulsifying 

55 agent when compared to milk proteins with flexible molecular structures (McClements & Gumus, 

56 2016). Moreover, extensive denaturation and aggregation of peanut proteins usually occur during the 

57 production of commercial PPI, resulting in the loss of much of its soluble proteins and emulsification 

58 capability (Taherian et al., 2011).  

59 Modification of proteins based on enzymolysis has been considered to be safe and of great 

60 potential to improve their emulsification performances. This is attributed to 3 distinct structural 

61 changes caused by enzymic proteolysis: a decrease in average molecular mass, the exposure of 

62 hydrophobic groups and the liberation of ionizable groups (Wouters, Rombouts, Fierens, Brijs, & 

63 Delcour, 2016). However, peanut proteins or protein aggregates in PPI were generally resistant to 

64 enzymolysis due to their highly compact structures, leading to a limited improvement on 

65 functionalities for the resulting hydrolysates (Perrot, Quillien, & Guéguen, 1999; Zhao, Liu, Zhao, 

66 Ren, & Yang, 2011). With this regards, attempts should be made to enhance the protease accessibility 
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67 of PPI, which has been proved to be a key influencing factor in achieving desirable functionalities of 

68 final products (Jung, Murphy, & Johnson, 2005; Surówka, Żmudziński, Fik, Macura, & Łaocha, 

69 2004; Zeeb, McClements, & Weiss, 2017; Zheng et al., 2006).  

70 Extrusion cooking is a high-temperature-short-time physical treatment during which feed 

71 materials are subjected to high temperature (90–200 ºC), high pressure (1.5–30.0 MPa) and 

72 mechanical shear simultaneously in the extruder (Day & Swanson, 2013). According to the literature, 

73 these effects could cause unfolding, denaturation and realignment of protein molecules (Alam, Kaur, 

74 Khaira, & Gupta, 2016). Enzymic proteolysis of plant-protein products is usually enhanced by 

75 extrusion cooking, resulting in significant changes in physicochemical and functional properties for 

76 the resulting hydrolysates. For instance, Alonso, Aguirre, and Marzo (2000a) compared extrusion 

77 cooking with several other thermal processing methods on trypsin-induced hydrolysis of legume 

78 proteins, and showed that extrusion is the most effective pretreatment method in promoting enzymic 

79 proteolysis. Zhen et al. (2006) reported that extrusion pretreatment substantially increased the 

80 protease accessibilities of the major components of corn gluten, resulting in a strong increase in 

81 protein solubility for corn gluten hydrolysates. Moreover, the enhancement of enzymic proteolysis of 

82 peanut extrudates has also been reported by several other studies (Abd EI-Hady & Habiba, 2003; 

83 Alonso, Grant, Dewey, & Marzo, 2000b; Chen & Phillips, 2005).  

84 Noticeably, emulsifying properties of hydrolysates of extruded soy proteins have been 

85 investigated, but the experimental results reported in the literature appear ambiguous. As Surówka et 

86 al. (2004) reported that extrusion pretreatment followed by limited enzymic proteolysis using 

87 Neutrase caused a marked increase in emulsifying activity index (EAI) but a decrease in emulsifying 

88 stability index (ESI) for soy flour. On the contrary, Jung et al. (2005) found that such a treatment 
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89 could increase the ESI for soy flour. Such contradictory could be caused by the misleading EAI and 

90 ESI results based only on the turbidity measurements, which has been proved to be not most reliable 

91 for the characterization of micron-size droplets (McClements, 2007). 

92 Commercial laser diffraction particle size analysis (LD-PSA) instruments are capable of 

93 determining particle size distributions and average particle diameters within the range of about 100 

94 nm to 1000 μm and have been used as a standard technique for emulsion characterization 

95 (McClements, 2007). Laser scanning confocal microscopy (LSCM), on the other hand, is a powerful 

96 technique which can deliver high-resolution microimages on fine emulsion in real space, and has a 

97 variety of novel contrast mechanisms that enable us to monitor the size and spatial distributions of 

98 droplets in emulsions, and even to examine the structures of emulsion interfacial layers (Kwok & 

99 Ngai, 2016). Therefore, a combination of these two complementary techniques could not only give 

100 information for assessment of emulsification performances among different emulsifying agents, but 

101 also provide new insights into the underpinning mechanisms of emulsion formation and stabilization 

102 (Hu, Ting, Hu, & Hsieh, 2017). However, to our knowledge, no such work has been done on the 

103 emulsification performance of hydrolyzed PPI.  

104 Hence, this study was designed to improve the emulsification performance of PPI using 

105 extrusion pretreatment and controlled enzymic proteolysis. Emulsification performances of protein 

106 samples were investigated by analyzing droplet sizes and microstructures of freshly formed oil-water 

107 emulsions as characterized using LD-PSA and LSCM. Some key interfacial properties including 

108 surface pressure (π) versus sample concentration profile and saturation surface Load (Γsat) were also 

109 measured accordingly, in order to explore the underpinning mechanisms of improved emulsification 

110 performances for hydrolyzed products caused by extrusion pretreatment. 
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111 2. Materials and methods

112 2.1. Materials 

113 Commercial PPI was kindly provided by Tianshen Bioprotein Co. (Linyi, China). This PPI was 

114 produced using alkaline extraction followed by isoelectric pH precipitation; the precipitated proteins 

115 were then re-suspended in alkaline solution and underwent intensively thermal treatments including 

116 high temperature sterilization and spray-drying. The protein content of the PPI product was 88.1 % 

