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Abstract 

 

Evolving consumer behaviours with regards to store and channel choice, shopping frequency, 

shopping mission and spending heighten the need for robust spatial modelling tools for use 

within retail analytics. The UK groceries retail sector has traditionally been at the forefront of 

applied retail modelling through sustained research and innovation, in-part via collaboration 

with academia. In this paper we report on collaboration with a major UK grocery retailer in 

order to assess the feasibility of modelling consumer store choice behaviours at the level of 

the individual consumer. We benefit from very rare access to our collaborating retailers͛ 
customer data which we use to develop a proof-of-concept agent-based model (ABM).  

 

Utilising our collaborating retailers͛ loyalty card database, we extract key consumer 

behaviours in relation to shopping frequency, mission, store choice and spending. We build 

these observed behaviours into our ABM, based on a simplified urban environment, 

calibrated and validated against observed consumer data. Our ABM is able to capture key 

spatiotemporal drivers of consumer store-choice behaviour at the individual level. This could 

offer considerable enhancement to traditionally-applied spatial interaction models (SIMs) 

which, even after considerable disaggregation, cannot fully capture the complex and 

individualised spatiotemporal drivers of shopping mission and store choice.  

 

Our findings could afford new opportunities for spatial modelling within the retail sector, 

enabling the complexity of consumer behaviours to be captured and simulated within a novel 

modelling framework. We reflect on further model development required for use in a 

commercial context for location-based decision making for store revenue estimation and 

impact assessment. We strongly assert that changing consumer behaviours, coupled with the 

growing availability of individual-level consumer data, creates a unique opportunity for a ͚ ƐƚĞƉ 
ĐŚĂŶŐĞ͛ ŝŶ ƌĞƚĂŝů ŵŽĚĞůůŝŶŐ͘  
 

Keywords:  agent-based modelling; grocery retail; consumer behaviour; spatial interaction 

model; store choice  
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Introduction  

 

The UK groceries (food, drink and household goods) sector is at the forefront of applied spatial 

modelling in retailing following sustained investment in model development, calibration and 

application, often in collaboration with academia (Davies and Rogers 1984; Wrigley 1988; 

Birkin, Clarke and Clarke 2010; Birkin, Clarke and Clarke 2017). The spatial interaction model 

(SIM) has a crucial role as a robust retail location model, enabling retailers to predict store 

revenues, identify retailer market shares and assess the modelled impacts of demand and 

supply side changes (Wilson 2010; Reynolds and Wood 2010; Birkin, Clarke and Clarke 2010). 

The willingness of senior decision makers to make multi-million pound strategic investments 

(for example new store construction) using insights derived from these models highlights a 

long-held business confidence in their accuracy at capturing consumer behaviours (Birkin, 

Clarke and Clarke 2010; Wood and Reynolds 2011). The habitual and thus predictable nature 

of consumer behaviours in respect of their regular weekly food shop (for which consumers 

traditionally exhibited considerable routine and brand loyalty) (Wood and Browne 2007) 

enabled model builders to calibrate these models such that they demonstrated excellent 

predictive accuracy - typically predicting new store revenues to within +/- 10% of subsequent 

observed store performance (Birkin, Clarke and Clarke 2010).  

 

PƌĞĨĞƌĞŶĐĞƐ ƚŽǁĂƌĚƐ ŵŽƌĞ ĨƌĞƋƵĞŶƚ ͚ƚŽƉ ƵƉ͛ ƐŚŽƉƉŝŶŐ ĂŶĚ Ă ĐŽŶǀĞŶŝĞŶĐĞ ĐƵůƚƵƌĞ ŚĂve 

fundamentally altered conƐƵŵĞƌƐ͛ ƐƚŽƌĞ choice behaviours (Wrigley et al. 2012; Hood, Clarke 

and Clarke 2015; Smithers 2015; Clarke et al. 2006; Jackson et al. 2006). These changes 

present challenges for retail analytics, particularly the calibration and application of SIMs.  

Progress has been made in disaggregating SIMs to capture more complex representations of 

demand and supply (for example incorporating e-commerce, discount stores and grocery 

convenience retailing), but the aggregate nature of SIMs may limit their ability to capture 

some of the increasingly complex, individualised and less habitual consumer behaviours.  

 

Moving from simulating at the aggregate to the individual level could afford considerable 

potential in capturing and modelling these more complex and individualised consumer store 

choice behaviours. We demonstrate that individual-based modelling approaches such as 

agent-based models (ABMs) could enable the development of a retail modelling framework 

which incorporates the spatial and temporal components of individualised store choice 

behaviours in a robust fashion. ABMs have been used to model a range of geographical 

systems such as riots (Torrens and McDaniel 2013), residential location (Benenson, Omer and 

Hatna 2002) and crime (Malleson et al. 2013), generating new insights into the consequences 

of individual decisions and behaviours. Within retail, there are few published examples, 

primarily due to the lack of access to consumer data (Heppenstall, Evans and Birkin 2007; 

Heppenstall et al. 2013). HŽǁĞǀĞƌ͕ ǁŝƚŚ ƚŚĞ ƌĞĐĞŶƚ ƉƌŽůŝĨĞƌĂƚŝŽŶ ŽĨ ͚ ďŝŐ ĚĂƚĂ͛ generating novel 

insights on individual behaviour and preferences (for example, loyalty card data and social 

media data, see Mayer-Schonberger and Cukier (2013) for a range of examples), individual-

based methods offer the prospect of an artificial laboratory within which we can capture and 

simulate the more nuanced and individualised components of consumer behaviour.  

 

This study assesses the feasibility of refining and enhancing models of consumer interaction 

using an ABM framework. Specifically, we assess the potential of ABMs to capture and 

simulate the individual level consumer behaviours which drive store and channel choice, 
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shopping frequency, shopping mission and spend. The research reported in this paper has 

been carried out in conjunction with a major UK grocery retailer, enabling us to benefit from 

very rare access to customer level data derived from their loyalty card scheme.  

 

In the following sections we briefly outline the role of SIMs as a location-based decision 

making tool in the retail sector and explore the potential enhancements afforded by ABMs 

within this context. We outline the steps taken to build and test a proof-of-concept ABM to 

capture key aspects of consumer store choice behaviours. This includes a classification of our 

ĐŽůůĂďŽƌĂƚŝŶŐ ƌĞƚĂŝůĞƌƐ͛ ůŽǇĂůƚǇ ĐĂƌĚ ĐŽŶƐƵŵĞƌƐ ďĂƐĞĚ ŽŶ ƚŚĞŝƌ ŽďƐĞƌǀĞĚ ďĞŚĂǀŝŽƵƌƐ͘ WĞ ĂƐƐĞƐƐ 
the potential benefits of ABMs in modelling these behaviours and critically reflect on the 

model developments that are required to operationalise our proof-of-concept ABM in a 

commercial context. 

