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Abstract We investigate the climate response to increased concentrations of black carbon (BC), as part of
the Precipitation Driver Response Model Intercomparison Project (PDRMIP). A tenfold increase in BC is
simulated by nine global coupled-climate models, producing a model median effective radiative forcing of
0.82 (ranging from 0.41 to 2.91) Wm�2, and a warming of 0.67 (0.16 to 1.66) K globally and 1.24 (0.26 to 4.31) K
in the Arctic. A strong positive instantaneous radiative forcing (median of 2.10 W m�2 based on five of the
models) is countered by negative rapid adjustments (�0.64 Wm�2 for the same five models), which dampen
the total surface temperature signal. Unlike other drivers of climate change, the response of temperature
and cloud profiles to the BC forcing is dominated by rapid adjustments. Low-level cloud amounts increase for
all models, while higher-level clouds are diminished. The rapid temperature response is particularly strong
above 400 hPa, where increased atmospheric stabilization and reduced cloud cover contrast the response
pattern of the other drivers. In conclusion, we find that this substantial increase in BC concentrations does
have considerable impacts on important aspects of the climate system. However, some of these effects tend
to offset one another, leaving a relatively small median global warming of 0.47 K per W m�2—about 20%
lower than the response to a doubling of CO2. Translating the tenfold increase in BC to the present-day
impact of anthropogenic BC (given the emissions used in this work) would leave a warming of merely 0.07 K.

1. Introduction

As a strong absorber of shortwave radiation, black carbon (BC) emitted to the atmosphere has an influence
on global and regional climate (Bond et al., 2013). The impacts of BC aerosols span from aerosol-radiation
interaction (direct aerosol effect), through influences on cloud microphysics (aerosol-cloud interactions or
indirect aerosol effects), to rapid adjustments involving modification of atmospheric stability and humidity
and consequent modification of clouds (semidirect effects). Quantifying the magnitude of these impacts is
crucial to our ability to provide accurate estimates of future climate change. However, the climate impact
of aerosols in general, and BC in particular, is still associated with significant uncertainty (Bond et al., 2013;
Boucher et al., 2016, 2013; Myhre & Samset, 2015; Samset, Myhre, & Schulz, 2014).

In the most recent report from the Intergovernmental Panel on Climate Change, the direct radiative forcing
(RF) from fossil fuel and biofuel emissions of BC is evaluated to be +0.4 (+0.05, 0.8) W m�2 (Boucher et al.,
2013). The large uncertainty range in this estimate can be linked to the fact that both model-based and
observational studies disagree on several aspects of BC influence on climate. For instance, there is still no con-
sensus on the value of globally averaged BC emissions, although more recent studies point to previous
underestimation of this number (Bond et al., 2013; Cohen &Wang, 2014; Stohl et al., 2013). Vertical BC profiles
have been shown to be poorly constrained (Samset, Myhre, Herber, et al., 2014; Schwarz et al., 2013; Wang
et al., 2014), there are model discrepancies in the magnitude and importance of the coating-enhancement
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of ambient BC absorption (Boucher et al., 2016; Gustafsson & Ramanathan, 2016; Peng et al., 2016) as well as
in factors such as dry and wet removal efficiency (Mahmood et al., 2016), and the contribution from brown
carbon is still uncertain (Liu et al., 2014). BC also influences climate through indirect effects (microphysical
influence of BC aerosols on cloud droplets, Twomey, 1974) and semidirect effects (BC absorption influences
the short-wave heating rate, influencing the vertical temperature profile and/or causing evaporation of cloud
droplets, Ackerman et al., 2000). When estimating indirect and semidirect effects of BC, a multitude of chemi-
cal, physical, and dynamical processes are involved on the path from emission to climate influence. Model
differences in parametrizations of these processes induce particularly large spread in indirect and semidirect
BC forcings (Bond et al., 2013). For instance, the semidirect effect can have opposite signs depending on
where the BC is located in relation to the altitude of the cloud layer (Koch & Del Genio, 2010). This means that
intermodel variation in both BC and cloud fields will greatly influence estimates of this effect, as found, for
instance, in Hodnebrog, Myhre, and Samset (2014). Indeed, estimates of effective radiative forcing (ERF) from
aerosol-cloud interactions (ERFaci) have been shown to be highly dependent on model cloud fields. Zelinka
et al. (2014) analyzed aerosol experiments in nine CMIP5 models and found that more than 20% of the inter-
model spread in ERFaci was caused by model differences in baseline cloud amounts. Samset and Myhre
(2015) found substantial interannual differences in semidirect RF in simulations using the CESM-CAM4model,
primarily due to differences in cloud fraction, and pointed to the importance of cloud field representation
and location relative to BC for estimates of the semidirect effect. Likewise, Chen and Penner (2005) identify
aerosol burden and cloud fraction to be the most important sources of model disagreement in estimates
of indirect aerosol effects.

Attempts to isolate and quantify the impact of BC on global climate are not abundant in the literature.
Mahajan et al. (2013) found in simulations with a global climate model (GCM) a global warming of 0.52 K
for a tenfold increase of present-day concentrations, relative to a scenario with no BC. Jones, Haywood,
and Boucher (2007) found a globally averaged warming of 0.28 K in HadGEM1 simulations where year
2000 BC emissions were compared to a control run with emissions for year 1860. In a model study by
Jacobson (2010), all fossil fuel soot (including BC and primary organic matter) was removed, which caused
a significant cooling of �0.3 to �0.5 K globally and up to �1.2 K above the Arctic Circle. Similarly, Baker et al.
(2015) found that removing all present-day BC in four GCMs lead to an average global change of �0.044 K,
with a model/ensemble range from �0.152 to 0.085 K. The model spread was particularly large in the
Arctic. Single-model studies of BC responses in the Arctic have shown relatively large responses to BC pertur-
bations: Sand, Berntsen, Kay et al. (2013) found, using the NorESM1 model, that a tenfold increase in BC con-
centrations in midlatitudes caused a significant surface warming of 1.1 K in the Arctic. For local increases in
Arctic BC, however, the response was a surface cooling, as also found in Shindell and Faluvegi (2009).