117 (w/w, dry basis), determined using Kjeldahl method (N  5.46); the moisture content was 5.2% (w/w), 

118 determined according to AOCS Official Method Ba 2a-38; based on the information provided by the 

119 manufacturer, this PPI contains <2.0% fat, <4.0% ash. Food grade papain (EC 3.4.22.2) with the 

120 nominal activity of 114 460 U/g was obtained from Baiao Biochemistry Co. (Jiangmen, China), and was 

121 applied to induce the proteolysis of protein samples without activation. Nile blue, Nile red, and 

122 phenylmethanesulfonyl fluoride were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

123 Laemmli sample buffer, Tris-HCl precast gel (4–15 %), β-mercaptoethanol, and Coomassie Brilliant 

124 Blue R-250 were purchase from Bio-Rad Laboratories (Hercules, CA, USA). Sunflower seed oil was 

125 purchased from a local grocery store. Sunflower seed oil purified with Florisil (PR grade, 60–80 

126 mesh, Sigma-Aldrich) was used as the oil phase in the interfacial tension measurements, and that 

127 without further purification was used in the preparation of emulsions. All chemicals were of reagent 

128 grade. Deionized water prepared with a Milli-Q apparatus (Millipore, USA) was used throughout. 

129 The pH was adjusted using 0.1–1.0 M HCl solutions and 0.1–1.0 M NaOH solutions.   

130 2.2. Extrusion cooking of PPI 

131 Extrusion experiments were carried out using a laboratory-type twin-screw extruder (SYSLG30-

132 IV, Saibainuo Technology Co. Ltd, Jinan, China) with four individual barrel zones from the feeder 
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133 to the die, each with separate temperature control. Fig. 1 shows the schematic diagram of this 

134 extruder. The temperature profile in the extruder from the first zone to the third zone was constantly 

135 set at 25, 50, and 90 ºC, respectively. The fourth zone was set at the desired cooking temperature 

136 (100, 130, and 160 ºC). The diameter of the screw was 30 mm, and the extruder had a barrel length-

137 to-diameter ratio of 23: 1, with a cooling die attached at the end of the extruder. The screw elements 

138 included kneading blocks and reverse paddles, and the screw speed was set at 325 rpm. Prior to 

139 extrusion, the moisture content of PPI was adjusted to 15 % (w/w). Moisturized PPI was fed into the 

140 extruder with a loss-in-weight feeder at a rate of 12.8 kg/h. The extrudates of PPI (EPPI) were allowed 

141 to cool to room temperature and then ground to pass through a screen of 40 mesh. Ground samples 

142 were dried in a convection oven at 40 ºC for about 18 h to reach a moisture content of ca. 5.2 % (w/w) 

143 similar to that of raw PPI. The resulting EPPI powder was sealed and stored at 4 ºC for further use.  

144 2.3. Preparation of PPIH and EPPIH and determination of degree of hydrolysis (DH) 

145 Papain, a protease having a broad specificity to peptide bonds, was used to induce the 

146 proteolysis. PPI or EPPI powder was fully dispersed into deionized water (powder: water = 1:10, w/v) 

147 by stirring at room temperature for 2 h using magnetic stirrers, with pH being adjusted to 7.0. Papain 

148 was then added into the resulting sample suspensions, and the enzymic proteolysis was carried out at 

149 50 ºC and pH 7.0 in a temperature-controlled shaking water bath operated at 120 rpm rate. An auto-

150 titrator (848 Titrino plus, Metrohm, Switzerland) loaded with 0.1–1.0 M NaOH solutions was used 

151 to maintained the pH of suspensions constantly at pH 7.0 during proteolysis. On the basis of 

152 preliminary experiments, different enzyme-to-substrate ratios (E:S, 0.05–0.5%, w/w) were used to 

153 prepare PPIH and EPPIH with desirable DH values. The DH of protein hydrolysates refers to the ratio 

154 of cleaved peptide bonds against the total peptide bonds before proteolysis. In this study, the pH-stat 
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155 method described by Adler-Nissen, Eriksen & Olsen (1983) was used to control and determine the 

156 DH (%) of different samples, which was calculated as Eq. (1): 

157          (1) 100%×
××

×
=(%)DH

totP

aOHNNaOH

hMα
CV

158 where α is the average degree of dissociation of α-amino groups; MP is the mass of protein (N  5.46, 

159 g); htot is the total number of peptide bonds in the substrate (meqv/g protein); CNaOH is the 

160 concentration of NaOH solution (M), and VNaoH is the consumption of NaOH solution (mL). 

161 According to the literature, α is taken as 0.44 at 50 ºC and pH 7.0 and htot value is 7.52 meq/g for PPI 

162 (Adler-Nissen et al., 1983). The hydrolysis time was set at 120 min, wherein a plateau in DH over 

163 time can be achieved for each E:S combinations. At the end of the reaction time, the protease inhibitor 

164 phenylmethanesulfonyl fluoride was added into the sample suspensions to a concentration of 1 mM 

165 so as to terminate the papain-induced proteolysis (Luo et al., 2010). The amount of NaOH solution 

166 consumed was recorded for determining the DH. Finally, the hydrolysates were lyophilized, finely 

167 milled, and sealed in plastic bags. As controls, suspensions of PPI and EPPI were treated with the 

168 same incubation conditions and enzyme inactivation treatment as described above, but without papain 

169 added and also required minimal NaOH addition. Throughout this article, samples were designated 

170 according to the extrusion profiles used and the DH obtained. For example, EPPIH-6.2% refers to the 

171 hydrolysate of PPI being pretreated with extrusion and having a DH of 6.2%.  