 

Spatial interaction for capturing changing consumer store choice behaviours 

 

Spatial interaction models (SIMs) estimate flows (e.g. of people, goods or money) between 

origins and destinations. They are an important tool for analysing, explaining and predicting 

aggregate level flows over space within geography, transport planning and regional science 

(Birkin, Clarke and Clarke 2010). Applications include modelling commuter flows (Lloyd, 

Shuttleworth and Catney 2007), education provision (Harland 2008), migration (Dennett 

2010) and retail location-based decision making (Birkin, Clarke and Clarke 2010). When 

applied as a retail location model, flows are determined by the volume of demand in a given 

small-area origin, the attractiveness of the retail ͚ĚĞƐƚŝŶĂƚŝŽŶ͛ (often using floorspace and 

ďƌĂŶĚ ĂƐ Ă ƉƌŽǆǇͿ͕ ƚŚĞ ͚ĐŽƐƚ͛ ŽĨ ŝŶƚĞƌĂĐƚŝŽŶ ;ĚŝƐƚĂŶĐĞ Žr travel time are commonly employed) 

and the level of competition (Birkin and Clarke 1991).  

 

SIMƐ ŚĂǀĞ ƉƌŽǀĞĚ ŝŶĐƌĞĚŝďůǇ ĞĨĨĞĐƚŝǀĞ Ăƚ ĐĂƉƚƵƌŝŶŐ ĐŽŶƐƵŵĞƌƐ͛ grocery shopping behaviours. 

Consumers have traditionally exhibited considerable routine in the characteristics of their 

spatial and temporal store choice behaviours, often undertaking their weekly food shop at 

the same store, on a consistent day of the week and often at a similar time of the day on a 

week-by-week basis (East et al. 1994). The routine and habitualised nature of these 

behaviours (which were particularly evident between the 1980s and early 2000s) suited the 

demand and supply side representation within the SIM, predominantly modelling a single trip 

from a residential origin to a proximate supermarket. As noted above, changing consumer 

store and channel choice behaviours resulting from the growth of convenience grocery 

retailing (Hood, Clarke and Clarke 2015), the strongly performing discount sector (Thompson 

et al. 2012) and accelerating uptake of e-commerce (Clarke, Thompson and Birkin 2015) are 

driving more complex consumer interactions with the supply side. There is evidence of a 

tendency for consumers to shop more frequently and at a broader range of stores. Many 

consumers are not planning ahead beyond the next few meals, thus shopping little and often, 

exhibiting increasingly complex spatiotemporal behaviours and undertaking grocery shopping 

as part of multi-purpose trips related to commuting, leisure or education (Berry et al. 2016; 

Waddington et al. 2017; Adcock 2016; Freedman; Hood, Clarke and Clarke 2015).  

 

These behaviours and the subsequent slow-down in large-format store development 

programmes by many of the major retailers has changed the nature of store location-based 

decision making in the grocery sector. There is a focus on the growth of smaller format 
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convenience stores, the siting of ͚ĐůŝĐŬ ĂŶĚ ĐŽůůĞĐƚ͛ ĨĂĐŝůŝƚŝĞƐ (as part of a drive to integrate e-

commerce within a physical store estate) and network rationalisation programmes (which 

may include store refurbishments, relocations, or closures) (Reynolds and Wood 2010). 

Reynolds and Wood (2010) report that many retailers are placing less emphasis on the SIM 

for making some of these contemporary location-based decisions because its aggregate 

nature cannot capture the complex dynamics of these consumer interactions, which may not 

ďĞ ĚƌŝǀĞŶ ďǇ ͚ƚƌĂĚŝƚŝŽŶĂů͛ ŝŶĚŝĐĂƚŽƌƐ ŽĨ ƐƚŽƌĞ ĂƚƚƌĂĐƚŝǀĞŶĞƐƐ Žƌ ƉƌŽǆŝŵŝƚǇ ƚŽ ƚŚĞŝƌ ƌĞƐŝĚĞŶƚŝĂů 
origin.  

 

There is evidence that retailers are resorting to use of less sophisticated tools and techniques 

to supplement the predictions generated by their SIMs (Wood and Browne 2007). These 

approaches include analogues (comparisons) with existing stores which may have similar 

location-based or trading characteristics, relying on ĂŶĂůǇƐƚƐ͛ knowledge of the store estate 

in order to select appropriate analogous stores.  This is particularly prominent for their 

convenience store estate (Wood and Browne 2007; Hood, Clarke and Clarke 2015) where 

consumer behaviours are less habitual and store choice decisions are complex and based on 

micro-location of the store relative to key drivers of demand such as workplaces, transport 

interchanges or other high footfall locations, which may not be captured within the SIM.  

 

Whilst success has been achieved in model disaggregation to capture some demand side 

spatiotemporal behaviours (Newing, Clarke and Clarke 2014; Berry et al. 2016; Waddington 

et al. 2017) or the supply side dynamics of the discount, convenience or e-commerce sectors 

(Hood, Clarke and Clarke 2015; Clarke, Thompson and Birkin 2015; Thompson et al. 2012), 

these disaggregate SIMs struggled to fully capture the more nuanced and individualised 

nature of ĐŽŶƐƵŵĞƌƐ͛ ĐŽŵƉůĞǆ  spatiotemporal behaviours. Parallel developments in the 

availability of near real-time consumer data capturing these behaviours (at the individual 

level) affords considerable potential for retail modelling. These data include those collected 

following the widespread introduction of loyalty cards by the major grocery retailers (see 

Burt, Sparks and Teller 2010).  

 

These sources can provide considerable insight into complex and nuanced spatiotemporal 

store choice behaviours at the level of an individual loyalty card holder, including indicators 

of how frequently they visit a given store, the time of the day and day of the week that they 

typically shop, how much they spend, how far they have travelled (relative to a registered 

home address), and how they combine different store formats and channels (supermarket, 

convenience or online). These are crucial indicators which can support spatial model building 

and calibration. More recently, novel data sources capturing other forms of personal mobility 

and spatiotemporal behaviours (such as social media data, geo-located mobile phone 

positioning data or data collected from sensors [e.g. footfall] in urban areas) may provide 

further insights into spatiotemporal behaviours (Lovelace et al. 2015; Malleson and Birkin 

2012, 2014) with implications for retail model building and calibration. Within this paper we 

draw exclusively on loyalty card data but return to these more recent novel sources in our 

discussion. In the following section we introduce agent-based modelling as a tool which could 

support individual-level modelling in a retail context.  

 

 

 



Page 6 

 

Agent-based modelling  

 

50 years ago, geographers were reliant on aggregate level data sets to inform their insights 

ĂŶĚ ƚŚĞŽƌŝĞƐ͘  WŝƚŚ ƚŚĞ ŐƌĂĚƵĂů ŝŶĐƌĞĂƐĞ ŝŶ ͚ďŝŐ ĚĂƚĂ͕͛ ŝŶĐůƵĚŝŶŐ ďŽƚŚ ƚƌĂĚŝƚŝŽŶĂů ĚĂƚĂ ƐĞƚƐ ƐƵĐŚ 
as national Censuses and more novel types, e.g. social media and mobile phone data (Crooks 

et al. 2016), new understanding and insights are being generated. Simulating the impact of 

individual decisions has become far more tangible than ever. This shift from aggregate to 

individual-level modelling has been compounded by the appearance of novel approaches 

from the computational sciences, most notably agent-based modelling (ABM). ABM is a 

methodology that places the individual at the centre of the simulation process. 