Comparison of BC responses between studies is often complicated by the fact that multiple climate drivers
are changed simultaneously. And even if pure BC-perturbation experiments exist, they often differ in their
setups and size of BC change (e.g., Baker et al., 2015; Sand, Berntsen, Seland et al., 2013). In the
Precipitation Driver and ResponseModel Intercomparison Project PDRMIP (Myhre, Forster et al., 2017), 10 glo-
bal climatemodels performed coordinated experiments (both in fully coupledmodes as well as with fixed sea
surface temperatures) where the main goal was to study the precipitation response to five different climate
drivers separately, namely, CO2, CH4, BC, the total solar irradiance (TSI), and SO4. The availability of this BC
experiment, involving a tenfold increase in anthropogenic BC and hereafter referred to as BCx10, facilitates
the opportunity to compare isolated climate system responses to BC among models.

First results from the PDRMIP project (Myhre, Forster et al., 2017; Samset et al., 2016) show that among the
five climate drivers, there is a clear tendency for BC to give the highest relative intermodel spread in most
climate responses. Myhre, Forster, et al. (2017) and Samset et al. (2016) also identify BC as the driver that
has the weakest globally averaged temperature response with respect to the forcing and that produces some
of the strongest precipitation reductions despite the global mean temperature increase. In this paper we take
a closer look at the BCx10 experiment. We aim to understand why the climate response to this substantial
increase in BC apparently involves a rather modest influence on surface temperature and to identify the main
causes of the large intermodel spread in the climate response to BC. In the next section we give a brief intro-
duction to the models, model setups, and experiments used in the analyses. In section 3 we describe the
model differences in BC distribution, as well as climate responses to the BC perturbation. Changes in tem-
perature, precipitation, and radiative forcing are shown, in addition to vertical changes in clouds and

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027326

STJERN ET AL. RAPID ADJUSTMENTS CAUSE WEAK BC RESPONSE 11,463



relative humidity. The results, as well as how they compare to previous findings, are discussed in section 4
and summarized in section 5.

2. Data and Experiments

In the PDRMIP project, 10 global climate models simulated a baseline experiment using year 2000 green-
house gas and aerosol concentrations or emissions (hereafter BASE). Relative to BASE, each model then
simulated five perturbation experiments: a doubling of CO2 concentrations (hereafter CO2x2), a tripling of
CH4 concentrations (CH4x3), a 2% increase in the TSI (SOL), an increase in anthropogenic BC concentrations
or emissions by a factor of 10 (BCx10), and an increase in anthropogenic SO4 concentrations or emissions by a
factor of 5 (SO4x5). We refer back to Myhre, Forster et al. (2017) for a full description of model setups
and experiments.

To limit the number of unintended sources of intermodel differences in the aerosol experiments, five of the
models fixed their BASE BC (and SO4) concentrations to the monthly multimodel mean present-day concen-
trations from AeroCom Phase II (Myhre et al., 2013; Samset et al., 2013) and simulated the BCx10 experiment
using a tenfold increase in the anthropogenic portion of these concentrations. These AeroCom concentra-
tions are primarily based on year 2000 Lamarque et al. (2010) emissions, as given in the upper part of
Table 1. For the remaining models, however, the model design precluded the use of prescribed aerosol con-
centration fields as input. In these models, the BASE simulation was run using present-day BC emissions,
while the BCx10 simulation was run with 10 times larger anthropogenic emission levels. This difference in
simulation setup is not trivial, as will be shown later. The BC emissions used in the BASE simulation for the
emission-driven models are given in the lower part of Table 1—note that HadGEM2 used year 1860 instead
of present-day emissions as a baseline. One model (MPI-ESM) was not able to perform the aerosol simula-
tions, which means that the BCx10 case was performed by the following nine models, where [E] denotes that
the model used increased emission-driven BC instead of increased prescribed concentrations: CanESM2 [E],
CESM-CAM4, CESM-CAM5 [E], GISS-E2-R, HadGEM2-ES [E], HadGEM3, IPSL-CM5A, NorESM1, and MIROC-
SPRINTARS [E]. Note that although HadGEM2-ES [E] used preindustrial emissions in their BASE run, their
BCx10 run was based on 10 times the anthropogenic emissions of year 2000, see Table 1.

All experiments were run in an atmosphere-only configuration where sea surface temperatures were pre-
scribed (hereafter referred to as fSST) as well as in a fully coupled atmosphere-ocean configuration (coupled).
The simulation lengths for these two configurations were 15 and 100 years, of which years 6–15 and 51–100
were used in the analyses, respectively. In the results, “change” refers to the difference between the BCx10
and the BASE simulation.

Table 1
BC Treatment in the Different Models

Emissions

BC mixed state
BC MAC
(m2 g�1)

BC emission
change
(Tg/yr)

BC burden
change

(mg m�2)
BC life-time

(days)BASE BCx10

Concentration-driven models
CESM-CAM4 Mostly year 2000 (Lamarque et al., 2010),

although some variation; see
Myhre et al. (2013).

External 7.30
GISS-E2-R External 6.24
HadGEM3 External 3.36 45.5 1.80 7.4
IPSL-CM5A External ~6
NorESM1 Internal and external 7.96

Emission-driven models
CanESM2 [E] - - Internal - 76.5 4.41 10.73
CESM-CAM5 [E] Year 2005, Lamarque et al. (2010) Year 2005 × 10 Internal 9.85 46.4 0.85 3.41
HadGEM2-ES [E] Year 1860, Lamarque et al. (2010) Year 2000 × 10 External 3.29 50.1 5.82 21.33
MIROC-SPRINTARS [E] Year 2010, Janssens-Maenhout et al. (2015) Year 2010 × 10 Internal and external 4.03 69.2 1.98 5.33

Note. “Concentration-driven models” refer to models that use (the same AeroCom-based) fixed BC concentrations in the BASE experiment, and the anthropogenic
part of these concentrations multiplied by 10 in the BCx10 experiment. “Emission-driven models” refer to models that use individual emissions (given in the table)
for the BASE experiment, and those emissionsmultiplied by 10 in the BCx10 experiment. An exception in the latter group is HadGEM2-ES [E], which uses year 1860
emissions in BASE but year 2000 emission times 10 for the BCx10 experiment. Information on emissions or mass absorption coefficient (MAC) was not available for
CanESM2 [E]. MAC was calculated as the change in absorption optical depth at 550 nm divided by the BC burden change.
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The methods in the literature used to diagnose radiative flux changes at the top-of-atmosphere (TOA) varies,
each having its own advantages and disadvantages (see, e.g., Sherwood et al., 2015). We here follow the line
of previous PDRMIP publications: effective radiative forcing (ERF) is calculated as the change in net radiative
long-wave (LW) plus short-wave (SW) fluxes at TOA in the fSST simulations (see Forster et al., 2016, for a dis-
cussion of different ways to diagnose the ERF). Instantaneous radiative forcing (IRF), supplied by five of the
models, was simulated through double radiation calls; see Ghan et al. (2012). The IRF is similar to the direct
aerosol effect or RFari in the IPCC AR5 terminology (Boucher et al., 2013).