172 2.4. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 

173 The polypeptide profiles of different protein samples were determined by SDS-PAGE under 

174 reducing conditions using the Laemmli method (Laemmli, 1970). Briefly, 100 μL of protein sample 

175 suspension (2.0 %, w/v) was mixed with 100 μL of Laemmli sample buffer (containing 5 % v/v β-

176 mercaptoethanol). The mixtures were heated to 95 °C for 10 min and were centrifuged for 5 min at 
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177 10,000 g. An aliquot (15 μL) of the resulting sample supernatant was loaded onto the Tris-HCl precast 

178 gel (4–15 %) for electrophoresis running in a Mini-protean Tetra system (Bio-Rad Laboratories). 

179 Electrophoresis was conducted at 200V until the indicator dye reached the gel bottom. After 

180 separation, proteins were fixed and stained using Coomassie Brilliant Blue R-250.  

181 2.5. Determination of protein solubility (PS) 

182 The PS values of samples were determined according to the method of Karaca et al. (2011), with 

183 some modifications. Sample suspensions (1.0 %, w/v) were magnetically stirred for 2 h, with pH 

184 being adjusted to 7.0. The resulting suspensions were centrifuged (10,000 g, 30 min) to collect 

185 supernatants. The soluble nitrogen content of the supernatant was determined using Kjeldahl method 

186 and PS was expressed as the ratio of soluble nitrogen in the supernatant to total nitrogen in the sample.  

187 2.6. Emulsion formulation and characterization 

188 Protein samples were dispersed into deionized water to reach different concentrations (1.5–

189 7.0 %, w/v), followed by magnetically stirring for 2 h. The resulting suspensions were adjusted to pH 

190 7.0. Oil-in-water emulsions were prepared by homogenizing 20 % (v/v) sunflower seed oil and 80 % 

191 (v/v) sample suspensions. Initially, a coarse emulsion was formed by blending the oil and sample 

192 suspensions in a high shear blender (Shanghai Specimen Model Co., China) at 20,000 rpm for 2 min. 

193 The coarse emulsion was then passed through a high-pressure valve homogenizer (APV-2000 Gaulin, 

194 Abvertslund, Denmark) twice at 30 MPa. 

195 Droplet size distributions (DSD) of emulsions were measured using a Mastersizer 3000 laser 

196 diffraction particle size analyzer (Malvern Instruments, Malvern, UK). The refractive index and 

197 adsorption of the sunflower seed oil were taken as 1.462 and 0.001, respectively; and the refractive 

198 index of water was taken as 1.330. Average droplet sizes were characterized as Sauter mean diameter 
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199 d32 = ∑nidi
3/∑nidi

2 and volume mean diameter d43 = ∑nidi
4/∑nidi

3, where ni is the number of droplets 

200 of diameter di. The d43 diameter was used to examine differences in the droplet size distributions for 

201 different sample emulsions, since this parameter was particularly sensitive to the appearance of large 

202 droplets or droplet aggregates in a size distribution due to, for example, flocculation (Hu et al., 2017).   

203 The microstructures of fresh emulsions were visualized using a LSM 710 Laser scanning 

204 confocal microscope (Carl Zeiss Microscopy GmbH, Jena, Germany) operating in fluorescence 

205 mode. Nile Red dye was used to stain the emulsion oil phases, with fluorescence excited at 488 nm. 

206 The  Nile Red staining solution was prepared by dispersing 0.001g of Nile Red dye in 10 mL of 1, 

207 2-propanediol. Nile Blue dye was used to stain the proteins in emulsion, with fluorescence excited at 

208 633 nm. The Nile Blue staining solution was prepared by dispersing 0.001g of Nile Blue dye in 10 

209 mL deionized water. An aliquot (20 μL) of the Nile Red or Nile Blue solution was thoroughly mixed 

210 with 5 mL of emulsion. The samples were scanned at 25 ºC, using 20 (NA 0.1) and 63 (NA 1.2) 

211 water-immersion objective lens. As the Nile Red stained the oily substance in emulsion, the oil phase 

212 appeared as greenish colour, whilst the water/protein phase appeared dark in the microimages; as the 

213 Nile Blue stained the proteinaceous substance, the protein phase appeared as reddish colour, whilst 

214 the oil/water phase appeared dark.  

215 2.7. Determinations of surface pressure (π)  

216 Interfacial tension measurements of protein samples at oil-water interface were determined 

217 based on the sessile drop method using an OCA-50 contact angle and drop contour analysis system 

218 (Dataphysics Instruments GmbH, Germany). Suspensions of PPIH and EPPIH in 50 mM phosphate 

219 buffer solution (pH 7.0) were serially diluted to a final concentration of 0.001–5.0 % (w/v). After 

220 centrifugation (10,000 g, 20 min), the resulting supernatants were collected. The interfacial tension 
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221 measurements were carried out at 25 °C. A drop (15 μL) of the sample supernatants was delivered 

222 into an optical glass cuvette containing purified sunflower seed oil by the automatic sampling system, 

223 and allowed to stand for 180 min to achieve protein adsorption at the oil-water interface. Charged 

224 coupled device camera started to photograph the contour of the drop immediately after its formation, 

225 from which the interfacial tension were automatically calculated based on Young-Laplace equation 

226 by the instrument. The surface pressure was calculated from the interfacial tension measurements: π 

227 = γ0 – γ, where γ0 is the interfacial tension of the phosphate buffer–sunflower seed oil interface (30.2 

228 ± 0.3 mN/m) and γ is the interfacial tension in the presence of protein samples.  