Heterogeneous individuals with bespoke rule sets are created, placed within an environment 

and given control over both their own decisions and interactions with other individuals 

(Crooks and Heppenstall 2012)͘ TŚŝƐ ͚ďŽƚƚŽŵ-ƵƉ͛ ĂƉƉƌŽĂĐŚ ĞŶĂďůĞƐ ƚŚĞ ĞǆƉůŽƌĂƚŝŽŶ ŽĨ ƐǇƐƚĞŵ 
processes from the local (e.g. neighbourhood) to global (e.g. city). 

 

Figure 1 shows the structure of a simple ABM.  Here an agent (in this case a consumer) is given 

͚ůŝĨĞ-ƐƚĂŐĞ͛ ĂƚƚƌŝďƵƚĞƐ ŽĨ Ăge, sex, wealth and education. This is drawn from quantitative data 

such as the UK Censuses. Any number of characteristics could be used depending on the 

application, as well as any appropriate data set. Attitudes or behavioural characteristics are 

drawn from more qualitative data sources, such as surveys or interviews.  Bringing together 

these seemingly disparate data sources results in a more holistic view of the individual and 

their likely decisions than previous methods have been able to achieve.   

 

 
Figure 1: Schematic illustrating how agent attributes and behaviours can be constructed from 

different types of data. 

 

Whilst ABM has enjoyed great popularity in the geographical sciences, with applications as 

diverse as crime modelling (Malleson, Heppenstall and See 2010) and traffic simulation 

(Manley et al. 2014), there are few examples of the application of ABM in retail. In an outline 

of the principal site evaluation tools and techniques presented by Wood and Reynolds (2011), 

drawn from  interviews with location planners and their managers within UK retailers, the 

potential of ABMs is not mentioned.  One of the earliest examples of ABM being applied to 

spatial retail markets is that of Heppenstall, Evans and Birkin (2005). Here an ABM was used 

to simulate the retail petrol (gasoline) market, in which individual petrol stations were given 

their own pricing rules (based on numerical analysis of data and interviews with managers). 

Petrol prices were determined by each station and determined reactively based on factors 

such as local competition and global factors such as the price of oil. Due to an absence of 
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individual-level consumer data, consumer behaviour was simulated at an aggregate level 

using a SIM to determine which petrol station would be visited. Through the availability of a 

unique consumer data set at the individual level, the work within this paper advances on the 

work of Heppenstall, Evans and Birkin (2005)  by creating individual consumers and simulating 

both their individual behaviours and their impacts on the supply side.  The only other notable 

example of published work in this area is that of Vanhaverbeke and Macharis (2011). Here, 

an ABM was used to study consumer mobility, in particular the impact of commuting 

behaviour on consumer store choice. However, their model was not based on real-world data.   

 

Clearly, ABM has vast potential for use in simulating behaviour in retail markets.  Unlike 

͚ƚƌĂĚŝƚŝŽŶĂů͛ ƐƚĂƚŝƐƚŝĐĂů ŵĞƚŚŽĚƐ ƐƵĐŚ ĂƐ SIMƐ͕ ABM ĐĂŶ ƌĞƉƌĞƐĞŶƚ ŝŶĚŝǀŝĚƵĂů ĚĞĐŝƐŝŽŶƐ ĂŶĚ 
preferences.  Important behaviours, such as daily routine can also be embedded into each 

agent, creating a more realistic picture of individual movements, and thus store selection. 

However, creating individuals with their own characteristics and rule sets (that will drive their 

behaviour) comes at a very heavy data cost.  The recent proliferation in big micro data has 

provided an opportunity for these models to be robustly calibrated and validated, however 

work within this area is still lacking and provides a considerable challenge for the modeller, 

as we address below.  In the following sections we introduce a consumer-level dataset from 

our collaborating retailer and outline the development of our proof-of-concept ABM.  

 

Extracting consumer behaviours 

 

One of the crucial aspects of creating an ABM is getting the behaviour right.  To do this, we 

explore a customer level dataset provided by our collaborating retailer and derived from their 

loyalty card scheme. We use these data to summarise the complex and individualised 

consumer store choice behaviours exhibited. We classify consumers according to those 

behaviours which then inform Ă ƐĞƌŝĞƐ ŽĨ ͚ƌƵůĞƐ͛ ĨŽƌ ĂƉƉůŝĐĂƚŝŽŶ ŝŶ ŽƵƌ ABM͘ Our collaborating 

retailer (who wishes to remain anonymous) is a major player in the UK grocery market and 

operates a full range of store types and formats, including an online groceries operation.  

 

Exploring the loyalty card data 

 

Our collaborating retailer has provided data derived from their loyalty card transaction 

database relating to 348 customers with a home address in the Leeds local government area, 

capturing their store-choice behaviours over a 2 month period. Due to the commercially 

sensitive nature of these data, and data protection constraints restricting sharing of individual 

level data, the data used in this analysis have been simulated by our collaborating retailer. 

The simulated data are identical in format to the data our collaborating retailer routinely 

collect and reflects the range of consumer store choice behaviours that they wish to capture 

in an individual-level model. The simulated dataset has been created by our collaborating 

retailer specifically for our use. They have used genuine customer data and manually checked 

each record to ensure that it is representative of their typical loyalty card data. Leeds is a 

major UK city and was chosen as a demonstrator study area given the variety of store formats 

operated by our collaborating retailer in this area (large format, new build, major transport 

interchange, city-centre, suburban etc.).  
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The dataset contains records for ~4,000 transactions, capturing the store and channel (in-

store and online) used and the date and time of the transaction. Orders placed online for 

ŚŽŵĞ ĚĞůŝǀĞƌǇ Žƌ ĐƵƐƚŽŵĞƌ ĐŽůůĞĐƚŝŽŶ ;͚ĐůŝĐŬ ĂŶĚ ĐŽůůĞĐƚ͛Ϳ ƌĞƉƌĞƐĞŶƚ ůĞƐƐ ƚŚĂŶ Ϯй ŽĨ ƚŚĞ 
transactions within this dataset. In our subsequent discussion and model-building we 

consider only in-store transactions, where consumer store choice behaviours are driven by a 

well-understood range of factors (store size, store location etc.). The data contain an indicator 

of the transaction value and number of items purchased using a series of categories (low, low-

med, med-high, high), preserving the commercial sensitivities within these data. Each 

transaction was attributed to an individual consumer and linked to the Lower Super Output 

Area (LSOA) for their residential location (registered loyalty card address). LSOAs represent a 

small area administrative geography in England and Wales used for dissemination of area 

based statistics. They have a mean usual resident population of around 1,500 and are 

commonly used for retail analytics, enabling us to append additional area-based population 

statistics from the 2011 Census of Population and Housing.  

 

Using these data we derived a series of indicators summarising store choice behaviours at the 

level of the individual consumer (Table 1) with regard to the range and type of stores visited, 

frequency of visit, time of the day, shopping mission and distance travelled. We evaluated a 

broader range of potential indicators (particularly in relation to the temporal dimension and 

shopping mission), assessing their ability to distinguish different consumer behaviours and 

their correlation with one-another. We present here only those indicators which we used to 

classify these consumers within our database. Construction of these indicators required 

considerable data pre-processing and the challenges of upscaling this form of analysis to 

much larger and near-real time consumer transaction records should not be underestimated. 