The ERF includes the rapid adjustments (often referred to as the fast responses). Rapid adjustments include
changes to the vertical temperature profile and the atmospheric humidity, both of which may influence
cloud fractions. The part of this change in cloud fraction that is directly caused by local BC warming in the
vicinity of the cloud is often referred to as the semidirect effect (Koch & Del Genio, 2010). In addition, BC-
induced rapid adjustments in cloud fractions and precipitation may occur as a consequence of solar dimming
(the surface energy budget effect, see, e.g., Lohmann & Feichter, 2005), as a result of circulation changes (e.g.,
Kovilakam & Mahajan, 2016), or due to microphysical influence of BC aerosols in warm or cold clouds (the
indirect aerosol effect, e.g., Zhuang et al., 2013). Here we calculate rapid adjustments as the change between
perturbation simulation and BASE for the fSST runs. The feedback response (sometimes referred to as the
slow response) was diagnosed as the difference between the coupled and the fSST runs.

3. Results
3.1. Black Carbon Distribution

The change in total BC burden for the BCx10 experiment is shown in Figure 1 (first row), averaged globally
as well as over six different latitude bands. The geographical pattern of the BC change can be seen in
Figure S1 in the supporting information for the average of all models, as well as averaged separately over
models using concentration-driven setups and overmodels using emission-driven setups. The largest increases
occur over Southeast Asia and central Africa, followed by South America, Europe, and North America. The
globally averaged change in BC burden varies among the models, with CanESM2 [E] and HadGEM2-ES [E]
showing the largest changes and CESM-CAM5 [E] showing the smallest change (Figure 2 and Table 1).
Ideally, the differences in BC burden should be minor, but the use of emission-driven setups in some models
(including the three just mentioned) results in BC distributions that differ considerably from the prescribed
BC perturbation.

Figure 2 shows globally averaged profiles of BC for the BASE (dashed) and BCx10 (solid) cases in the left panel,
and the difference between the two cases in the right panel, and reveals important model discrepancies.
HadGEM2-ES [E] and CanESM2 [E], which used emission-driven setups, have low BASE concentrations (recall
that HadGEM2-ES [E] used year 1860 emissions for the BASE runs), but higher concentrations for the BCx10
case than all other models at all vertical layers. MIROC-SPRINTARS [E], which also simulated BCx10 based
on emissions, has high increases in BC at lower atmospheric levels but has the lowest increase in BC of all
models above about 300 hPa. This illustrates one of the challenges in model intercomparison projects; differ-
ing experimental setups will hamper a clean and straightforward analysis.

3.2. Temperature Changes

The BCx10 (coupled) simulations produce a globally averagedmodel median warming of 0.67 (0.16 to 1.66) K,
where the spread indicates the lowest and highest individual model values (Table 2). Assuming linearity, this
corresponds to a present-day warming of 0.074 K due to anthropogenic BC, given the present-day BC emis-
sions used in this work. Baker et al. (2015) performed an experiment where all anthropogenic (present-day)
BC was removed in simulations with four climate models. This resulted in a model mean globally averaged
cooling of �0.044 K, with an ensemble range of �0.152 to 0.085 K. Had our experiment been a BC reduction
instead of an increase, translating it to a “BCx0” scenario would give a cooling of �0.067 K, well within the
uncertainty range given by Baker et al. (2015). Examining the linearity of the climate response from BC,
Mahajan et al. (2013) performed simulations with increasing BC perturbations using the CAM4 model. The
many investigated aspects of climate change (e.g., the TOA forcing, global temperature, cloud cover, and
precipitation) were found to change linearly as the BC burden was increased. Relative to a BCx0 scenario they
found a global warming of 0.52 K for the BCx10 simulation.
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As Figure 1 (second row) shows, the temperature change is largest in the Northern Hemisphere, which is
expected as this is where most of the BC sources are located. The relative standard deviations (RSDs; given
in parenthesis above the bars) are largest poleward of 60° in both hemispheres. The RSD of 0.75 for the global
mean temperature change drops to 0.33 if we include only the models with concentration-driven simula-
tions. Hence, a substantial part of the intermodel spread is caused by the fact that the BC perturbations
are not the same for all models. The same can be seen from Figure S2, which shows a version of Figure 1
where the three lowest rows have been normalized by the change in BC load. The globally averaged

Figure 1. (first row) BCx10 minus BASE difference in BC load, (second row) near-surface temperature, (third row) ERF, and (fourth row) precipitation. Changes are
based on years 51–100 of the coupled runs, except for ERF which is based on the years 6–15 of the fSST runs. The leftmost groups of bars show the global mean
responses, while the remaining groups are averages over the latitude bands indicated on the x axis. Numbers above the groups of bars show region averages
(relative intermodel standard deviation in parentheses) for the given latitude band.
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BC-normalized temperature change has an RSD of 0.4, and the models with the largest normalized
temperature changes are now IPSL-CM5A, HadGEM3, and NorESM1.

The Arctic warming amounts to 1.24 K, with a large intermodel range from 0.26 to 4.31 K. This is comparable
to Sand, Berntsen, Kay et al. (2013), who studied the sensitivity of Arctic surface temperature to local and
remote BC changes using the NorESM1model and found that a tenfold increase in BC concentrations at mid-
latitudes leads to a significant surface warming of 1.1 K in the Arctic. Note that NorESM1 includes the radiative
effects of BC on snow and ice, as do also CESM-CAM5 [E] and MIROC-SPRINTARS [E] in the PDRMIP simula-
tions. In NorESM1, which used prescribed BC concentrations here, the BC deposition was also enhanced by
10 in the simulations.

Figure 2. (left) Globally averaged profiles of black carbon for the BASE and BCx10 cases and the (right) difference between
the two. Models that use emission-driven simulations instead of fixed concentrations are marked with [E]. Values for
HadGEM3 and GISS-E2-R are almost identical to those of NorESM1 and are consequently mostly hidden behind the yellow
line. CESM-CAM5 [E] was not able to provide the BC concentrations and is therefore not plotted.

