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Abstract We introduce stochastic models for contin-
uous-time evolution of angles and develop their esti-
mation. We focus on studying Langevin diffusions with
stationary distributions equal to well-known distribu-
tions from directional statistics, since such diffusions
can be regarded as toroidal analogues of the Ornstein-
Uhlenbeck process. Their likelihood function is a prod-
uct of transition densities with no analytical expression,
but that can be calculated by solving the Fokker-Planck
equation numerically through adequate schemes. We
propose three approximate likelihoods that are com-
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putationally tractable: (i) a likelihood based on the
stationary distribution; (4) toroidal adaptations of the
Euler and Shoji-Ozaki pseudo-likelihoods; (éii) a like-
lihood based on a specific approximation to the tran-
sition density of the wrapped normal process. A sim-
ulation study compares, in dimensions one and two,
the approximate transition densities to the exact ones,
and investigates the empirical performance of the ap-
proximate likelihoods. Finally, two diffusions are used
to model the evolution of the backbone angles of the
protein G (PDB identifier 1GB1) during a molecular
dynamics simulation. The software package sdetorus
implements the estimation methods and applications
presented in the paper.

Keywords Circular data - Directional statistics -
Likelihood - Protein structure - Stochastic differential
equation - Wrapped normal
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1 Introduction

Useful proposals of stochastic processes must take into
account the particular features of the data that they
aim to model. This is so for toroidal data, where ob-
servations are elements on the torus TP = [—m,7) X
P [-7,7m) (with —7 and 7 identified). Models and
inference for circular data (p = 1) are notably different
from the Euclidean case; see Mardia and Jupp (2000)
or Jammalamadaka and SenGupta (2001) for a compre-
hensive description and a review of applications. One
of the first continuous-time processes on the circle was
proposed by Kent (1975). It is defined as the solution
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to the Stochastic Differential Equation (SDE)
dO; = asin(p — O,)dt + odWy, (1)

where {W,} is a Wiener process, o > 0 is the strength
of the drift towards u € [—m,7), and o > 0 is the diffu-
sion coefficient. This process, referred to below as the
von Mises (vM) process, can be regarded as a circular
analogue of the Ornstein-Uhlenbeck (OU) process. The
process is attracted to p and, in the neighbourhood of p,
the drift is approximately linear. Moreover, the process
is ergodic (i.e., it has a unique stationary distribution)
and the stationary distribution (abbreviated as sdi) is
vM (1, 2%). vM(u, k) denotes the vM distribution with
probability density function (pdf)

et cos(0—p)

va(9§ iy /‘@) = m7

O, €l—m,m), k>0,
with Z,, being the modified Bessel function of the first
kind and order v. Despite its similarities with the OU
process, the vM process is not as tractable as the for-
mer: no analytical expression for its transition proba-
bility density (tpd) is known. The vM process has been
applied in mathematical biology (Hill and Hader, 1997;
Codling and Hill, 2005), and related extensions were
studied in physics in the context of oscillators (see Sec-
tion 5.3.3 in Frank (2005) and references therein).

The contributions of this paper are two-fold. Firstly,
we propose ergodic diffusions on the torus whose sdis
are well-established distributions from directional statis-
tics. These diffusions can be regarded as toroidal ana-
logues of the OU process. Specifically, we introduce sev-
eral Langevin diffusions, each defined as the wrapping
of a p-dimensional Euclidean diffusion solving the time-
homogeneous SDE

dXt = b(Xt)dt + J(Xt)th, (2)
where b : RP — RP is the drift, o : RP — RP*P is
the diffusion coefficient, and Wy = (W, 1,..., Wy ) is

a vector of p independent standard Wiener processes
(" denotes transposition). We provide insights on the
wrapping of (2) and study the properties of the new
diffusions. We give particular emphasis to the Langevin
diffusion with Wrapped Normal (WN) sdi, since this is
a toroidal OU analogue with more tractable estimation.