 

Store Choice Factor Indicator Notes 

Frequency of visit Total number of transactions 

Derived from collaborating 

ƌĞƚĂŝůĞƌƐ͛ ůŽǇĂůƚǇ ĐĂƌĚ ĚĂƚĂ 

Number of stores Number of stores visited 

Shopping mission 
Percentage of high value transactions 

Percentage of convenience store transactions 

Time of visit 
Percentage of weekday transactions 

Percentage of evening transactions 

Distance Distance to most frequently visited store 

Personal mobility Percentage of households with no car 
2011 Census variable  

KS404UK0002 

Table 1: Derived indicators summarising individual level consumer store choice behaviours 

 

The indicators ŚŝŐŚůŝŐŚƚĞĚ ŝŶ TĂďůĞ ϭ ĐĂƉƚƵƌĞ ŬĞǇ ǀĂƌŝĂƚŝŽŶƐ ďĞƚǁĞĞŶ ĐŽŶƐƵŵĞƌƐ͛ ŽďƐĞƌǀĞĚ 
behaviours. We can distinguish those customers who made numerous transactions and those 

that shopped less regularly, perhaps doing one weekly shop. We also distinguish between 

those consumers who shopped at a number of different stores versus those who tended to 

exhibit more habitual behaviours, shopping at only one store. An indication of the type of 

store visited and transaction value captures consumers͛ shopping missions, identifying 

ĞǀŝĚĞŶĐĞ ŽĨ ĐŽŶƐƵŵĞƌƐ ƵƐŝŶŐ ůĂƌŐĞƌ ƐƵƉĞƌŵĂƌŬĞƚƐ ĨŽƌ ͚ ƚŽƉ ƵƉ͛ ƐŚŽƉƉŝŶŐ͕ Žƌ ŵŽƌĞ ĨƌĞƋƵĞŶƚ ƵƐĞ 
of convenience stores as an important part of their purchasing behaviours. We incorporate 

the proportion of high value transactions undertaken by each consumer, the distribution of 

which are observed to be positively skewed, indicating that the majority of customers made 

a small percentage of high value transactions.  
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Transactions were also categorised by their date and time stamp, identifying those that took 

place on a weekday and those at the weekend, alongside a time of the day indicator. Time of 

the day was categorised as morning (before midday), lunchtime (midday ʹ 14.00), afternoon 

(14.00 ʹ 17.00), early evening (17.00 ʹ 19.00) or late evening (19.00 ʹ 23.00). In conjunction 

with shopping mission these enable complex spatiotemporal store choice behaviours to be 

captured, such as a tendency for weekday top up shopping, larger weekly shops undertaken 

at the weekend, or the identification of consumers shopping from their place of work or on 

their commute. These consumers may have important implications for retailers in terms of 

store location, format, staffing, opening hours and product ranging (see Berry et al. 2016). 

 

Extracting consumer mobilities 

 

A measure of distance was incorporated to differentiate between customers shopping at 

stores close to where they live as opposed to consumers shopping at stores further from 

home, which may be in proximity to their place of work or study or as part of their commute. 

An origin-destination (O-D) matrix capturing the shortest distance (by road1) between 

ĐŽŶƐƵŵĞƌƐ͛ ƌĞƐŝĚĞŶƚŝĂů ůŽĐĂƚŝŽŶƐ ĂŶĚ ĞĂĐŚ ƐƚŽƌĞ ǁĂƐ ĚĞƌŝǀĞĚ͘ CŽŶƐƵŵĞƌƐ͛ ƌĞƐŝĚĞŶƚŝĂů ůŽĐĂƚŝŽŶƐ 
were captured using the population-weighted centroid of the LSOA in which their home 

address falls, whilst store locations were captured using the GeoLytix OpenSupermarkets 

database2. A variety of distance measures were captured at the level of the individual 

consumer including distance to most frequently visited store (by number of transactions) or 

mean distance to all stores visited. Distance to store was also disaggregated by time of the 

day, type of store and shopping mission. We also incorporate the percentage of households 

with no car as this has been traditionally recognised as a factor known to ĂĨĨĞĐƚ Ă ĐƵƐƚŽŵĞƌ͛Ɛ 
ability to access stores (Clarke et al. 2006; Clarke, Eyre and Guy 2002). Car ownership (as a 

proxy for accessibility via private transport) is particularly important for consumers 

undertaking larger transactions (given the bulky and perishable nature of many grocery items) 

and the typical out of town locations of larger format food stores.  

 

The final stage in this process used K-means clustering to segment these consumers based on 

their store-choice behaviours as captured by our 8 indicators (Table 1). In this case we sought 

to group consumers who exhibited similar store choice behaviours such that we could build 

these behaviours into our modelling framework. A detailed description of the classification 

process is beyond the scope of this paper, though a good overview of the process can be 

found in Rogerson (2015). In short, our indicators were standardised using z-scores to ensure 

that they were placed on the same scale of measurement and therefore carry the same 

weight within the clustering process. Standardisation is a common data transformation 

technique which rescales each variable based on its mean and standard deviation. Variables 

were also checked for polarity. K-means is a partitional clustering technique which groups 

observations (in this case individual consumers) into a pre-determined number of non-

overlapping clusters. It is an iterative procedure which aims to allocate consumers to clusters 

which maximise variations between clusters and mimimise within cluster variability. The 

                                                      
1 The Ordnance Survey Meridian 2 vector dataset was used, containing a series of road features enabling 

construction of an indicative road network. 
2 GĞŽůǇƚŝǆ ͚‘ĞƚĂŝů PŽŝŶƚƐ ϮϬϭϲ͛͘ AǀĂŝůĂďůĞ͗ www.geolytix.co.uk © GeoLytix copyright and database right 2016 

http://www.geolytix.co.uk/
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optimum number of clusters was determined by trialling a 5, 6, 7 and 8 cluster solution. The 

resultant clusters were assessed on the basis of cluster compactness and a-priori knowledge 

about likely consumer segments based on the individual behaviours exhibited within the 

loyalty card data. Through this process, a seven cluster solution was identified to offer a good 

spread of consumers across the clusters and conforms to our expectations in terms of broad 

consumer behaviours exhibited by each cluster. Our seven distinct consumer behaviours 

captured within our classification are summarised in Box 1.  

 

Group 1 ʹ High value supermarket customers 

This customer group is defined by the presence of high value transactions, predominantly 

undertaken in the evening. There is an absence of transactions at convenience stores. The number 

of different stores visited by this group is below average as are the total number of transactions. 

Car ownership is highest amongst this group. 

 

Group 2 ʹ Less affluent weekday supermarket customers 

Customers in this group predominantly shop in supermarkets on weekday daytimes, undertaking a 

low proportion of high value transactions. They are less likely to shop at convenience stores and 

the total number of stores visited and transactions made is low compared to other groups. Car 

ownership rates and the distance travelled to store is below average.  