Table 2
Radiative Forcing and Temperature Values for the BCx10 Case

ERF
(W m�2)

Norm. ERF
(W g�1)

Temp.
Change (K)

IRF
(W m�2)

Rapid adj. flux
response (W m�2)

Indir. aerosol
effects from BC

Climate sensitivity
(K (W m�2)�1) Efficacy

CanESM2 [E] 1.54 350 1.31 - - - 0.85 1.12
CESM-CAM4 0.78 430 0.35 2.10 �1.32 No 0.44 0.51
CESM-CAM5 [E] 0.41 490 0.17 - - No 0.04 0.06
GISS-E2-R 1.26 640 0.39 1.88 �0.64 No 0.31 0.86
HadGEM2-ES [E] 2.91 490 1.66 3.29 �0.39 No 0.58 0.73
HadGEM3 0.68 380 0.70 - - No 1.02 0.99
IPSL-CM5A 0.82 440 0.75 2.33 �1.44 Yes 0.92 1.21
NorESM1 1.43 750 0.67 - - Yes 0.47 0.80
MIROC-SPRINTARS [E] 0.65 330 0.16 1.22 �0.55 Yes 0.25 0.63
Median (±SD) 0.82 (±0.74) 490 (±150) 0.67 (±0.50) 2.10 (±0.76) �0.64 (±0.48) - 0.47 (±0.33) 0.80 (±0.35)

Note. IRF and rapid adj. flux response are only available for models that performed additional double call simulations. Normalized ERF is the ERF divided by the BC
burden change. Dashed entries mean that the given information was not available for that model. Note that the climate sensitivity is here defined as the tempera-
ture change normalized by the ERF, both calculated from the difference between the BCx10 and the BASE simulation.
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Figure 3 shows temperature change maps for the model median and individual models, as well as zonally
averaged changes for each model, for the coupled runs. As seen in Figure 1, the temperature increase is lar-
gest on the Northern Hemisphere, where the BC concentrations change themost. However, at the “hot spots”
of BC increase (India, China, and Central Africa; see Figure S1), the rapid temperature response is a significant
cooling (not shown), caused by the strong reduction in surface heating as less shortwave radiation reaches
the surface (solar dimming, see, e.g., Stanhill & Cohen, 2001). This initial cooling response reduces the total
temperature response to only a weak warming (or for some models, a weak cooling) in these regions. All
models but GISS-E2 R simulate an Arctic amplification (larger warming when averaged over the Arctic than
when averaged globally); see Table S1.

3.3. Radiative Forcing

The ERF from BCx10, estimated as the difference in TOA radiative flux in the fixed-SST runs, is 0.8 (0.4 to
2.9) W m�2 globally, and 1.0 (�0.02 to 4.8) W m�2 in the Arctic; see Figure 1. Here the highest model

Figure 3. Annual mean model median change in near-surface temperature (top left), as well as zonally averaged tempera-
ture change for the model median (black line) and individual models (top right). The remaining panels show individual
model results. Data are based on the last 50 years of the coupled runs, and hatched areas in the model median map
indicate grid cells for which values are more than one multimodel standard deviation away from zero.
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values are from HadGEM2-ES [E] (2.9 and 4.8 W m�2, respectively), while the next highest values are from
CanESM2 [E] (1.5 and 3.5 W m�2, respectively). Recall that the tenfold increase in BC investigated here is
not a realistic scenario. Assuming linearity (see Hodnebrog et al., 2014, for a discussion of the impact of scal-
ing and the linearity assumption on BC radiative forcing for the CESM-CAM4 model), the model medians
translate into 1850–2000 BC forcings of 0.09 and 0.11 W m�2 (given the emissions used here) globally and
in the Arctic, respectively. This is substantially lower than the combined direct and semidirect aerosol effect
from Bond et al. (2013) and Boucher et al. (2013), but in line with various simulations in Hodnebrog et al.
(2014). A main reason is likely the difference in emissions, which are about twice as high in Bond et al.
(2013) as in Hodnebrog et al. (2014), and the compensating scaling of the semidirect effect in Hodnebrog
et al. (2014) which is not present to the same degree in the analysis in Bond et al. (2013). In the present study,
this compensation will be more explicitly treated as we use fully coupled, dynamical models.

Again, HadGEM2-ES [E] and CanESM2 [E] generally have values higher than the other models, and the global
RSD of 0.64 drops to 0.33 when only the models with concentration-driven simulations are considered, or to
0.32 when normalizing ERF by the BC burden change (the second row in Figure S2). Normalized ERF is also
given in Table 2. Note that for this quantity, the value for HadGEM2-ES [E] is equal to the model median,
and for CanESM2 [E] it is even slightly below. Global maps of the ERF for individual models are given in
Figure 4.

Table 2 shows the climate sensitivity of each model, defined here as the global temperature change
divided by the ERF. The model median climate sensitivity for the BCx10 experiment amounts to 0.47
(0.04–1.02) K (W m�2)�1, which is about 20% lower than for the CO2x2 experiments. The BC efficacy,
calculated as the climate sensitivity for BCx10 divided by the climate sensitivity for CO2x2, is 0.80 (0.06
to 1.21), where CESM-CAM5 [E] and IPSL-CM5A have the lowest and highest values, respectively.

Previous studies have shown that rapid adjustments play an important part in the climate impact of BC
(Myhre, Forster et al., 2017; Samset et al., 2016). To get an idea of howmuch the rapid adjustments contribute
to the total ERF, five of the models (MIROC-SPRINTARS [E], CESM-CAM4, HadGEM2-ES [E], GISS-E2-R, and IPSL-
CM5A) performed double call runs to extract the IRF from BCx10. The model median IRF amounted to
2.10 W m�2; see Table 2. The rapid adjustment may then be estimated as the difference between a model’s
ERF and IRF. Depending on the model formulations, this rapid adjustment can comprise changes to both
temperature, water vapor, and clouds and also microphysical effects of BC on clouds. As listed in Table 2,
HadGEM2-ES [E], GISS-E2-R, and CESM-CAM4 do not include indirect effects from BC, which means that the
rapid adjustments producing the difference between ERF and IRF come mainly from changes to clouds,
temperature, and water vapor. A minor contribution could also come from changes in surface albedo over
land. For MIROC-SPRINTARS [E] and IPSL-CM5A, there will be an additional contribution from the indirect
effect within this estimate. As accounted for by Takemura et al. (2005), themicrophysical effect of BC on warm
clouds is very small in MIROC-SPRINTARS [E], but the contribution from BC on ice clouds can be of importance
(Takemura et al., 2009). Additional simulations with IPSL-CM5A allowed for quantification of the IRF from
aerosol-cloud interactions (“IRFaci”) for this model, as seen in Figure S3. The global average of this effect
was �0.07 W m�2. Note that as the indirect RF was available for IPSL-CM5A, the rapid adjustment flux
response was calculated as ERF � IRF � IRFaci (as opposed to just ERF � IRF for the other models).