229 2.8. Determinations of saturation surface load (Γsat) 

230 The Γsat values of protein samples were determined according to the method of Zhao et al. 

231 (2014), with some modifications. Freshly prepared emulsions were diluted with 1  deionized water, 

232 and were centrifuged for 2 h at 12,000 g to separate oil droplets from serum layer. The oil droplet 

233 phase was carefully removed using a syringe. The amount of non-adsorbed protein remained in the 

234 serum phase and precipitates was determined using Kjeldahl method (N  5.46). The mass adsorbed 

235 protein per unit volume of emulsion (Ca) is equal to the initial concentration of protein minus that of 

236 non-adsorbed protein after homogenization. The Γsat (mg m-2) is then calculated from Eq. (2):  

237          (2)                                           
oil

32a

sat ×6

×
=

Ø

dC
Γ

238 where d32 diameters of emulsions are measured using Mastersizer 3000; Øoil is the volume fraction 

239 of the oil in emulsions (0.2).   

240 2.9. Statistical analysis 

241 All measurements were repeated at least 3 times using duplicate samples. The averages and the 

242 standard deviations were calculated from all measurements using Excel Software (Microsoft 
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243 Corporation, USA). Statistically significant differences between samples were assessed by a one-way 

244 ANOVA and Tukey’s test with a α-level of 0.05 using Minitab 17.0 software (Minitab Inc., USA).  

245 3. Results and discussion 

246 3.1. Influences of extrusion pretreatment on the enzymic proteolysis of PPI 

247 For analyzing the influences of extrusion pretreatment on the enzymic proteolysis of PPI, the 

248 DH, PS (pH 7.0), and SDS-PAGE profiles of hydrolysates prepared with and without extrusion 

249 pretreatment were studied. Fig. 2A shows digital images of EPPI prepared at different extrusion 

250 temperatures (100, 130, 160 °C). It is seen that at relatively low extrusion temperature of 100 °C, the 

251 extrudate showed a low expansion extent. With increasing extrusion temperature to 130 °C, the 

252 expansion extent of the extrudate increased remarkably. Besides, from the cross section of the 

253 extrudate of EPPI-130 °C, we can see that it presented characteristic vacuoles and laminated 

254 structures of extruded products. However, with a further increase of extrusion temperature to 160 °C, 

255 the expansion extent of the extrudate decreased, and the product became brown in colour and hard in 

256 texture. Fig. 2B shows effects of extrusion temperature on the DH of hydrolysates. Compared to 

257 PPIH, all tested EPPIH (100, 130, 160 °C) obtained significantly (p<0.05) higher DH under the same 

258 enzymolysis conditions, suggesting that extrusion pretreatment was able to effectively enhance the 

259 enzymic proteolysis of PPI. In addition, EPPIH-130 °C obtained a significantly (p<0.05) higher DH 

260 than EPPIH-100 °C and EPPIH-160 °C. From these results, we can see that extrusion temperature 

261 was an important factor that posed a striking impact on both morphology and enzymic proteolysis of 

262 EPPI, which agreed with those reported in the literature (Abd EI-Hady et al., 2003; Alam et al., 2016). 

263 Seeing that among all the EPPI prepared in this study, EPPI-130 °C showed the highest expansion 

264 extent and obtained the highest DH after enzymic proteolysis, it seems that the DH of EPPIH was 
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265 positively correlated to the expansion extent of EPPI. Since extrusion pretreatment conducted at 

266 130 °C showed better effect in enhancing the enzymic proteolysis of PPI in terms of DH, this 

267 extrusion temperature was selected to prepare EPPI for the following studies.  

268 To characterize the protein degradation in samples caused by different treatments, SDS-PAGE 

269 experiment was performed under reducing condition. Fig. 3 shows the electrophoretic patterns of 

270 control PPI, control EPPI and their hydrolysates prepared with papain-induced proteolysis at different 

271 E:S ratios (0.05–0.5%, w/w). It is seen that the electrophoretic patterns of control PPI and control 

272 EPPI were similar, both displayed five major bands, S66, S41, S40, S38, and S26, named by their 

273 molecular weights (MW). Among them, Band S66 was identified as the subunit of conarachin, bands 

274 S41, S40, and S38 were identified as the acidic subunits (AS) of arachin, and band S26 was identified 

275 as the basic subunit (BS) of arachin (Ghatak et al., 2013; Zhao et al., 2011). According to the 

276 literature, arachin and conarachin are the major constitutive proteins in PPI, which account for 

277 approximately 90% of the total proteins (Ghatak et al., 2013). After papain-induced proteolysis, the 

278 protein components in PPI degraded gradually with increasing E:S ratios, but showed different 

279 protease accessibilities: conarachin (S66) disappeared at E:S = 0.1% (w/w); AS-arachin (S41, S40, 

280 and S38) disappeared at E:S = 0.5% (w/w); BS-arachin (S26) appeared highly resistant to papain-

281 induced proteolysis, and was still identifiable at E:S = 0.5% (w/w). By contrast, it appeared that 

282 conarachin, AS-arachin, and BS-arachin in EPPI were hydrolyzed more readily by papain, because 

283 they degraded completely at lower E:S ratios of 0.05%, 0.1%, and 0.5% (w/w), respectively. From 

284 these observations, it is clear that the accessibilities of the major protein components to papain in PPI 

285 were substantially increased after extrusion pretreatment. This finding was similar with previous 