 

Group 3 ʹ Convenience store customers 

This customer group are defined by the presence of transactions at convenience stores. There is an 

absence of high value transactions amongst this group and they travel a short distance to store 

compared to other groups. Weekday and evening transactions are above average for this group.  

 

Group 4 ʹ Multiple-transaction customers travelling short distances 

Customers in this group make a high number of transactions. They also tend to shop at a larger 

number of stores compared to other groups. The average distance travelled to store by this group 

is the shortest amongst all the customer groups. Weekday transactions are above average whereas 

high value transactions are below average.  

 

Group 5 ʹ Customers visiting multiple stores 

This customer group is defined by a high number of different stores visited. They also make a higher 

than average number of transactions but these are less likely to be of high value. Car ownership is 

above average in the areas in which these customers live.  

 

Group 6 ʹ Weekend daytime customers 

This customer group are defined by the absence of weekday and evening transactions. They make 

fewer transactions and visit fewer different stores compared to the other customer groups. High 

value transactions are also below average amongst this group.  

 

Group 7 ʹ Weekday evening customers shopping far from home 

Customers in this group travel the furthest (on average) to store. There is a strong incidence of 

weekday and evening transactions amongst this group. The total number of transactions and 

number of different stores visited is below average as are high value transactions.  

 

 Box 1 ʹ Summary of seven distinct customer groups (based on observed store choice 

behaviours and a census derived indicator of mobility) captured within our classification. 

 

 



Page 11 

 

It is clear from Box 1 that this relatively small sample of consumers exhibit a broad range of 

consumer behaviours with regard to store choice, confirming ƐŽŵĞ ͚ƚƌĂĚŝƚŝŽŶĂů͛ ƐŚŽƉƉŝŶŐ 
behaviours akin to those observed by East et al. (1994) in relation to their regular weekly 

shop. Similarly, clusters 3 - 5 support our earlier notions regarding consumer behaviours in 

ƌĞůĂƚŝŽŶ ƚŽ ĨƌĞƋƵĞŶƚ ƵƐĞ ŽĨ ĐŽŶǀĞŶŝĞŶĐĞ ƐƚŽƌĞƐ ĨŽƌ ͚ƚŽƉ ƵƉ͛ ƐŚŽƉƉŝŶŐ. Although not captured 

as distinct clusters, we also note evidence of channel blurring, with some evidence of 

ĐŽŶƐƵŵĞƌƐ ƵƐŝŶŐ ƐƵƉĞƌŵĂƌŬĞƚƐ ƉƌĞĚŽŵŝŶĂŶƚůǇ ĨŽƌ ƐŵĂůůĞƌ ĂŶĚ ŵŽƌĞ ĨƌĞƋƵĞŶƚ ͚ƚŽƉ ƵƉ͛ 
shopping (see Waddington et al. 2017), and also a propensity to use convenience stores for a 

larger weekly shop. The importance of personal mobility (and specifically car ownership) in 

influencing store choice is evident, particularly among the consumers in cluster 1.  These 

consumers exhibit a propensity to undertake larger transactions and to utilise larger format 

(and predominantly out of town) stores. This is in contrast to cluster 5, whereby consumers 

are observed to be highly mobile, visiting multiple stores. By comparison, consumers in Group 

2 exhibit lower rates of car ownership and tend to exhibit store-choice behaviours which 

favour routine behaviour and more limited personal mobilities, with lower transaction rates 

and a lower propensity to visit multiple stores.  

 

Creating an ABM of consumer behaviour 

 

The ABM was built using the open source modelling environment of Netlogo (Wilensky 1999). 

The model code can be freely downloaded via: http://tinyurl.com/ConsumerABM. Within this 

paper we were interested in the simulation of different types of consumer agents. The agents 

first populate a very simple and abstract spatial environment in order to test key behaviours 

of model agents (representing consumers and retail stores). Our agents subsequently 

populate a representation of the UK city of Leeds. As detailed below, this representation 

captures the diverse geodemographics and spatial pattern of store location within the city.  
 

The ABM is populated by two types of agents: store and consumer agents, representing the 

supply and demand sides as captured within a traditional retail modelling framework. In the 

first iteration of the model, consumer agents were homogeneous containing the following 

basic properties: a home location (initially set randomly), a destination and a variable 

controlling the number of visits to a store. Stores were represented as two distinct agent 

types: supermarket and convenience. A convenience grocery store is conventionally defined 

as a store of less than 3,000 square foot sales area and is traditionally exempt from UK Sunday 

trading regulations which restrict stores in excess of 3,000 square foot to trading for a 

maximum of six hours on a Sunday. TŚĞ ͚ĐŽŶǀĞŶŝĞŶĐĞ͛ ;Žƌ ƐĞĐŽŶĚĂƌǇͿ ĂŶĚ ͚ŽŶĞ ƐƚŽƉ͛ ;ůĂƌŐĞƌ 
supermarkets) sectors are distinct in serving different shopping missions and location types 

(Wrigley et al. 2009; Competition Commission 2000). It is thus important to represent this 

distinction in our individualised model of consumer store choice behaviours.  

 

These variables were experimented with to check that the basic model framework was 

operating as expected prior to the consumer behaviour rules being embedded. 

Experimentation included increasing the number of store visits for each agent and placing a 

preference for either a supermarket or a convenience store.  The store agents were 

programmed to record the ID of the consumer agents that have visited that store.  
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Consumer behaviours 

 

Once the basic behaviours (i.e. making trips to stores) of the consumer agents had been 

tested, the next step involved increasing the complexity of their behaviour based on the 

information derived from the consumer loyalty data set. The shopping behaviours of the 

seven consumer groups detailed in Table 2 (drawn from Box 1) were converted into simple 

rules which were assigned to each agent of that type. The rules were based on the type of 

store, frequency of visits to a store, distance travelled, spend and time of shopping trip.  

 

Consumer 

Type 
Store Type Frequency Time Distance 

Car 

ownership 

Spend 

1 
Supermarket/ 

Online 
Low Evening Average High 

High  

2 Supermarket Low 
Weekday 

daytime 
Short Low 

High  

3 Convenience Average 
Weekday 

evening 
Short Average 

Low 

4 
Supermarket/ 

Convenience 
Very high Weekday Very short Average 

Low  

5 
Supermarket/ 

Convenience 
High 

No 

preference 
Average High 

 Medium 

6 Supermarket Low 
Weekend 

daytime 
Average 

Above 

Average 

 Medium 

7 
Supermarket/ 

Convenience 
Low 

Weekday 

evening 
Long Average 

 Low 

Table 2: Summary of customer group characteristics 

 

For example, an agent of consumer type 4 would operate the following rules: 
 

If need food = true and weekday = true 

 

then travel to nearest supermarket or convenience store. 

 

Whilst an agent of consumer type 6 would use the following: 
 

If need food = true and weekday = false 

 

then travel to nearest supermarket store. 

 

Store agents were assigned a spend variable which increased by a set amount each time a 

consumer agent visited the store. The amount spent depended on the type of store and the 

consumer type. From the analysis of the different consumer types, consumers in Group 1 

(High value supermarket customers) spent more in store than the other customer groups. 