Secondly, we present estimation procedures for dis-
cretely observed toroidal diffusions. The likelihood func-
tion involves the evaluation of the tpd p:(-|xs), the
density function of the conditional distribution of X, ¢
given X; = Xs. The tpd solves the Fokker-Planck or

Kolmogorov’s Forward equation, this is, the Partial Dif-
ferential Equation (PDE)

o pe(x[x,) = x)pe(x | xs))

ot

T3 Z 8x18xj

i,j=1

()pe(x[x5)),  (3)

with x,x, € RP, V(-) := o(-)o(+)" and initial condition
po(x|xs) = 0(x — x5) (d(-) represents Dirac’s delta).
This PDE has no explicit solution except for very few
particular choices of b and V. We consider maximum
likelihood estimation based on the numerical solution of
(3). This method is computationally costly, but serves
as a benchmark to which other computationally more
expedient methods can be compared. A simple solu-
tion is to replace the unknown tpd by the known sdi,
hence reducing the problem to maximum likelihood es-
timation with independent and identically distributed
data, but this is usually inefficient and only allows for
the estimation of the parameters appearing in the sdi.
We therefore develop better approximations to the tpd
that are relatively easy to compute. For general diffu-
sions, we introduce toroidal versions of the Euler and
Shoji-Ozaki pseudo-likelihoods. For the WN process, we
derive a specific, sdi-correct and computationally effi-
cient tpd approximation. We investigate the quality of
these estimators by calculating the Kullback-Leibler di-
vergences of the approximating tpds with respect to the
tpd obtained by numerically solving (3). Furthermore,
in a simulation study for different discretization steps
we compare, in the one- and two-dimensional cases, the
performance of the proposed approximate likelihoods.

Next, we describe relevant literature to our contri-
butions. Diffusions featuring trigonometric drifts were
presented in Kessler and Sgrensen (1999), Larsen and
Sgrensen (2007) and Sgrensen (2012), although these
processes are not designed to capture periodicity, but
rather to have a bounded interval as their state space.
Wrapped Gaussian processes have been considered by
Jona-Lasinio et al (2012) in the context of spatial mod-
elling of wave directions. In a different setting, pro-
cesses where the time-inhomogeneous drift b(¢, X;) is
a periodic function of time have been studied by Dehay
(2015) and Dehling et al (2010). Discrete time processes
on the circle include the circular autoregressive mod-
els by Breckling (1989) and the Markov processes on
the circle by Wehrly and Johnson (1979), Kato (2010)
and Yeh et al (2013). In a broader perspective, stochas-
tic calculus on manifolds has been extensively devel-
oped, see for example Emery (1989), Stroock (2000)
and Hsu (2002). For the case of the torus, a flat and
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compact manifold, the modelling challenges do not re-
side in the curvature of the manifold, but rather in cap-
turing angular dependencies, a non-trivial and ubiqui-
tous problem in directional statistics, consequence of
the complex behaviour of rotations on the torus. Fi-
nally, we refer to Rogers and Williams (2000), Steele
(2001) and Qksendal (2003) for an exhaustive introduc-
tion to SDEs, and to Kloeden and Platen (1992) and
Tacus (2008) for a more applied perspective.

The rest of this paper is organized as follows. Section
2 introduces diffusions on the torus. Section 3 presents
and analyses several estimation procedures for them,
whilst the empirical estimation performance is assessed
in a simulation study in Section 4. Section 5 gives an
application to modelling the evolution of protein back-
bone angles. Conclusions and final comments are given
in Section 6.

2 Toroidal diffusions

The state space of a stochastic process {©@;} on the
torus is T? = [—m,7) x - - x [=7, 7). The space RP also
plays a relevant role, since {@;} can be regarded as a
Euclidean process {X;} that is wrapped into its prin-
cipal angles by cmod (-) := ((- +7) mod 27) — 7. This
approach eases the interpretation of crossings through
boundaries and motivates the following definition.

Definition 1 (Toroidal diffusion) The stochastic pro-
cess {@.} C TP is said to be a toroidal diffusion if it
arises as the wrapping @, = cmod (X;) of a diffusion
(2) such that b and o are 2w-periodic:

b(x+2km) = b(x), o(x+2kn) = o(x), Vk € ZP, Vx € RP.

The toroidal diffusion coming from the wrapping of (2)
is denoted as d@; = b(@,)dt + o(O;)dW,.

The periodicity of b and ¢ are required to make
{6,} a diffusion, since {©;} can only be Markovian if
{X:} is non-ergodic in RP, as the next result shows.