As given in Table 2, the model median rapid adjustment flux response amounts to �0.64 W m�2, with
individual values ranging from �0.39 W m�2 (HadGEM2-ES [E]) to �1.44 W m�2 (IPSL-CM5A). For
HadGEM2-ES [E], the value is about 10% the magnitude of the IRF, for GISS-E2-R and MIROC-SPRINTARS [E]
it is around 30%, while for CESM-CAM4 and IPSL-CM5A it is around 60%. While generally weaker than the
IRF, the rapid adjustment flux response does in some regions outweigh it; see Figure 5. For instance, in the
tropical/subtropical North and South Atlantic (except close to the equator), a negative flux change from
the rapid adjustments more than cancels the positive IRF, producing a negative total ERF (Figure 4). For
GISS-E2-R a strong negative rapid adjustment signal in northern midlatitude ocean regions (particularly in
the Pacific) is strong enough to produce a surface cooling (Figure 3).

3.4. Vertical Distribution of Changes

In Figure 6 we show globally averaged changes in the vertical profiles of temperature, cloud amount, and
relative humidity, based on the coupled simulations. For BCx10, most models show an increase in
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temperature with altitude. Toward the top of the troposphere, this increase levels off and turns to a gradual
reduction in warming with height, as the concentration of BC goes down. CanESM2 [E] has a very strong
temperature increase up to about 100 hPa, at least partly due to its high increase in BC concentration (as
seen in Figure S2, the global mean warming for CanESM2 [E] is only the fourth strongest when
normalizing by BC burden change). Interestingly, IPSL-CM5A, for which the BC change in the lower
atmosphere (p > 500 hPa) is weakest of all models, gives an above-average increase in temperature. It also
has the strongest normalized warming of all models (Figure S2). As will be shown later, this is likely
connected to a particularly strong cloud response. The temperature change in HadGEM2-ES [E] increases
with height more than in any other model up to 250 hPa but decreases rapidly thereafter and even turns
to a cooling at the highest levels—a temperature response more typical for a CO2 increase, as shown in
the model median panel below (dashed black line). A possible explanation is that the very high level of BC
absorption of upwelling shortwave (SW) radiation in the troposphere strongly reduces the amount of SW
available for absorption by ozone, which reduces the stratospheric heating and results in this case in a
cooling relative to the base case. A pair of test runs performed by the HadGEM2-ES [E] model team where

Figure 4. Annual mean model median ERF (top left) and zonally averaged temperature change for the model median (the
black line) and individual models (top right). The remaining panels show individual model results. Data are based on the
fixed-SST runs, and hatched areas in the model median map indicate grid cells for which values are more than one
multimodel standard deviation away from zero.
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the radiative effect of ozone was included and excluded, respectively, show that there is a (small) negative
change in heating rate only if the radiative effect of ozone is included (see Figure S4). It is not known,
however, whether this is the only cause of the BC-induced stratospheric cooling in HadGEM2-ES [E].

The increase in BC leads to an increase in the globally averaged amount of low clouds, but a reduction in
middle- and high-level clouds. This is a cloud response typical to BC forcing, seen also in previous BC studies
(e.g., Sand et al., 2015). Individual model numbers can be seen in Table S2, where low, midlevel, and high
clouds are approximated as simple vertical averages of cloud fractions over given pressure intervals
(1000–680 hPa, 680–440 hPa, and 440–50 hPa, respectively). The globally averaged cloud change profile is
in general similar among the models (Figure 6), but HadGEM2-ES [E] produces increasing cloud amounts

Figure 5. (left column) IRF and (right column) rapid adjustment flux response, based on double call simulations for five of
the models.
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for altitudes above about 250 hPa, concurrent with a substantial increase in RH at the same levels, and
HadGEM3 has reductions in cloud cover in all vertical layers below about 200 hPa. The total change in low
and high cloud fractions is largest for IPSL-CM5A.

The total response in cloud fraction seen in Figure 6, with an increase at lower levels and a decrease at higher
levels, is predominantly found over ocean regions, whereas over land, changes in cloud cover tend to have
the same sign throughout the atmospheric column (Figure 7, top row). Most land regions have a reduction
in low, midlevel, and high clouds, but in the regions with the strongest increases in BC, namely, India, East
China, and the biomass burning regions of Central Africa, the cloud amount increases all through the
atmospheric column. Changes in total cloud cover are generally largest over land, where the increase in lower
tropospheric stability (LTS; calculated as the temperature difference between the 1,000 hPa and 780 hPa
layers) is largest and where there is a reduction in sensible heat that is at least 5 times as strong as over
ocean (not shown). Of the five experiments in the PDRMIP project, the BCx10 case induced the strongest
changes in LTS, with a global decrease in 1,000 hPa � 780 hPa temperature difference of �0.16 K.
Relative to the global temperature change, the number is �0.262. For comparison, the corresponding
numbers of LTS change per global temperature change for CO2x2, CH4x3, SO4x5, and SOL are �0.012,
�0.015, �0.039, and �0.012 K, respectively.

As shown in Table 3, the model median total cloud change is �0.17%. The intermodel standard deviation is
0.34%—twice the median value. To investigate the reasons behind this large model spread, we have looked
at how variables are connected in terms of Spearman’s rank correlation coefficients. Spatial correlations are
calculated by correlating maps of time-averaged changes in, for example, total cloud fraction to maps of
other changes or quantities for a given model. We also look at the “intermodel correlation” between pairs
of globally averaged changes/values for the nine models, to check, for instance, if models with large changes
in total cloud cover also have, for example, a high fraction of low clouds. For the latter correlations, changes
are normalized by the global mean BC burden change for each model. We find that spatial correlations

Figure 6. Globally averaged vertical profiles of change in (left column) temperature, (middle column) cloud amount, and
(right column) relative humidity. The top row shows the change for the BCx10 case, for each of the models, while the
bottom row shows themodel median change for each of the five cases. Note different x axis limits between top and bottom
panels. Profiles are based on the last 50 years of the coupled runs.
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between the models’ change in total cloud cover and the baseline cloud profile (as represented by the ratio
of the average cloud fraction below to above 500 hPa) are around 0.4 and strongly significant for all models
(see Table S3 for individual model correlation coefficients). This indicates that in regions where much of a
model’s clouds are located in the lower troposphere, the increase in clouds due to the BC perturbation is
typically larger. The vertical distribution of clouds varies strongly between the models, as seen in Table 3
and Figure S5.