Within our proof-of-concept ABM, consumers in Group 1 were allocated a higher spend than 

all other consumer groups in order to reflect their observed purchasing behaviours. This 

enables us to demonstrate that the ABM can be used to identify store revenues resulting from 

consumer interactions with each store in our model. The incorporation of a notional (albeit 

crude) expenditure closely reflects the common application of SIMs as a location model 

where the objective is to predict store revenues rather than consumer patronage.  
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One of the key aspects where an ABM offers considerable potential is in the handling of the 

temporal dimension. Whilst SIMs are largely static, our ABM enables us to model a series of 

iterations or time steps, representing different days of the week (Monday through Sunday), 

with each day divided into three time periods, morning, afternoon and evening (a week thus 

contains 21 time steps). Each consumer type was given a probability of undertaking a 

shopping trip (store visit) during each modelled iteration (see Table 3). These probabilities are 

derived from our observed customer data and take account of the time of the day and day of 

the week of store visits by consumer type.  

 

Day Day Part 
Consumer Type 

1 2 3 4 5 6 7 

Weekdays Morning 0 50 20 90 50 0 0 

Weekdays Afternoon 0 50 20 90 50 0 0 

Weekdays Evening 75 0 75 90 50 0 40 

Weekend Morning 0 0 20 0 50 50 0 

Weekend Afternoon 0 0 20 0 50 50 0 

Weekend Evening 75 0 20 0 50 0 0 

Table 3: Probabilities of undertaking a shopping trip (store visit) assigned to consumer agents 

by consumer type. 

 

For those consumers undertaking a shopping trip in any given time period, the next aspect is 

to model is their actual store choice. This was based on the classic trade-off between store 

attractiveness and accessibility as captured within a SIM͘ CŽŶƐƵŵĞƌƐ͛ store choice was driven 

by the average distance travelled by that consumer type within our observed consumer data 

(see Table 2). Consumer agent types observed to travel the shortest distances to store (groups 

2, 3, and 4) were allocated rule sets which forced them to visit their most proximate store 

which met their shopping mission (convenience vs. supermarket). Consumers which travel 

further (groups 1, 5, 6 and 7) were given the freedom to travel beyond their nearest store, 

again choosing a store attractive to their shopping mission.  

 

Representing the city 

 

For the initial testing of different consumer behaviours, a simplified environment was used 

with agents only having the choice of one or two stores at varying distances to choose from.  

Once these behaviours had been tested to ensure the basic model rules were operating as 

expected, the next stage increased the complexity of the spatial environment on both the 

demand and supply sides. Leeds was used an example city and an abstract but realistic 

geography of the north of the city was produced using the Office for National Statistics (ONS) 

Output Area Classification (OAC) (ONS 2014). The classification groups small-areas together 

according to key population characteristics derived from the 2011 Census in England and 

Wales. The 8 OAC Supergroups were mapped across Leeds (Figure 2a) and distinct areas were 

identified and translated into zones in the model (Figure 2b). For example, the student areas 

of Hyde Park and Headingley in the centre and north-west of the city (yellow patch agents), 

the inner city areas of Chapeltown and Harehills (blue patch agents), the deprived areas of 

Bramley and Seacroft (orange patch agents), the affluent suburbs of Horsforth, Chapel 

Allerton and Roundhay (pink patch agents) and the surrounding more rural towns and villages 

of Bramhope and Shadwell (green patch agents).  
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Our individual consumers were allocated a location within a specified part of our abstract 

͚ĐŝƚǇ͛ ďĂƐĞĚ ŽŶ ƚŚĞ OAC SƵƉĞƌŐƌŽƵƉ ŽĨ ƚŚĞŝƌ ƌĞƐŝĚĞŶƚŝĂů ŽƌŝŐŝŶ͘ TŚƵƐ ƚŚĞŝƌ ůŽĐĂƚŝŽŶ ǁĂƐ ĚƌŝǀĞŶ 
by their observed characteristics, whilst their behaviours were driven by their consumer type 

(Box 1).  The location of supermarket and convenience store agents within the model were 

fixed. Their locations were based on the location of our retail collaborators stores in north 

Leeds. In order to preserve the anonymity of our collaborating retail partner we are unable 

to reveal the specific locations of these stores.  

 

 
Figure 2(a): Geo-demographic map of the north Leeds area. Source: Constructed by authors 

using 2011 Output Area Classification (ONS 2014).  

 

 
Figure 2(b): Geo-demographic map of the north Leeds area with the abstract, yet spatially 

realistic model environment (in Netlogo) overlaid. Store locations are indicated by red 

ƐƋƵĂƌĞƐ ;͚S͛ с ƐƵƉĞƌŵĂƌŬĞƚ ĂŶĚ ͚C͛ с ĐŽŶǀĞŶŝĞŶĐĞ ƐƚŽƌĞͿ ĂŶĚ ƉĞŽƉůĞ ŝĐŽŶƐ ƌĞƉƌĞƐĞŶƚ ŚŽŵĞ 
locations. 
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Calibrating and testing our ABM  

 

A number of measures were taken so that the behaviour of the consumer agents could be 

calibrated and validated against those observed in the customer data. The model was set up 

to simulate consumer behaviours over a weekly time period. Due to the element of 

randomness in the model, introduced by the probabilities of undertaking a store visit, the 

model was run multiple times to ensure greater statistical accuracy in the results. A hundred 

iterations of the simulation were run, for increasing numbers of agents (3, 100, 1000 of each 

consumer type) to check the model was robust when scaled up.  

 

The number of visits made to a store was recorded for each consumer agent. Table 4 shows 

the average number of visits to a store by each consumer agent type. The relative number of 

store visits predicted within our model can be compared to the average number of 

transactions by each consumer group (a transaction generally represents a single store visit) 

from the observed customer data. The relative number of visits are used (rather than the 

actual numbers) as they cover different time periods. Consumer type 4 made the highest 

average number of visits to stores in the model. This is line with behaviours observed in the 

customer data in which this group made the largest number of transactions on average. 

Consumer type 5 also made a relatively high number of visits to store in the model and was 

the group with the second highest number of transactions in the customer data. Consumer 

groups 6 and 7 had the lowest number of visits to store in the model. This is also in line with 

the behaviours observed in the customer data in which these groups made the fewest 

number of transactions.      

 
 

 

 

 

 

 

 

 

 

 

 

Table 4: Comparison of average number of visits to store by consumer type (observed and 

predicted data). 