Proposition 1 (Wrapped ergodic diffusion) Let
{X;} be an ergodic diffusion on RP with stationary den-
sity v and tpd pi(-|xs). The following statements hold
for the wrapped process @y := cmod (X;):

i. {@:} is ergodic on TP, with stationary density

VW () = Yege V(- + 27k).
. If X is distributed with density v, then the condi-
tional density of Oys | O5 = 05 is

P (10 = > pil-+2km |0, + 2mm)wem(6,),
k,me7Zr
Wen (") = v( + 2mm) (4)

vW()

it If {X:} is time-reversible, i.e., p:(x | y)v(y) = pe(y | x)
v(x), ¥x,y € RP, then py" (8| )™ () = p)" (| 6)
vV (8), V8, p € TP.

w. The wrapped process is not Markovian.

Proof The statements can be easily checked, so we only
illustrate the non-Markovianity. Recall that for ¢, <
t; < t2 and using the Markovianity of {X;},

P{O;, € B|O; =0,,0; =0}
= > P{O, € B[X,, =0, +2mn}
m,nezp
" Diy—to (04, + 2mm |0y, + 2n7)
Pty (0, | 04,)

wn (04,).

This clearly depends on 8¢, unless p; is periodic on both
arguments, impossible for a density in RP. a

Thus, a wrapped ergodic diffusion is not a diffu-
sion. In particular, the family of conditional distribu-
tions given by (4) does not define a semi-group of tran-
sition operators. The non-Markovianity arises because
O, | (O, O4,), with t5 > t; > tg, does not depend
only on @, but also on the winding number wind(Xy, )
= LX;l:ﬂJ € ZP of Xy, = Oy, + 2wind(Xy, ), hence
the requirement for periodic b and ¢ in Definition 1.

Remark 1 The density of @44 Os = 05 is remark-
ably different from the density of @445 | Xs = 05, given
by > wezr Pi(- + 2k | Xy = 0,). To make this point
clearer, let { Xy} be the OU process dX;, = a(pu—X;)dt+
odWy, {64} its wrapped version with sdi } ;7 &, ) /550
— p+ 2km) (¢ is the pdf of a N(0,02)), and assume
X~ N(,u, %) Then:

i. The density of Xiys|Xs = 05 is ¢g, (- — pt), with
pe = p+ (0s — p)e t and of = %(1 — e 2at),
This is the usual tpd of the OU process.

ii. The density of Xiy|0s =05 i5 Y,y 0o, (- — pi"*)
Wi, (05), where pf* := p+ (05 4+ 2rm — p)e=** and

Os—p+27mm
’wm(gs) = Z)i;/;f\(/i(ést#Jr;kﬂ) :

The density of Oy s |Os = 05 is DY (-] Os = 0,) =
> komez Pon (= i + 2km) wi (05).  This  circular
density can exhibit two modes describing the drift
of {6} towards p whenever 05 and p are antipodal.
w. The density of Ops| Xs =05 is Y ey Go (- — p +
2k), which is unimodal. Whenever the circular short-
est distance between 05 and p happens across the
boundary, this circular density pushes the probabil-
ity mass in the opposite direction.

Remark 2 Liu (2013) stated a similar density to iv
above, with 2kme™t instead of 2mk, as the “tpd function
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of the OU process on the circle” and proved it satis-
fied the Chapman-Kolmogorov equation'. That density
is not circular (it has a time-shrinking period 2kme™t).

The rest of the section is devoted to the introduction
and analysis of notable toroidal diffusions.

2.1 Langevin toroidal diffusions

Let f be a pdf over RP. The so-called Langevin diffu-
sions are a family of multivariate diffusions of the form
(2), where the entries of b are given by

with ¢ =1,...,p. The most important property of these
diffusions is that, under mild regularity conditions on
f and o, they are ergodic with stationary density f.
This is particularly convenient since one of the first
steps in modelling a given trajectory is to compare
its empirical distribution with the sdi of the candidate
diffusion model. Remarkably, the family of Langevin
diffusions characterizes the family of ergodic diffusions
with a given sdi that are time-reversible. The result is
due to Kolmogoroff (1937) and was later extended by
Kent (1978) using symmetric diffusions on manifolds
(see Theorems 4.2 and 6.1 bid). In particular, the OU
process is identified as the unique time-reversible dif-
fusion with Gaussian sdi and constant diffusion coeffi-
cient. This characterization is key for constructing ana-
logues of the OU process in TP by means of Langevin
diffusions driven by Gaussian-like toroidal distributions.

