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Abstract 

Process intensification (PI) technologies such as rotating packed beds (RPBs) could reduce the size of absorber used 
in post-combustion CO2 capture (PCC) based on chemical absorption processes by about 12 times compared to 
absorber with standard packed beds. However, mass transfer correlations for predicting effective interfacial area and 
liquid film mass transfer coefficient in RPBs are limited in literature and their prediction accuracy against experimental 
data is yet to be compared. This need is addressed in this study by evaluating the performances of different correlations 
through comparison with experimental data. Of all the correlations assessed, it is found that Lou et al. [1] and Tung 
and Mah [2] correlations give reliable estimate of the effective interfacial area and liquid film mass transfer 
coefficients respectively.  
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1. Introduction 

1.1. Background 

The unfavourable role of CO2 in stimulating climate change has generated concerns as CO2 level in the atmosphere 
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continues to increase. These concerns have paved way for carbon capture and storage (CCS) from large stationary 
sources such as coal-fired power plants. With CCS, electricity will continue to be generated from secure and cheap 
energy sources such as coal and natural gas with minimized impact on the environment. Post-combustion CO2 capture 
(PCC) based on chemical absorption is a near-term option for implementing CCS commercially. However, 
absorbers/strippers with packed bed used in PCC processes are huge in size contributing significantly to plant 
footprint, capital and operating costs. For example, engineering estimates showed that absorbers for a PCC plant using 
MEA solvent for capturing CO2 from a 500 MWe coal-fired subcritical power plant will have diameters up to 25 m 
and packing height over 27 m. Through PI, the sizes of the absorber/stripper could be reduced significantly [3-4]. 
Agarwal et al. [3] and Joel et al. [4] reported 7 and 12 times absorber column size reduction respectively for separate 
cases involving replacement of packed bed with RPB for PCC applications. RPB have been successfully demonstrated 
in industry for different applications such as natural gas desulphurization. 

 
Nomenclature 

          Effective interfacial area of packing per unit volume (m2/m3)  
        Actual area of packing per unit volume (m2/m3) 

         Tangential section area (m2) =  
      Packing parameters for Luo et al. (2012) correlation 

       Hydraulic diameter (m) = 4 /  
       Effective diameter of packing (m) = 6(1- ) /  
       Liquid diffusivity (m2/s) 
       Liquid film mass transfer coefficient (m/s) 
      Liquid mass flowrate per unit tangential section area (kg/m2 s) 
       Liquid volumetric flowrate (m3/s) 

         Radius (m)  
       Inner radius of the packed bed (m) 
       Outer radius of the packed bed (m) 
       Radius of the stationary housing (m) 
      Liquid velocity (m/s) 
      Volume inside the inner radius of the bed (m3) =  
     Volume between the outer radius of the bed and the stationary housing (m3) =  
      Total volume of the RPB (m3) =  
       Parameter for Chen at al. [5] model =  

       Height of the rotor (m) 
     Critical surface tension for metallic packing material (N/m) 
     Liquid surface tension (N/m) 

       Packing porosity (m3/m3) 
     Liquid density (kg/m3) 
     Liquid dynamic viscosity (Pa s) 

      Rotating speed (rad/s) 

 

1.2. Principle of RPB absorber and problem statement 

RPB absorber comprises of an annular packed bed (rotor) mounted on a rotating shaft. The gas and liquid enters the 
rotor through the outer and inner sections respectively so that they flow counter-currently across the bed (Fig.1). The 
liquid and gas are subject to intense centrifugal acceleration which is many times the gravitational acceleration in 
conventional packed beds [6]. As a result,  

 RPB allows high flooding rate leading to drastic reduction in packing volume  
 RPB permits viscous solvents such as concentrated solutions of monoethanolamine (MEA). Concentrated 

solutions will result in more rapid kinetics and therefore higher CO2 absorption rate.    
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Consequently, similar capture levels as in conventional packed beds can be achieved in RPBs using significantly 
reduced packing volume [3-4]. Due to the presence of centrifugal force field in RPBs, mass transfer correlations for 
conventional packed columns cannot be used to predict mass transfer in RPBs with acceptable accuracy [4,7]. For 
RPBs, only a few correlations have been reported for effective interfacial area and liquid film mass transfer 
coefficients [1-2, 5,8]. Modification of the correlations for conventional packed beds by replacing the “g” term (i.e. 
gravitational acceleration) with “rw2” (i.e. centrifugal acceleration) have also been suggested [7,9-10]. Predictions 
from these correlations need to be compared against experimental data to determine their prediction uncertainty and 
thereafter identify the most accurate options for predicting mass transfer coefficients in RPBs.    