Previous studies have identified the fast response to dominate the total precipitation response to a BC
perturbation (Andrews et al., 2010; Kvalevåg, Samset, & Myhre, 2013; Samset et al., 2016). Indeed, from the
five models which provided calculations of IRF, we saw that the rapid adjustment flux response may

Figure 7. Model median (taken in each grid cell) changes in low cloud cover (approximated here as the simple vertical
average in cloud cover for grid cells between the surface and up to 680 hPa), midlevel cloud cover (average between
680 and 440 hPa), and high cloud cover (average cloud cover above 440 hPa), given for the (top row) total response, the
(middle row) rapid adjustment, and the (bottom row) feedback response, separately. Hatched areas in the model median
map indicate grid cells for which values are more than one multimodel standard deviation away from zero. Globally
averaged model median change and intermodel standard deviations are shown as numbers above each panel.

Table 3
The First Three Columns Are Calculated for the BASE Case, While the Others Reflect BCx10 � BASE Changes

Low clouds (%) Level for max low clouds (hPa) BC ratio Total cloud change (%) Prec. change (mm/yr)

CanESM2 [E] 11.21 930 0.15 �0.26 �24.03
CESM-CAM4 14.22 867 0.32 +0.50 �18.77
CESM-CAM5 [E] 16.52 913 � � �13.19
GISS-E2-R 9.05 818 0.31 �0.81 �16.54
HadGEM2-ES [E] 12.16 861 � �0.32 �21.12
HadGEM3 12.86 859 0.32 �0.59 +3.51
IPSL-CM5A 8.47 944 1.20 � +0.16
NorESM1 14.47 857 0.30 +0.58 �15.07
MIROC-SPRINTARS [E] 8.65 876 0.32 �0.26 �14.95
Median (±SD) 12.16 (±2.86) 867 (±40) 0.32 (±0.35) �0.17 (±0.34) �15.07 (±9.19)

Note. Low clouds are here approximated as the simple vertical average (no overlap assumption) of the cloud fractions between 1,000 and 680 hPa levels. BC ratio
refers to the ratio of the vertically averaged BC concentrations (given in mg m�3) above 500 hPa to below 500 hPa, for the BASE case.
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constitute a significant part of the total ERF. Figure 8 is a version of the lower row of Figure 7, but showing the
rapid adjustments (fSST, top row) and the feedback responses (coupled-fSST, bottom row) separately. Here
we see that the BCx10 feedback response in temperature is more similar to the other drivers: increased
instability in the upper troposphere leading to increased cloud cover. Concordant with the literature above,
however, the rapid adjustments to increased BC (upper tropospheric stabilization and reduced cloud cover)
dominate. In comparison, the CO2x2 case has changes in the vertical distribution of clouds consistent with
previous findings (Bony et al., 2013; Zelinka et al., 2014) and is dominated by the feedback response. Up to
about 400 hPa, the rapid adjustments in temperature and cloud amounts are relatively similar between
BCx10 and the other drivers. Above this level, the increase in BC induces an increase in upper tropospheric
stability, giving rise to the reduction in cloud amount. For the other drivers, however, the upper troposphere
becomes less stable and cloud amounts increase.

3.5. Precipitation Changes

In the BCx10 experiments, precipitation decreases globally in all models except HadGEM3 and IPSL-CM5A,
with a median change of �15.1 (�24.0 to +3.5) mm/yr. Southern Hemisphere tropics and Northern
Hemisphere midlatitudes experience the largest changes—see Figure 1. Note that even models with weak
globally averaged precipitation change can have strong latitude-averaged precipitation signals. This demon-
strates that although global responses to even such a highly exaggerated BC increase are small, there may
still be substantial regional effects, as seen also in Figure 9. Previously reported BC precipitation responses
such as a drying in the Mediterranean and an increase over the Indian Monsoon region (Kim et al., 2016)
are robust features across the models, as are also the decrease in precipitation in the Amazon region and
increased precipitation in north eastern Africa.

Samset et al. (2016) showed that for the BCx10 case, the rapid precipitation response was larger than the
feedback response (the slow precipitation change) over oceans, contrary to the other climate drivers. Over

Figure 8. Multimodel median profiles of changes in temperature (K), cloud amount (%), and RH (%) for the five cases, sepa-
rated into the (top row) fast response and the (bottom row) slow response.
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land, they showed that the precipitation response from BCx10 and CO2x2 were dominated by the feedback
response. Here we find that it is the convective (as opposed to the large-scale) precipitation component that
dominates over oceans, which experience a large reduction in latent heat flux (not shown). The convective
precipitation change is strongly negative, while over land it is weakly positive, yielding a globally averaged
negative rapid response in precipitation.

As seen in Figure S2, the RSD for the BC burden change-normalized global precipitation change is 0.86 for
precipitation—more than double the RSD for the temperature change. Understanding the main physical
mechanisms behind the precipitation change might help us understand which model formulations differ
the most, thus contributing to this large intermodel spread. Since we have seen that the convective precipi-
tation component shows particularly large changes, it is relevant to investigate the role of changes in LTS. We
find small and statistically insignificant spatial correlation between change in LTS and the rapid adjustment in
precipitation (both total precipitation and convective) for all models. However, the total response (including

Figure 9. Annual mean model median change in precipitation (top left) and zonally averaged temperature change for the model median (the black line) and indi-
vidual models (top right). The remaining panels show individual model results. Data are based on the last 50 years of the coupled runs, and hatched areas in the
model median map indicate grid cells for which values are more than one multimodel standard deviation away from zero.
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both rapid adjustment and feedback response) in convective precipitation has statistically significant spatial
correlations to LTS for all models, with correlation coefficients averaging 0.39 for the emissions-basedmodels
and 0.26 for the concentration-driven models (see Table S3). How much a model’s LTS changes will depend
on themagnitude of the change in atmospheric absorption by BC and the subsequent atmospheric warming.
Indeed, the inter-model correlation between changes in global mean atmospheric absorption and convec-
tive precipitation is �0.80 (for the rapid response; �0.72 for the total response) and significant on the 99%
level. One factor contributing to the magnitude of the absorption is the mass absorption coefficient (MAC),
which varies greatly between models. Table 1 gives MAC values for the models that were able to provide this
and shows a range from 3.29 to 9.85 m2 g�1.