The construction of Langevin toroidal diffusions is
achieved by wrappings of Langevin diffusions, where
now f is a toroidal density, that is, [, f(0)d® =1 and
f(0+2kn) = f(0), V0 € T?, k € ZP.

Proposition 2 Assume {©;} is obtained from the wrap-
ping of a Langevin diffusion {X;} with drift (5), given
by a strictly positive toroidal density f. Assume that
the second derivatives of both f and the entries of V are
Hélder continuous, and that V is 2w-periodic. Then, for
the given V, {©,} is the unique toroidal time-reversible
diffusion that is ergodic with stationary density f and
squared diffusion coefficient V.

1 Note that —(z2 — z1e~(*2=%1) 4 2kme—*2)2 should be in
the exponential’s denominator of Liu (2013)’s (15) and (16).

Proof We provide a sketch. The time-reversibility with
equilibrium density f follows from Theorem 10.1 in
Kent (1978) using the compactness (makes {@;} con-
servative), flatness, and global coordinates of TP. The
equilibrium distribution is also the (unique) sdi, so {©,}
is ergodic. To show the uniqueness, note that by The-
orem 6.1 ibid a time-reversible diffusion must have an
equilibrium density u and be u-symmetric, where nec-
essarily u = f. By Theorem 4.2 ibid (and its proof) the
only way a diffusion with a given V' can be f-symmetric
is if its drift is (5). O

As a consequence, any time-reversible toroidal diffusion
with stationary density f and V(x) = X' is of the form

1 ,
40, = S5V log f(O,)dt + ZHAW,.

The rest of the paper focuses on diffusions of this form.

2.2 Analogues of the Ornstein-Uhlenbeck process

The vM process can be considered as the circular ana-
logue of the OU process (Kent, 1975). Two arguments
support this claim: (i) the vM process is the unique
time-reversible diffusion with vM sdi and constant dif-
fusion coefficient; (i) the vM distribution is usually re-
garded as the Gaussian circular analogue due to impor-
tant Gaussian-like characterizations (Jammalamadaka
and SenGupta, 2001, Section 2.2.4). However, it is worth
to note that a similar argument to (i) holds for the
WN: this distribution exhibits certain similarities with
the Gaussian (ibid, Section 2.2.6) and, contrary to the
vM distribution, it appears in Gaussian-related limit
laws such as the wrapped version of the central limit
theorem (Mardia, 1972, Section 4.3.2).

In this section we investigate the main properties of
the Langevin diffusions driven by the multivariate ver-
sions of the vM and WN distributions. In addition, we
consider two appealing extensions driven by more flex-
ible sdis: the symmetric circular distribution of Jones
and Pewsey (2005) and mixtures of (independent) vM
distributions. These processes are later employed in Sec-
tion 4.

2.2.1 Multivariate von Mises

The multivariate extension of the vM distribution is
not immediate: several competing alternatives are de-
scribed in the literature, see Mardia and Frellsen (2012)
for a review focused on the bivariate case. Among the
available proposals, we chose the Multivariate von Mises
(MvM) with sine interaction (Mardia et al, 2008) due
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to its pleasant modelling properties: simple unimodal
characterization, ability of capturing positive/negative
dependence within the same density formulation, and
vM conditional distributions. The MvM(u, k, A) pdf is

fvenm (05 i, 6, A) :=T(k, A) " exp {n’ cos(0 — )
+ %Sin(G — ) Asin(@ — u)},

where the trigonometric functions are understood as
entry-wise operators, kK > 0, A is a symmetric ma-
trix with zero diagonal, and T'(k, A) is the normaliz-
ing constant. If A = 0, then the MvM distribution is
the product of independent vM, and hence T'(k,0) =
(2m)P ?:1 Zo(k;). A sufficient condition for unimodal-
ity is that P := diag (k) — A is positive definite (Mardia
and Voss, 2014), a result related to the fact that, for
large concentrations &, MvM(u, k, A) ~ N,(p, P71).
The operator diag(-) denotes either the diagonal extrac-
tion or the diagonal matrix construction, depending on
its argument.