 

The average distance travelled by consumers on their visits to store was also calculated for 

each consumer type as an indicator of their trip making behaviours. These predicted average 

trip distances (ATDs) were compared to observed ATD by consumer type within our customer 

data. In its proof-of-concept form our ABM distance measurement (which is based on 

ĞƵĐůŝĚĞĂŶ ĚŝƐƚĂŶĐĞ ďĞƚǁĞĞŶ ĐŽŶƐƵŵĞƌƐ͛ ƌĞƐŝĚĞŶƚŝĂů ůŽĐĂƚŝŽŶ ĂŶĚ ƚŚĞŝƌ ŶĞĂƌĞƐƚ ƐƚŽƌĞͿ ĚŽĞƐŶ͛ƚ 
have a metric associated with it as it is measured in an abstract model environment. This 

means that observed and predicted ATD cannot be directly compared in absolute terms, but 

their relative difference is indicative of model performance. We note that our ABM is broadly 

able to predict the relative distance travelled (by consumer type) in line with our observed 

Consumer Type 

Observed 

(Customer 

Dataset) 

Predicted (1000 

agents ) 

1 Medium Medium 

2 Medium Medium 

3 Medium Medium 

4 High High 

5 High High 

6 Low Low 

7 Low Low 
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customer data, enabling us to assess the models ability to replicate this key characteristic of 

ĐŽŶƐƵŵĞƌƐ͛ trip making behaviours. Most noticeably, our ABM is able to reflect the propensity 

for consumers in Group 7 (Weekday evening customers shopping far from home) to exhibit 

the highest ATD. Our model is presently overestimating the ATD of consumers in Group 1 

(relative to other consumer groups), and it may be that our model is giving too great an 

importance to car ownership in driving store choice behaviours for groups of consumers such 

as these, who exhibit a high number of transactions at larger-format stores.  

 

During the model building stage we also loosely calibrated our ABM in relation to the day of 

the week and time of the day that consumers (by type) are observed to undertake their 

shopping trip(s), as outlined above. Following model calibration and testing we can be 

confident that our proof-of-concept ABM is able to replicate key characteristics of consumers 

store choice behaviours as captured by their frequency of visit and ATD. As we develop our 

proof-of-ĐŽŶĐĞƉƚ ŝŶƚŽ Ă ĨƵůů ƉƌŽƚŽƚǇƉĞ ABM ŝƚ ǁŝůů ĂůƐŽ ďĞ ƉŽƐƐŝďůĞ ƚŽ ǀĂůŝĚĂƚĞ ƚŚĞ ŵŽĚĞůƐ͛ 
ability to capture key supply side indicators of store patronage and revenues.  

 

ABM for capturing consumer store choice behaviours 

 

We have demonstrated the flexibility of an ABM in incorporating complex consumer 

interactions within a dynamic retail environment. In our proof-of-concept example we have 

incorporated a series of consumer behaviours as captured within our ĐŽůůĂďŽƌĂƚŝŶŐ ƌĞƚĂŝůĞƌƐ͛ 
loyalty card database. We generated seven distinct consumer groups, each with associated 

ĂŐĞŶƚ ͚ƌƵůĞƐ͕͛ ĂŶĚ ƵƐĞĚ ƚŚĞƐĞ ƚŽ ĞǀĂůƵĂƚĞ ƚŚĞ ƚǇƉĞ ŽĨ ƐƚŽƌĞ ĐŚŽŝĐĞ ďĞŚĂǀŝŽƵƌƐ ǁŚŝĐŚ ĐŽƵůĚ ďĞ 
captured in an individual-level modelling framework. We have evidenced that our model can 

recreate observed store choice behaviours with regards to frequency of visit, time of the day 

of visit and distance travelled. Thus, within our scaled down (and at times abstract) example, 

we have demonstrated that an ABM can capture the broad dynamics of the retail market. 

With increased availability of data capturing these behaviours at the individual level (and 

growing computational resources) it is entirely feasible to model these consumers and their 

unique behaviours as individual agents.  

 

The novelty and innovation within our model is that the trade-off between attractiveness and 

accessibility incorporates a two-step decision making process with a crucial temporal 

dimension. Within each time step (time of the day and day of the week) our model first 

determines whether a given customer type is likely to undertake a shopping trip and, if so, 

identifies their broad shopping mission (large format supermarket or convenience store). 

Secondly, for those consumers undertaking a shopping trip, our ABM assesses the relative 

accessibility and attractiveness of each supply side destination (relative to their shopping 

mission), allocating these customers to appropriate stores. Thus, our model incorporates the 

key drivers of flows from within a SIM framework, with the additional benefits of capturing 

the temporal dimension, whilst also representing these interactions at the individual level. 

This enables a more complex set of store choice decision making processes to be captured, 

generating a truly dynamic model which incorporates key theoretical elements of the SIM, 

yet with far greater demand side and temporal disaggregation.  

 

Ongoing model enhancements to move from proof-of-concept to prototype model include 

incorporation of a more realistic underlying geography. This will enable greater integration of 
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retaiůĞƌƐ͛ ĞǆŝƐƚŝŶŐ ĚĞŵĂŶĚ ĂŶĚ ƐƵƉƉůǇ ƐŝĚĞ ĚĂƚĂƐĞƚƐ. Whilst our proof-of-concept is based on 

modelling consumer flows to only one retailer, the next phase of model development 

incorporates a full representation of the supply side, capturing the competition and brand 

attractiveness elements which are crucial in building and calibrating spatial models which 

reflect real consumer behaviours (e.g. see Newing, Clarke and Clarke 2014). Given the 

importance of the spatiotemporal dimensions in driving store choice behaviours (Newing 

2013; Berry et al. 2016; Waddington et al. 2017), these represent the next demand side 

enhancements, incorporating consumers non-residential ͚ŽƌŝŐŝŶƐ͛ at certain times of the day. 

These may include origins associated with workplaces or other locations visited as part of 

daily routines and from which interactions with the supply side can originate. The 

disaggregate spatial and temporal components of this model would enable these nuanced 

demand side features to be captured. This would generate a truly dynamic model which 

captures both the location and shopping mission of consumers at different times of the day 

and at the individual level.  

 

Further model development will capture more sophisticated impedances by incorporating 

routing of consumer agents, recognising that there is an increased propensity for consumers 

to access grocery retail provision on foot, particularly where smaller format urban stores are 

in proximity to new forms of city centre residential developments or transport interchanges 

used by commuters. Ongoing model development focuses on alternative impedance 

measures, including routing of consumers on foot and by public transport. Where car-borne 

trade remains important (such as for larger transactions), there is also scope to improve our 

ŵŽĚĞů͛Ɛ ĂďŝůŝƚǇ to capture the true cost of interaction by using a road network and road travel 

time data to capture store accessibility (Birkin, Clarke and Clarke 2010). An example of this is 

outlined in the work of Vanhaverbeke and Macharis (2011) on consumer mobility, in 

particular commuting behaviour.  

 

Subsequent model enhancement will also capture the multi-channel nature of the supply 

side, incorporating consumer level indicators of e-retailing propensity (e.g. see Singleton et 

al. 2016) and adding e-commerce home delivery and click and collect channels into the 

ŵŽĚĞůƐ͛ ƐƵƉƉůǇ ƐŝĚĞ ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ͘ In addition to the more complex nature of the demand 

and supply-side, incorporation of e-commerce within this modelling framework requires a 

more nuanced ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ ŽĨ ŝŶƚĞƌĂĐƚŝŽŶ͕ ƌĞĐŽŐŶŝƐŝŶŐ ƚŚĂƚ ƚŚĞ ͚ĐŽƐƚ͛ ŽĨ ŝŶƚĞƌĂĐƚŝŽŶ ŝƐ 
placed on the retailer (in the case of home delivery) or on the consumer (in the case of click 

and collectͿ͘ CŽŶƐƵŵĞƌƐ͛ ĐŚŽŝĐĞ ŽĨ ŚŽŵĞ ĚĞůŝǀĞƌǇ ǀƐ͘ ĐůŝĐŬ ĂŶĚ ĐŽůůĞĐƚ ŵĂǇ ŝƚƐĞůĨ ďĞ ĚƌŝǀĞŶ ďǇ 
the accessibility of collection points, availability of private transport and availability and 

affordability of home delivery, all of which could be captured within our modelling 

framework.  