For some of the models, we also see a tendency that some of the rapid precipitation adjustment is influenced
by the vertical distribution of BC. Spatial correlations between the rapid response in convective precipitation
and the ratio of the average BC concentration below 500 hPa to the average above 500 hPa (the “BC ratio”)
has statistically significant correlations in the vicinity of�0.3 for several models (Table S3). This means that for
some of the models, there is a tendency that regions where much of the BC is located at lower atmospheric
levels (a high BC ratio) have smaller precipitation reductions.

Ongoing PDRMIP research indicates circulation changes (quantified as the dry static energy flux from land to
ocean) to be the major contributor to the oceanic precipitation change in BCx10. We therefore also look at
the spatial correlation between precipitation changes and changes in surface pressure. We find statistically
significant spatial correlations between the total change in precipitation and change in surface pressure
for all the models, with a model median correlation of �0.33 (varying between �0.30 for MIROC-
SPRINTARS [E] and�0.42 for HadGEM2-ES [E]), signifying that some of the geographical variations in precipi-
tation change can be attributed to changes in surface pressure.

4. Discussion

Previous PDRMIP studies as well as the present have confirmed earlier findings that BC-induced climate
changes show a particularly large intermodel spread, even among the concentration-driven models. For
instance, the intermodel relative standard deviation for the global mean temperature change is 28% for
the CO2x2 case and 86% for BCx10. In the PDRMIP BCx10 case, 4 of the 10 models (HadGEM2 [E],
CanESM2 [E], CESM-CAM5 [E], and MIROC-SPRINTARS [E]) applied a tenfold increase in the baseline BC emis-
sions instead of in the BC concentrations, causing differences in the absolute values of the BC concentration
change. Samset et al. (2016) suggested in their PDRMIP study of fast and slow precipitation responses that the
omission of any normalization with regards to changes in BC burden was likely a contributor to the observed
model diversity, particularly due to the two different (emission-driven versus concentration-driven) model
setups. Indeed, we find that the intermodel relative standard deviation of the global mean temperature
change is reduced from 86% to 33% if we only consider models that used fixed concentrations, or to 40%
if we look at BC burden-change-normalized temperature change.

For models with emission-driven setups, changes in, for example, atmospheric stability and resulting changes
in precipitation release and wet removal will influence the BC concentrations, potentially with important
feedback loops that may dampen or amplify the resulting change in BC. In a simulation study using the
NorESM model, Sand et al. (2015) studied the climate response to BC perturbations, comparing the result
of a 25-fold increase in BC concentrations to a 25-fold increase in BC emissions. In the concentration-driven
simulations, the climate dynamics did not force the BC concentrations, while feedbacks between BC and
other climate processes were allowed to operate in emission-driven simulations. They found that emission-
driven climate responses were much larger than concentration-driven responses. In the present study we
find that the total response (including both rapid adjustment and feedback response) in convective precipi-
tation shows statistically significant spatial correlations to LTS for all models, but correlation coefficients are
50% higher for emissions-driven models than for concentration-driven models. In the emission-driven mod-
els, the reduced convective precipitation caused by the increased atmospheric stability leads to weakened
wet removal, which increases BC concentrations and thus further increases in stability. Conceivably, this
strengthens the relationship between LTS and convective precipitation in these models and may be one of
the processes behind the differences found in Sand et al. (2015). Sand et al. (2015) (see also Booth &
Bellouin, 2015) stress that one of the reasons for the large discrepancy between the emission-driven and
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the concentration-driven simulation in their study may be the particularly efficient vertical transport in
NorESM and that other models with less efficient transport may produce results with smaller differences.
Allen and Landuyt (2014) compared convective mass fluxes and wet removal rates among several models,
including HadGEM2-ES, CESM-CAM5, CanESM2, and MIROC5. They find that HadGEM2-ES has a relatively
strong convective mass flux combined with the slowest wet removal rates of all the models investigated in
that study, leading to prolonged lifetime of BC in the atmosphere. Indeed, Table 1 shows an estimated life-
time of 21.3 days for HadGEM2-ES [E]. CanESM2 [E] has relatively weak convection, but a slow wet removal
rate enhances the potential BC impact by increasing the lifetime, and we here find a BC lifetime of 10.7 days.
For CESM-CAM5 [E], on the other hand, previous studies (Liu et al., 2016) have documented that the model
has too efficient removal rates, and Allen and Landuyt (2014) find wet removal rates for CAM5 to be the high-
est of all investigated models. This precludes long-range transport and lowers the lifetime of BC (estimated
lifetime of 3.4 days; see Table 1) and therefore also the impact of a given BC perturbation on climate.
Similarly, MIROC-SPRINTARS [E], with a slightly longer lifetime of 5.3 days, has an average wet deposition rate
in Allen and Sherwood (2010), but a convective mass flux that is on the low side. Consequently, while the very
strong climate responses HadGEM2-ES [E] and CanESM2 [E] can at least partly be a result of climate feedbacks
on BC concentrations, CESM-CAM5 [E] and MIROC-SPRINTARS [E] have climate responses that are more simi-
lar to the concentration-driven models.

Aside from differences in the simulation setups, we have also looked into other potential causes of the large
intermodel spread in the BC climate response. For some of the models, we find correlations between the
rapid adjustment in convective precipitation and the vertical BC profile, represented by the BC ratio (coeffi-
cients are relatively small, �0.22 to �0.35, but highly statistically significant). We also find significant correla-
tions between each model’s cloud response and the baseline cloud field. This means that at least for some
models, differences in baseline vertical BC profiles or baseline cloud fields will contribute to the differences
in the climate responses, as found in other studies (e.g., Johnson, 2005). In addition, the above mentioned
spatial correlation between LTS and total change in normalized convective precipitation means that model
differences in the efficiency of atmospheric warming may contribute to the magnitude of the precipitation
response. A strong correlation between a model’s change in atmospheric absorption and the change in con-
vective precipitation underlines this.

Contributing to variations in model absorption are the individual MAC values. As presented in Table 1, these
vary greatly between models, with values ranging from 3.29 m2 g�1 (HadGEM2-ES [E]) to 9.85 m2 g�1 (CESM-
CAM5 [E]). Observations of MAC values demonstrate large spatial and seasonal variability, but typical values
lie in the range of 8–12 m2 g�1 (Bond & Bergstrom, 2006; Boucher et al., 2016; Zanatta et al., 2016). For
instance, based on observations from rural sites in Europe, Zanatta et al. (2016) find a representative MAC
value of 10.0 m2 g�1.