The non-linear dependence structure of the MvM
distribution forces X' in the associated Langevin dif-
fusion to be isotropic (i.e., X = o2I) if separability
between the drift and diffusion coefficients is desired.
We opted to preserve separability and to generalize (1)
by having a MVM(M, i—‘g", 2;‘;*) sdi:

dO; = [aosin(u — O,)
— (A*sin(p — 6;)) o cos(p — ©y)]dt + cd Wy,

where o denotes the element-wise product of matri-
ces, a := diag(A), A* := diag(a) — A, and A is
a positive definite matrix. The equilibrium points of
drift are located at p + kom, with kg € {—1,0,1}”
(we assume implicit wrapping by cmod in the sums of
angles in this section), and are unstable if any com-
ponent is antipodal, this is, unless kg = 0 (see Fig-
ures 1 and 2). The drift is approximately linear in a
neighbourhood of p and has Jacobian —A.. For the un-
stable points, the drift has Jacobian —A o (ss’), with
s = cos(kom) a vector of signs. In the circular case, the
maximal drifts (in absolute value) towards u are placed
at £ 7 (see Figure 1). For the general case, the max-
imal marginal drifts for the j-th component happen
at p; — tan™! (A, [Zk# Ajpsin(puy, — Gk)]_l) + ko,
ko € {—1,0,1}.

2.2.2 Wrapped normal

The pdf of a (multivariate) wrapped normal, WN (u, 37),
is given by fwn (60, X) =3y ez 02(0 — p + 2km),

with g € TP, X' a covariance matrix, and ¢ 5 the pdf of
a N (0, X). For the sake of clarity of exposition, we first
introduce the circular case and then the multivariate
extension. Using the OU parametrization, the circular
WN process with WN([L, %) sdi is defined as

do,; = [a Z(u — O — 2km)w(Oy) |dt + odWy,  (6)
keZ

¢U/\/ﬁ (9 — K + 2‘Z€7T)
ZmEZ (bﬂ/\/ﬁ (0 —pt 2mﬂ-) '

w(0) =

Despite the similar shape of the vM and WN den-
sities in the main bulk of the probability, their be-
haviour is substantially different at antipodality, a fact
strengthened in log scale. The WN process drift is a
smoothed “sawtooth wave” that has negative slope at
w and crosses the z-axis at p+km, k € {—1,0,1}. Hence,
the drift behaves almost linearly in a neighbourhood of
u (equilibrium point, stable) and rapidly decays to pass
across p + 7 (equilibrium point, unstable). This neigh-
bourhood is larger than for the vM process. There is no
separability between « and o and both alter the drift

non-trivially. For example, the drift maxima are implic-
2

itly given by >, o K*wi(0) — [ X,z kwk(e)]Q = 523,
and vary from p + 7 (if % — 0, the sdi is degenerate
at u) to p+ 5 (if % — 00, the sdi is uniform and the
drift is null). Thereby, the maximum drifts always hap-
pen closer to antipodality than in the vM process (see
Figure 1). The slopes of the drift at 4 and g + 7 are
—a+ai(a,0) and as(a, o), respectively, where

8r2a? 9
0<ai(a,0):= = g Erwg(p) < a,
k€EZ
271202
0< = — 4y K -1/
< as(a,0) o+ = [ w (p + )

kEZ

The lower and upper bounds for a1 («, o) (respectively,
as(a, o)) are attained, with « fixed, when ¢ — 0 (0 —
o0) and o — oo (0 — 0), respectively.