 

Fig. 1. Tangential sectional view of an RPB [9] 

1.3. Aim and objective of this study 

As discussed in Section 1.2, only a few options are reported in literature for estimating interfacial area and liquid film 
mass transfer coefficients in RPBs. It is a question mark to judge better option among them. Kang et al. [7] and Joel 
et al. [10] attempted comparing and validating some of them through process simulation. In their work, the mass 
transfer correlations were organised in sets and each set was used separately in their model. The problem with this 
approach is that several correlations are changed in the model, so individual performance of the correlations cannot 
be seen. What they showed instead was that some set of correlations were better than others. In this study, the aim is 
to compare and validate the correlations individually using experimental data obtained from literature.  

2. Effective interfacial area 

2.1 Experimental data and correlations 

In literature, effective interfacial area data was derived from measurements of CO2 absorption in NaOH solutions 
[1,11-12] based on the approach proposed by Sharma and Danckwerts [13]. Data from Lou et al. [1] was selected for 
this work. Data from Munjal et al. [12] is for glass bead packings; wire mesh packings are preferred as they are proven 
to have better mass transfer performance and rigidity for RPB [5,9]. On the other hand, data from Luo et al. [1] 
included several points and necessary parameters are given making it possible for the data to be used for validation 
purposes. Five correlations for interfacial area in RPB have been evaluated in this study (Table 1). These includes 
popular correlations for conventional packed bed, namely Onda et al. [14], Billet and Schultes [15] and Puranik and 
Vogelpohl [16], which have been used commonly for RPB design and modelling [4,7,9]. Others include Luo et al. [1] 
and Rajan et al. [8] which are developed for RPBs. The correlations have been simulated using gPROMS 
ModelBuilder® with physical properties obtained from Aspen Plus® through CAPE OPEN interface.   

2.2 Results 

The results (Fig.2) show that the predictions with Luo et al. [1] correlation provide the best agreement with 
experimental data. Modified Onda et al. [14] correlation with “g” term replaced by “ ” term which is widely used 
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in literature [4,7,9] underpredicts the effective interfacial area by nearly 50%. More accurate prediction is obtained 
with modified Billet and Schultes [15] correlation (i.e. with “g” term replaced by “ ” term) although the deviation 
becomes increasing large at high rotating speed. Predictions of Puranik and Vogelpohl [16] correlation shows nearly 
50% deviation. Comparing them with others at different rotating speed also highlights the impact of centrifugal 
acceleration. An important finding is that it is impossible to use correlations that do not explicitly account for 
centrifugal acceleration to estimate interfacial area in RPBs. In contrast, Puranik and Vogelpohl [16] correlation has 
been used successfully in conventional packed beds. Finally, performance of Rajan et al. [8] correlation which is 
developed for RPB was a bit surprising. The predictions deviated by nearly 50%. The large error of Rajan et al. [8] 
correlation is attributed to the split packing configuration used in the RPB for their experiments as opposed to single 
packing configuration used as basis in this study.  

Table 1 Correlations for calculating effective interfacial area in RPB 

Correlations Source Comment 

 Onda et al. [14] These correlations have been 

modified for RPB by replacing 

the “g” term with “ ” term.  
 Billet and Schultes [15] 

 Puranik and Vogelpohl 

[16]  

This do not have a “g” term. 
They have been selected to know 

if good predictions are possible in 

RPB without explicitly 

accounting for acceleration.  

 Rajan et al. [8] These correlations are developed 

for RPB. Rajan et al. [8] used 

split packing rotated by separate 

co-rotated motors. 