286 studies and confirmed that extrusion pretreatment was a highly effective way to improve the protease 
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287 accessibilities of plant proteins (Chen et al., 2005; Jung et al., 2005; Surówka et al., 2004; Zheng et 

288 al., 2006). According to the literature, the denaturing action of high temperature and high pressure on 

289 proteins in the extruder, which, together with shearing forces, led to the formation of laminated 

290 structures easily accessible to proteases (Day et al., 2013; Surówka et al., 2004). On the other hand, 

291 on the lower part of the gel, some new polydisperse bands were detected for both PPIH and EPPIH, 

292 which probably arised from the production of peptides during papain-induced hydrolysis of peanut 

293 proteins. It is seen that since almost all of the subunits in EPPI had been degraded completely, EPPIH 

294 with DH between 6.2% and 8.3% mainly consisted of peptides with MW < 25 kDa. 

295 Adequate protein solubility is a key factor for a protein to be as an efficient emulsifying agent. 

296 Poor emulsification performance usually goes together with poor protein solubility (McClements et 

297 al, 2016). From Table 1, it is seen that the PS of control PPI was very poor (27.6%). This may be 

298 because the harsh processes used for manufacturing commercial PPI usually cause extensive 

299 denaturation and aggregation of peanut proteins, resulting in the loss of much of its soluble proteins 

300 and the formation of a large amount of insoluble protein particles (Ghatak et al., 2013; Taherian et 

301 al., 2011). In contrast, the control EPPI showed a lower PS of 22.5%. This finding was similar with 

302 previous studies that extrusion cooking was ineffective in improving the PS of peanut protein 

303 products (Alonso, Orúe, Zabalza, Grant, & Marzo, 2000c). After enzymic proteolysis, the DH and PS 

304 of both PPIH and EPPIH increased steadily as E:S ratios increased. It is well known that the 

305 breakdowns of peptide bonds induced by enzymolysis caused an increase in ionizable amino and 

306 carboxyl groups and a decrease in molecular mass for hydrolyzed proteins, leading to an improvement 

307 on their PS (Wouters et al., 2016). Moreover, enzymolysis probably induced the unfolding of protein 

308 molecules and/or protein aggregates, whereby more hydrophilic groups could be exposed and showed 
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309 increased intramolecular hydration (Zhao et al., 2011). Therefore, limited enzymic proteolysis could 

310 cause a strong increase in the PS of food proteins, on the premise that the protease is accessible to the 

311 protein being hydrolyzed (Wouters et al., 2016; Zeeb et al., 2017; Zhao et al., 2011). From Table 1, 

312 we can see that at the same E:S ratios, EPPIH always got significantly (p<0.05) higher DH and PS 

313 than PPIH did. For instance, at E:S = 0.2% (w/w), the DH and PS of EPPIH were 6.2% and 89.3%, 

314 much higher than those of PPIH (DH = 1.3%, PS = 42.7%). This may be because the protease 

315 accessibilities of the major enzymolysis-resistant protein components (conarachin and arachin) in PPI 

316 were substantially increased after extrusion pretreatment, more peanut proteins in EPPI could then be 

317 readily hydrolyzed and became soluble. It is noteworthy that EPPIH with DH between 6.2% and 8.3% 

318 showed a high PS of ~90%, which meant that most of insoluble proteins and protein aggregates in 

319 EPPIH had been hydrolyzed and become soluble peptide fragments, as shown in SDS-PAGE analysis.  

320 3.2. Emulsification performances of PPIH and EPPIH 

321 To be effective as emulsifying agents, proteins should possess some surface activity, thereby 

322 facilitating the production of fine emulsion droplets by lowering the oil/water interfacial tension. 

323 Once adsorbed onto droplets, proteins should spread out quickly on the interface, thereby stabilizing 

324 the freshly formed droplets against immediate aggregation by forming a protective interfacial layer 

325 around the droplets. Therefore, the emulsification performance refers to how effective an emulsifying 

326 agent is at forming emulsions with small droplets during emulsification (McClements, 2007). Effects 

327 of DH on average droplet sizes d43 and microstructures of fresh oil-in-water emulsions formed by 

328 PPIH and EPPIH are demonstrated in Fig. 4 and Fig. 5, respectively. In Fig. 5, LSCM images with 

329 oil stained and DSD superimposed were used to monitor the spatial distributions of droplets in 

330 emulsions, and those with protein stained were used to examine the structures of emulsion interfacial 



ACCEPTED MANUSCRIPT

16

331 layers. Emulsions formed by control PPI and control EPPI both showed a high d43 values of 29.4 μm 

332 and 33.6 μm, respectively. Based on LSCM observations, it was found that the control PPI emulsion 

333 contained many big droplets and droplet flocs, suggesting that re-coalescence and flocculation of 

334 emulsion droplets occurred during homogenization (Fig. 5a). In this experiments, in order to amplify 

335 differences in emulsification performance between different protein samples, a relatively low 

336 protein/oil ratio (sample concentration = 2.0 % w/v, oil fraction = 20 vol.%) was used to make 

337 emulsions. It is clear that control PPI could not make a stable emulsion with fine droplet size under 

338 this emulsification condition. Additionally, from Fig. 5b, it is seen in the control PPI emulsion that a 

339 lot of protein particles were attached on the droplet surfaces, with emulsion droplets being connected 

340 by them. The reason for this may be due to the fact that under the turbulent flow conditions of high-

341 pressure homogenization, it is mainly by convection that emulsifying agents are transported to the 

342 freshly created oil/water interfaces, so that insoluble protein particles could also adsorb fast onto 

343 droplet surfaces (Dickinson, 2017). However, compared to soluble proteins, protein particles are less 

344 efficient in coating oil droplets at relatively low concentration, because they have a low diffusive 

345 mobility and could not unfold on the droplet surface after adsorption, and are prone to induce 

346 coalescence and bridging flocculation (sharing of the adsorbed layer amongst adjacent droplets, see 

347 Fig. 6) of emulsion droplets during homogenization (Dickinson, 2017; Tcholakova, Denkov, & Lips, 

348 2008; Tcholakova, Denkov, Sidzhakova, Ivanov, & Campbell, 2003).  