 

Our proof-of-concept model is based entirely on behaviours extracted from loyalty card data. 

These data enable us to capture a rich set of indicators related to a small subset of customers, 

with robust data on the actual stores used and their purchasing behaviours. Birkin, Clarke and 

Clarke (2017) highlight that these data provide considerable behavioural insight which 

extends well beyond those which can be derived from ͚ƚƌĂĚŝƚŝŽŶĂů͛ ĐĞŶƐƵƐ Žƌ ƐƵƌǀĞǇ-based 

datasets. Whilst their use in academic research is rare, retailers (particularly those with long-

established location analytics or customer insight functions) have been at the forefront of 

mining these data for behavioural insights (Burt, Sparks and Teller 2010; Humby, Hunt and 
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Phillips 2008). One crucial advantage of loyalty card data is the ability to link a given 

transaction to a named and geo-located consumer. Our own discussions with retailers suggest 

that they are investing in strengthening the role of customer insight within their businesses, 

ĚĞǀĞůŽƉŝŶŐ Ă ͚ƐŝŶŐůĞ ĐƵƐƚŽŵĞƌ ǀŝĞǁ͛. This enables them to understand the behaviours and 

purchasing decisions of individual customers across all their store formats and channels (Giles 

2015; Whitelegge 2014). Thus, retailers are increasingly equipped with the consumer level 

data and insights required in order to capitalise on the opportunities provided by ABMs for 

more nuanced and sophisticated location modelling.  

 

Furthermore, the novel yet growing availability of non-traditional sources of data related to 

consumer mobilities and behaviours may afford new opportunities to enhance the 

development and validation of ABMs in this context. Lovelace et al. (2015), Birkin, Clarke and 

Clarke (2017) and Whitelegge (2014) present examples which suggest that we can track 

consumers movements by using new technologies such as social media data or mobile phone 

positioning. These could complement loyalty card data and provide a richer and more 

nuanced set of insights into consumer mobility and behaviour across the entire retail sector. 

Such data may not be restricted to customers of a particular retailer (as captured by retailer 

data) or be reliant on consumers actively engaging with a loyalty scheme. They could provide 

continuously updateable and detailed information on consumer behaviours and lifestyle 

preferences, movement and activity patterns and opinions and attitudes (Birkin and Malleson 

2015). Notwithstanding potential ethical or privacy concerns, or issues related to the sample 

of consumers captured, or the considerable data cleaning and processing challenges (these 

issues are beyond the scope of this paper), incorporation of these data could considerably 

enhance our capacity to build and calibrate ABMs of consumer store choice behaviours. 

Model calibration and validation (in order to demonstrate the predictive capabilities of this 

model) are crucial stages in model building, yet present challenges in an ABM framework due 

to the complexity of these models and their parameters (Crooks, Castle and Batty 2008).   
 

Whilst we acknowledge a number of data-driven enhancements which will be made to our 

model, we firmly believe that our proof-of-concept demonstrates considerable potential. We 

strongly argue that the hybrid nature of our ABM (incorporating the crucial SIM-like trade-off 

between accessibility and attractiveness) affords tremendous potential to capture complex 

consumer behaviours and support the retail location analytics process. These could enable 

retailers to move beyond the use of zonal origins (e.g. related to residential or workplace 

locations) capturing truly individualised spatiotemporal behaviours. The incorporation of near 

real-time data for model calibration and validation could enable us to develop a truly dynamic 

simulation model which is constantly re-calibrated against observed consumer behaviours 

captured from these data sources. Whilst this would offer a number of advantages over 

previously static models, development and validation of an ABM at a spatial and temporal 

scale suitable for retail location-based analytics would place limitations on the complexity of 

models. Thus the representation of agents in the model is an important consideration, 

ensuring that the level of abstraction and the spatiotemporal resolution and rule sets applied 

are sufficient for the intended purpose (Crooks, Castle and Batty 2008), and within the 

capabilities of the software itself (Crooks and Heppenstall 2012).  

 

The extent to which the location planning sector possesses the skills to develop, calibrate, run 

and maintain these models is currently unknown. However, model development and 
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application is one area where the academic sector offers considerable expertise. The link 

between academia and the grocery sector played an important role in developing early 

͚ŐƌĂǀŝƚǇ ŵŽĚĞůƐ͛ ŝŶƚŽ ƚŚĞ SIMƐ ƚŚĂƚ ĂƌĞ ǁŝĚĞůǇ ĂƉƉůŝĞĚ ƚŽĚĂǇ (Roy and Thill 2004; Reynolds and 

Wood 2010). Whilst many retailers later developed the capacity to build and calibrate these 

models in-house, the links with academia remain strong (Birkin, Clarke and Clarke 2010; 

Reynolds and Wood 2010). Burgeoning links between the consumer facing retail sector and 

academic expertise (such as through the Economic and Social Research Council funded Big 

Data Centres; notably the Consumer Data Research Centre [CDRC]) offers considerable scope 

for further development and calibration of our prototype model for application within a 

commercial context. Centres such as the CDRC may also offer a unique opportunity to capture 

the full complexity of consumer behaviours by aĐƚŝŶŐ ĂƐ Ă ͚ƚƌƵƐƚĞĚ ƉĂƌƚŶĞƌ͕͛ ĞŶĂďůŝŶŐ 
integration of behavioural insights captured across multiple commercial datasets (such as 

ŵƵůƚŝƉůĞ ƌĞƚĂŝůĞƌƐ͛ ůŽǇĂůƚǇ ĐĂƌĚ ƐĐŚĞŵĞƐͿ (see Reynolds and Wood 2010; and Birkin et al. 2014, 

for further discussion of the potential benefits of these forms of collaboration).  

 

Wrigley and Lambiri (2015) ƐƵŐŐĞƐƚ ƚŚĂƚ ǁĞ ĂƌĞ ǁŝƚŶĞƐƐŝŶŐ Ă ͚ŽŶĐĞ ŝŶ Ă ŐĞŶĞƌĂƚŝŽŶ͛ ĐƵůƚƵƌĂů 
shift in consumer shopping habits which are re-shaping the retail sector. Approaches such as 

agent-based modelling provide us a tool within which to capture and simulate these 

increasingly complex and individualised ŐĞŽŐƌĂƉŚŝĞƐ ŽĨ ĐŽŶƐƵŵĞƌƐ͛ ŐƌŽĐĞƌǇ ƐŚŽƉƉŝŶŐ 
routines.  Defacto approaches as used by the retail sector struggle to account for the full 

spatial and temporal range of individual behaviours and the work within this paper provides 

a simple proof-of-concept that offers a tantalising insight into the potential of this approach. 
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