 

Luo et al. [1] 

3. Liquid mass transfer coefficient 

3.1 Experimental data and correlations 

Mass transfer in RPBs has been studied widely although the  instead of  are generally determined due to the 
difficulties in estimating the interfacial area,  [17]. Measurement of  have been reported by Luo et al. [18] and the 
experimental data has been selected for independently verifying different correlations for liquid film mass transfer 
coefficients in this study. The data were derived from measurements of CO2 absorption in NaOH solutions based on 
the approach proposed by Sharma and Danckwerts [13]. The reaction kinetics were assumed to be pseudo-first order 
kinetics and mass transfer controlled by the liquid phase resistance. Two correlations, namely Tung and Mah [2] and 
Chen et al. [5] were selected for comparison (Table 2). Both correlations are developed for RPB. Tung and Mah [2] 
is simpler and requires less parameters than the Chen et al. [5] correlation. Similarly, the correlations have been 
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simulated using gPROMS ModelBuilder® with physical properties obtained from Aspen Plus® through CAPE OPEN 
interface.   
 

 

 
             Fig. 2. Validation of different correlations for effective interfacial area predictions 

Table 2 Correlations for liquid mass transfer coefficient 

Correlations Source Comment 

  Tang and 

Mah [2]  

Theoretical model based on 

penetration theory. Do not account 

for end effect phenomenon 

 

 
 

Chen et 

al. [5] 

Empirical model for predicting 

. Accounts for end effect 

phenomenon.  predicted by 

combining the correlation with Luo 

et al. [1] correlation for interfacial 

area, a.  

 

3.2 Results 

The results shown in Fig. 3 show that Tung and Mah [2] gives more accurate predictions at different conditions than 
Chen et al [5]. The deviation of Chen et al. [5] becomes significant at high rotating speed. This is interesting as Tung 
and Mah [2] is simpler, requires less parameters and most of all does not account for end effect. This is attributed to 
the following:  

 The Chen et al. [5] correlation includes a fixed parameter of 3000 m2/m3 which is surface area of 2-mm bead 
packings used in their experiment. Although it is claimed that this correlation gives good predictions for 
different packings, validations against Luo et al. [18] done in this study which involve wire mesh packings 
suggests that this is not the case at high rotating speed.  

 The original formulation of Chen et al. [5] is to calculate  . It appears that combining the correlation with 
Luo et al. [1] correlation for interfacial area, , to obtain  has contributed to the uncertainty leading to the 
higher deviations of Chen et al. [13] compared to Tung and Mah [2].  
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In summary, the maximum deviation of Chen et al. [5] observed at 1400 RPM is about 11% which is reasonable 
considering uncertainties in physical properties and Luo et al. [1] used for estimating the interfacial area.  

4. Conclusions and recommendations for future research 

In this study, existing correlations for effective interfacial area and liquid film mass transfer coefficient were compared 
against experimental data at different rotating speed and liquid flowrate. For effective interfacial area, five correlations 
were assessed. It was found that Onda et al. [20] and Puranik and Vogelpohl [22] give poor prediction. Also, Rajan et 
al. [12] which was developed for RPBs gives a poor prediction of the effective interfacial area. Luo et al [1] alongside 
Billet and Schultes [21] predictions were closest to the experiment data. For liquid phase mass transfer coefficient, 
two correlations were assessed. Tung and Mah [2] gave more accurate predictions at different conditions. Chen et al 
[13] deviates significantly at high rotating speed by about 11%. In conclusion, correlations used in conventional 
packed column updated with “rw2” term do not give acceptable prediction of effective interfacial area, prediction error 
is close to 50%. On the other hand, Tung and Mah [2] gives more accurate predictions than the more complex Chen 
et al. [13] correlation. In the future, similar validations as reported here should be performed for the gas side mass 
transfer coefficient. This will help establish assumptions in literature that the gas side in RPB have “solid-body” like 
characteristics so that the gas film mass transfer coefficient lies in the same range as in their conventional packed bed 
counterpart.   

 

 

                                                      Fig. 3. Validation of different correlations for effective interfacial area predictions 
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