349 After enzymic proteolysis, with the increase of DH, d43 of emulsions formed by PPIH and EPPIH 

350 both decreased gradually, and then increased rapidly at high DH values. Emulsions formed by PPIH 

351 displayed a minimum d43 of 20.6 μm at DH 0.9%. Microscopic analyses showed that compared to the 

352 control PPI emulsion, the PPIH-0.9% emulsion showed an increase in small droplets distributing from 
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353 0.1 to 1 μm (Fig. 5c). However, strong droplet flocculation was still evident in the PPIH-0.9% 

354 emulsion, and its emulsion interfacial layers still contained a lot of protein particles (Fig. 5d). It 

355 appears that some soluble proteins/peptides with high surface activity were produced during papain-

356 induced proteolysis of PPI, which enabled PPIH-0.9% could generate and stabilize some fine droplets 

357 during homogenization. However, due to their compact structures, peanut proteins or protein particles 

358 in PPI were resistant to enzymolysis, which limited the production of surface active proteins/peptides 

359 during enzymic proteolysis. As a result, bridging flocculation caused by adsorbed protein particles 

360 occurred in the PPIH-0.9% emulsion, because still there were insufficient emulsifying agents 

361 available to fully coat all newly created droplets during homogenization. These findings suggest that 

362 modification of PPI using papain-induced proteolysis alone could only induced a limited 

363 improvement on its emulsification performance.  

364 By contrast, emulsions formed by EPPIH showed a minimum d43 of ~4.5 μm at DH = 4.6−6.2%. 

365 Microscopic analyses showed that the emulsion formed by EPPIH-6.2% appeared homogeneous, 

366 with most of droplets distributing from 0.1 to 10 μm (Fig. 5e). These results clearly showed that 

367 modification of PPI using extrusion pretreatment and controlled enzymic proteolysis was more 

368 effective in improving the emulsification performance of PPI than that using enzymic proteolysis 

369 alone. As shown before, the protease accessibilities of the major protein components (conarachin and 

370 arachin) in PPI were substantially increased after extrusion pretreatment such that most of insoluble 

371 proteins and protein aggregates in EPPI could be readily hydrolyzed and became soluble. Therefore, 

372 it is reasonable to infer that a lot of more surface active peptides were produced during papain-induced 

373 proteolysis of EPPI as compared with that of PPI, leading to a marked improvement on the 

374 emulsification performance for EPPIH. 
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375 However, after reaching their minimum d43, emulsions formed by PPIH and EPPIH both showed 

376 a rapid increase in d43 with a further increase in DH, which suggested that excessive enzymic 

377 proteolysis caused a decrease in the emulsification performances for both PPIH and EPPIH. Another 

378 interesting finding was that although the emulsion formed by EPPIH-8.3% contained a lot of big 

379 droplets and had a large d43 of 12.7 μm, there was no sign of droplet flocculation observed in this 

380 emulsion (Fig. 5g). In addition, it is observed that the droplet surfaces were covered by a thin layer 

381 of peptides, with little particulates attached (Fig. 5h). Considering that EPPIH-8.3% mainly consisted 

382 of soluble peptides with small molecular weight (PS = 87.2%, MW < 25 kDa) and control PPI 

383 contained a lot of protein particles, it seems that when insufficient emulsifying agents were available 

384 during homogenization, bridging flocculation of droplets probably occurred in emulsions formed by 

385 protein particles (e.g., control PPI emulsion), but not occurred in those formed by small peptides (e.g., 

386 EPPIH-8.3% emulsion). The reason for this finding is not fully understood, but it may be that protein 

387 particles were of large size and might have several different regions available for anchoring to the 

388 droplet surfaces, and were therefore apt to cause the bridging of protein particles between droplets at 

389 relatively low concentrations during homogenization (see Fig. 6) (Dickinson, 2010), which posed a 

390 negative effect on the emulsification performance for PPI.  

391 The d43 values as a function of sample concentration for emulsions (20 vol.% oil) formed by 

392 control PPI, PPIH-0.9% and EPPIH-6.2% are shown in Fig. 7. For all tested protein samples, d43 of 

393 emulsions formed by them decreased gradually with increasing their concentration until a minimum 

394 value was reached, which indicated that sufficient emulsifying agents were available during 

395 homogenization to saturate all of newly created droplets. For control PPI, PPIH-0.9% and EPPIH-

396 6.2%, the minimum concentration required to form stable emulsions was 6.5 %, 5.5 %, and 2.5 % 
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397 (w/v), respectively; the measured average droplet sizes of these emulsions were small and without 

398 too much difference (d32 = 0.4 μm, d43 = 1.2–1.6 μm, see Table 2). LSCM observations showed that 

399 these emulsions were homogeneous without droplet flocculation (images not shown). From these 

400 results, we can see that compared with control PPI and PPIH-0.9%, EPPIH-6.2% was capable of 

401 forming a stable emulsion with comparable fine droplet size at a relatively lower concentration, and 

402 therefore possessed a better emulsification performance.        