In addition, the new and updated emission inventory Community Emissions Data System (CEDS) to be used in
CMIP6 (Hoesly et al., 2017) has BC emissions around 75% higher than the CMIP5 emission data (Lamarque
et al., 2010) used in this study. As seen in Myhre, Aas et al. (2017), globally averaged year 2000 emissions
of BC are around 4.6 Tg yr�1 in CMIP5, but closer to 6.0 Tg yr�1 in the CEDS, which increase to around
8.0 Tg yr�1 in 2014. If both MAC values and present-day BC emissions in this study are on the low side, this
implies that the climate response to the BC perturbations may be underestimated here. The combined low
values of MAC in the models compared to more recent observations and higher estimates of BC emissions
may indicate that the forcing and temperature response can be roughly a factor of 2 higher than presented
here. On the other hand, the high modeled BC abundances in the upper troposphere compared to observa-
tion indicates a too long BC lifetime resulting in too strong forcing (Hodnebrog et al., 2014; Samset, Myhre,
Herber, et al. (2014); Wang et al., 2014).

Efficacies of different climate forcers are compared in, for example, Hansen et al. (2005) and Yoshimori and
Broccoli (2008). Hansen et al. (2005) calculate, using the GISS model, a fossil fuel BC efficacy of 0.78. This com-
pares well with the GISS-E2-R efficacy of 0.86 in this paper. Yoshimori and Broccoli (2008) use the GFDLmodel
and find a climate sensitivity of 0.46 K (W m�2)�1 for BC, comparable to our model median of 0.47
(±0.33) K (W m�2)�1, and a BC efficacy of 0.58, which is lower than our model median of 0.80 (± 0.35).
Note, however, that they define climate sensitivity as temperature change divided by IRF—not by ERF as
we do. Both studies find the efficacy to vary strongly with regards to vertical BC distribution. The use of
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ERF (as opposed to IRF) in the efficacy calculation in this study implies that the semidirect effect can consti-
tute a substantial part of the model-to-model variation. Hence, each model’s atmospheric absorption and ori-
ginal cloud fields will contribute to this variation (Stier et al., 2013). As stressed by Johnson (2005) in their
investigation of semidirect effects using large eddy simulations, model estimates of aerosol forcing efficacy
must be evaluated in the light of each model’s skill in the evaluation of low-level clouds, as well as the sensi-
tivity of these low cloud covers to aerosol heating. Notice, for instance, that IPSL-CM5A, which is the model
with the lowest amount of low clouds, but concurrently the model with its maximum in low cloud fraction
located the closest to the surface (Table 3 and Figure S5), has by far the largest BC efficacy.

As a final remark, we stress that the BC perturbation in these simulations is unrealistically high in the context
of anthropogenic emissions. Since preindustrial times, emissions have increased from close to zero to about
4.5 Tg/yr (Lamarque et al., 2010). Results in the present study give climate responses to a perturbation 10
times larger. As discussed, for instance, in Fiedler, Stevens, andMauritsen (2017), small ERF signals are difficult
to detect when taking into account model-internal year-to-year variability. Given the nature of the BC impact
on climate, where opposing effects are causing a weak total response, the exaggerated perturbations were
therefore necessary in order to be able to study the climate impact with any significance. Ideally, the fully
coupled simulations should be run for more than 100 years. Earlier tests with the models included in
PDRMIP have shown that for the stronger CO2x2 perturbation in the coupled ocean setup, 60–80% of the
change to the final equilibrium state is reached after 100 years, while the final equilibration state requires
several hundred additional simulation years to be reached (see, e.g., Samset et al., 2016). However, we
are well within the regime where the additional response mainly scales with the surface temperature
(Samset et al., 2016). Hence, while the present setup is influenced by the spread in forcing and response,
that spread is heightened for BC due to the number of processes involved and the role of atmospheric
shortwave absorption.

Extreme increases in atmospheric soot was the subject of investigation in several studies in the 1980s, where
fires following a nuclear exchange was found to have the potential to cause so-called “nuclear winter” (Turco
et al., 1983). As noted by Cess (1985), however, these extreme soot perturbations are so strong as to practi-
cally eliminate convective vertical mixing, which means that more moderate soot emissions where this mix-
ing is merely dampened would cause “dramatically different” responses to the surface-atmosphere system. In
the present study our strong perturbation in BC is still within the threshold for which the added BC warms
climate and can be assumed to cause similar climate changes (only exaggerated) as the preindustrial to
present-day increase. Our model median global warming of 0.67 (0.16 to 1.66) K following this perturbation
would (assuming linearity) translate to a 1,850–2,000 warming of merely 0.07 K for emissions used in
this work.

5. Conclusion

Earlier publications (Andrews et al., 2010; Kvalevåg et al., 2013) have shown that processes linked to atmo-
spheric absorption, for which BC is a potent agent, are less consistently modeled than elements of climate
change related to changes in surface temperature or TOA forcing. Therefore, BC stands out as a component
that might cause significant model diversity in predictions of climate change. Through the Precipitation
Driver Response Model Intercomparison Project (PDRMIP), climate responses to a tenfold increase in BC in
nine global circulation models have been analyzed and compared to climate responses to four other climate
drivers (CO2, CH4, the solar constant, and SO4).

We find that the BCx10 case produces a global model median ERF of 0.82 W m�2, with an intermodel spread
of 0.41 to 2.91 Wm�2. Estimated instantaneous RF and the rapid adjustment from five of the models indicate
that a relatively strong negative rapid adjustment balances some of the direct forcing, thus producing a smal-
ler net ERF. The resulting change in surface temperature for a tenfold increase in BC is 0.67 (0.16 to 1.66) K.
Translating the tenfold increase in BC to the present-day impact of anthropogenic BC would leave a warming
of merely 0.07 K, but as noted above, present-day emissions are underestimated in here compared to resent
studies so this number is probably higher.

Four of the nine models simulated the BC perturbations as a tenfold increase in anthropogenic emissions
instead of an increase in concentrations, resulting in differences in the absolute value of the BC change.
The intermodel spread in climate responses among the five models with consistent increases in BC
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concentrations is substantially lower than the spread among all the models. Even so, the relative standard
deviation of, for example, temperature change for this subset of models is 0.33 K globally. This indicates that
the remaining role of model differences in baseline cloud fields or treatment of indirect effects or BC on snow,
as well as the role of aerosol-specific features such as the mass absorption coefficient or the speed of BC
aging or wet removal, is still significant.
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