403 3.3. Interfacial properties of PPIH and EPPIH 

404 In an attempt to explore the underpinning mechanisms of improved emulsification performances 

405 for PPIH and EPPIH, the surface pressure (π) versus sample concentration profiles and saturation 

406 surface loads (Γsat) of some selected PPIH and EPPIH were determined. Plots of the dependence of 

407 surface pressure on sample concentration for control PPI, PPIH-0.9% and EPPIH-6.2% are shown in 

408 Fig. 8. For all tested protein samples, as sample concentration increased, π continued to increase until 

409 it reached a relatively constant level at a certain protein concentration where the interface had been 

410 saturated with proteins, i.e. saturation surface pressure (πsat). The value of πsat gives an indication of 

411 how effectively an emulsifying agent is capable of reducing the oil/water interfacial tension at 

412 saturation, which is closely related to how easily droplets are disrupted during homogenization 

413 (McClements et al., 2017). The measured πsat were 15.5, 14.7, 14.3, and 9.4 mN m-1 for PPIH-0.9%, 

414 control PPI, EPPIH-6.2%, and EPPIH-8.3%, respectively. The πsat values of PPIH-0.9%, control PPI 

415 and EPPIH-6.2% were comparable to those of protein emulsifiers (around 11–18 mN m-1) commonly 

416 used in emulsion-based food (McClements et al., 2016), suggesting that they had adequate surface 

417 activity that enabled the generation of fine droplets during homogenization. However, it should be 

418 noted that the minimum concentration required to reach πsat for different samples were in the sequence 
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419 of EPPIH-6.2% (0.01 %, w/v) < PPIH-0.9% (0.1 %, w/v) < control PPI (0.5 %, w/v). These results 

420 indicated that compared to control PPI and PPIH-0.9%, EPPIH-6.2% was capable of lowering 

421 oil/water interfacial tension to a comparable extent at saturation, but at a much lower bulk 

422 concentration. Indeed, this finding was consistent with that of emulsification performance 

423 measurements, and provided further evidence that EPPIH-6.2% probably contained a lot of more 

424 surface active peptides than control PPI and PPIH-0.9%. On the other hand, compared to EPPIH-

425 6.2%, EPPIH-8.3% showed a much lower πsat at a higher concentration (0.5 %, w/v), suggesting that 

426 excessive proteolysis caused the loss of surface activity for protein hydrolysates, and therefore the 

427 decrease of their emulsification performances. 

428 The effectiveness of a protein as an emulsifying agent depends on how much is present at the 

429 oil/water interface when droplets are completely saturated, i.e. Γsat (McClements, Bai, & Chung, 

430 2017). The emulsions stabilized by 6.5 % (w/v) control PPI, 5.5 % (w/v) PPIH-0.9%, and 2.5 % (w/v) 

431 PPIH-6.2% were chosen for Γsat measurements, because these sample concentrations were the 

432 minimum amount required for them to emulsify all the oil phase without bridging flocculation. From 

433 Table 2, we can see that the measured Γsat for different samples were in the sequence of control PPI 

434 (11.3 mg m-2) > PPIH-0.9% (9.6 mg m-2) > EPPIH-6.2% (2.7 mg m-2), suggesting that the emulsifying 

435 agents in EPPIH-6.2% were capable of saturating per unit area of droplet surface with less amount 

436 when compared with those in control PPI and PPIH-0.9%. This finding may be explained by the fact 

437 that EPPIH-6.2% mainly consisted of soluble peptides, which probably had better molecular 

438 flexibility than globular peanut proteins in PPI. According to the literature, compared with proteins 

439 with rigid structures, proteins with flexible structures tended to have a lower Γsat, because they could 

440 rapidly alter their conformation and spread out after adsorption onto droplet surface (Dickinson, 
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441 2017). On the other hand, it is seen that the Γsat of control PPI and PPIH-0.9% were on the high end 

442 of values typically reported for food proteins (ca. 1–10 mg m-2) (McClements et al., 2017). This may 

443 be because the emulsion interfacial layers formed by control PPI and PPIH-0.9% were a mixture of 

444 soluble proteins and protein particles as shown in LSCM observations. Extraordinary high Γsat values 

445 were also reported by several studies on emulsifying properties of heat-denatured soy proteins and 

446 whey proteins, which suggested that with particulates adsorbing to the droplet surface, the amount of 

447 emulsifying agent required to saturate per unit area of droplet surface can be much higher than that 

448 for soluble proteins, because protein particles were of much larger size and could not unfold at droplet 

449 surface as compared to soluble proteins (see Fig. 6) (Cui, Chen, Kong, Zhang, & Hua, 2014; Keerati-

450 u-rai & Corredig, 2009; Tcholakova et al., 2003).  

451 4. Conclusions 

452 In this work, we investigated effects of extrusion pretreatment on the enzymic proteolysis of PPI 

453 and on the emulsification performances and interfacial properties of its hydrolysates. Results showed 

454 that extrusion pretreatment effectively enhanced the papain-induced proteolysis of PPI in terms of 

455 DH, with a preferable extrusion temperature at 130 °C. After extrusion pretreatment, the protease 

456 accessibilities of the major enzymolysis-resistant protein components (conarachin and arachin) in PPI 

457 were substantially increased, resulting in a remarkable increase in PS for the resulting hydrolysates. 

458 EPPIH with DH between 6.2% and 8.3% mainly consisted of peptides with MW < 25 kDa, and 

459 showed a PS of ~90%, much higher than those of control PPI (27.6%) and PPIH. 

460 Based on the analysis of emulsion microstructures visualized using LSCM, it was found that the 

461 commercial PPI used in this study contained a lot of protein particles, which could adsorb onto 

462 emulsion droplet surfaces during high-pressure homogenization. Protein particles had a very high 
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463 saturation surface load and tended to induce bridging flocculation of emulsion droplets during 

464 homogenization at relatively low concentration, which posed a negative effect on the emulsification 

465 performance for PPI. It is encouraging to find that modification of PPI using extrusion pretreatment 

466 and controlled papain-induced proteolysis caused a marked improvement on its emulsification 

467 performance. The improved emulsification performance of EPPIH was arisen from the increased 

468 protease accessibility of EPPI after extrusion pretreatment, which caused two important changes for 

469 the resulting hydrolysates: (1) most of insoluble protein particles in EPPIH were enzymically 

470 hydrolyzed and become soluble, which effectively eliminated the negative effects of protein particles 

471 on emulsification performance; (2) the production of surface active peptides with low saturation 

472 surface Load was substantially promoted in EPPIH during enzymic proteolysis.  

473 In conclusion, hydrolyzed PPI showed potential as a valuable new source of emulsifying agent 

474 for emulsion-based food products. Extrusion pretreatment was proved to be a highly effective 

475 technique to enhance the enzymic proteolysis of globular plant proteins, and produced noticeable 

476 benefits for the functionality improvement of protein hydrolysates. However, what structural changes 

477 actually occurred to PPI during extrusion cooking, which made the resulting extrudates become easily 

478 accessible to protease, was still not very clear. Future detailed investigations on this topic will be 

479 helpful to understand the relationship between protein structure and protease accessibility and to 

480 establish industrial applications of extrusion pretreatment.   
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583 Legends 

584 Table 1. DH and PS (pH 7.0) of PPIH and EPPIH hydrolyzed with papain at different E/S ratios (0–

585 0.5%, w/w)* 

586 Table 2. Properties of emulsions (20 vol.% oil) formed by control PPI, PPIH-0.9% and EPPIH-6.2%*

587 Fig. 1. Schematic diagram of the twin-screw extruder employed in this study.

588 Fig. 2. Effects of extrusion pretreatment conducted at different temperatures (100, 130, 160 °C) on 

589 the morphology of EPPI (A) and on the DH of EPPIH hydrolyzed with papain at E:S = 0.2% (w/w) 

590 (B). 

591 Fig. 3. SDS-PAGE patterns of PPIH and EPPIH hydrolyzed at different E:S ratios (0–0.5%, w/w). 

592 S66: conarachin; S41, S40, and S38: acidic subunits of arachin; S26: basic subunits of arachin; M, 

593 molecular weight markers. 

594 Fig. 4. Effects of DH on the initial average droplet size (d43) of emulsions (20 vol.% oil, 2.0% w/v 

595 samples) formed by PPIH and EPPIH. 

596 Fig. 5. LSCM images of fresh emulsions (20 vol.% oil, 2.0 % w/v samples) formed by some selected 

597 PPIH and EPPIH: (a and b) control PPI; (c and d) PPIH-0.9%; (e and f) EPPIH-6.2%; (g and h) 

598 EPPIH-8.3%. DSD is superimposed on oil stained microimages, with horizontal scale showing 

599 particle size (μm); arrows in protein stained microimages highlight the presence of protein particles 

600 at droplet surfaces.   

601 Fig. 6. Schematic representation of effects of protein particles on the formation and stabilization of 

602 emulsions during homogenization. Collision of droplets with insufficient coverage of emulsifying 

603 agents leads to coalescence and/or bridging flocculation (bridging of protein particles between 

604 droplets).  
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605 Fig. 7. Effects of concentration of protein samples on the initial average droplet size (d43) of emulsions 

606 (20 vol.% oil) formed by control PPI, PPIH-0.9% and EPPIH-6.2%, respectively.  

607 Fig. 8. Changes in surface pressure at sunflower seed oil/water interface as a function of sample 

608 concentration for some selected PPIH and EPPIH.    
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Table 1. DH and PS (pH 7.0) of PPIH and EPPIH hydrolyzed with papain at different E/S ratios 

(0–0.5%, w/w) * 

DH (%) PS (%)E/S ratios 

(%, w/w) PPIH EPPIH PPIH EPPIH

0 0.1 j 0.1 j 27.6 j 22.5 k

0.05 0.6 i 2.1 e 34.3 i 57.4 d

0.1 0.9 h 4.6 d 39.5 h 83.5 c

0.2 1.3 g 6.2 c 42.7 g 89.3 a

0.3 1.7 f 7.1 b 46.4 f 90.6 a

0.5 2.2 e 8.3 a 51.6 e 87.2 b

* In the comparison of the same type of index, results having different letters are significantly different 

(p<0.05).  
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Table 2. Properties of emulsions (20 vol.% oil) formed by control PPI, PPIH-0.9% and EPPIH-

6.2%*  

Sample C0 (w/v, %) d32 (μm) d43 (μm) Γsat (mg m-2)

control PPI 6.5 0.4 a 1.3 b 11.3 a

PPIH-0.9% 5.5 0.4 a 1.2 c 9.6 b

EPPIH-6.2% 2.5 0.4 a 1.6 a 2.7 c

* In the comparison of the same type of index, results having different letters are significantly different 

(p<0.05); C0: sample concentration in the aqueous phase before emulsification.  