The multivariate extension of (6) is the diffusion

de, = {A > (b= 0 — 2km) wi(Oy) | dt
kezr

+ XidW,, (7)
$1a-15(0 — p+ 2km)

0) = _
wk( ) ngzp (ZS%A*IE(O —n+ 2m7r)

This diffusion has WN (u, %A’lZ‘) sdi, provided that
A is invertible and such that A~!'X is a covariance ma-
trix. The drift is null at u+kom, with kg € {—1,0,1}",
since D . czr (2k + ko)wi(p + kom) = 0 due to the
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b(e)
N\

i —n/2

6 2 f
[¢]

s YM s C s WC s WN s mivM

Fig. 1 Stationary densities (left panel), drifts (center), and sample trajectories (right) of the one-dimensional vM, WN, WC,
Ca, and mivM diffusions. The parameters for the unimodal diffusions are 4 = 0 and o = o = 1. The parameters for the mivM
diffusion are @ = (1,10), p = (0, 5), p = (0.9,0.1), and o = 1. The sample trajectories are simulated in the interval [0, 10]

with initial point 377'.

—m/2-
—n!'

- -2

Norm N
of drift 0 1

2
n//

Fig. 2 Vector fields of the drift for the two-dimensional diffusions WN (left panel), MvM (center), and mivM (right). The
vector field is coloured by the Euclidean norm of the drift. Parameter o = 1.5 is common to all panels and p = (0,0) is used
for first and second. For the MvM and WN processes, A = (1,0.5;0.5,1) and X = ¢2I are considered. For the mivM process,

M = (0,0;%,%), A = (1,1;4,4), and p = (0.8,0.2). A sample trajectory starting at (-7,

)90

—%) and running in the time

interval [0, 5] is drawn, with round and triangular facets denoting the start and end of the simulated path, respectively.

symmetry of wy(p) as a function of k € ZP. Proper-
ties similar to the circular case can be obtained using
that Vi (0) = 472~ Awy () (> mezr Mwm(0) — K].
For instance, the Jacobian of the drift at p is —A +
872 A ezn KK wi(p)| A/

The vector field of the drift has a characteristic tes-
sellated structure that, in the two-dimensional case, is
formed by hexagonal-like tiles (see Figure 2). X alters
the tessellation that binds the drifts A(u — 80 — 2km) by
modifying {wk(0) : k € ZP}. This set is the distribution
of the winding numbers of X ~ N (u, 1A71X), since
P{wind(X) = k| cmod (X) = 0} = wi(0) and satisfies
that arg maxkezr wi(0) = wind(p — 6). Under isotropy
(i.e. X = 0°I), the larger (respectively, smaller) o, the
more spread (concentrated) the distribution of wind-

ing numbers is, resulting in flat (peaked) drifts with
smooth (rough) transitions in the limits defining the
tessellation.

2.2.8 Jones and Pewsey (2005) circular distribution

The Jones and Pewsey (2005) distribution, JP(u, &, 1),
is a tractable family of symmetric and unimodal cir-
cular distributions that contains the Wrapped Cauchy
(WC, ¢ = —1), Cardioid (Ca, » = 1), and von Mises
(¢ — 0) distributions. Its pdf is fyp(6; u, k,¥) = (2«
Py (cosh(k1)))~ (cosh(ktp) 4 sinh(ke)) cos(6 — p)Y,
with g € [-m,7), K > 0, ¥ € R, and P, the Legendre
function of the first kind and order v.
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The diffusion with JP (u, i%‘, ¢02) sdi, parametrised
to yield (1) as a particular case, is

sinh(2a4)) sin(p — 6y)
Y(cosh(2a)) 4 sinh(2a)) cos(p — Oy))

d@t =

The maximal drifts, located at pt(%+sin~" (tanh(2a1)))),

are closer to the equilibrium mean g when ¥ < 0 and to
the antiggg}lal mean when ¢ > 0. ;l;lple slope of the drift
at p is € 41/;1. At ptm, it is ¢ 4w71. This relates to
the fact that the drifts with ¢ < 0 equal the ones with
1 > 0, once translated by +m and reflected around .
Hence, whilst the WC diffusion features a drift attract-
ing the process towards a tight neighbourhood around
1, the Ca diffusion repulses the process from g+ 7 and
weakly attracts it towards p (see trajectories and drifts
in Figure 1).

2.2.4 Mixtures of independent von Mises

The density of an m-mixture of independent von Mises
distributions, mivM(M, K, p), is given by fmivnm(6; M,
K, p) = Z;n:l pijvM(e; M, Kjao)’ with M := (I’l'17

cosly) s K= (K1, ..o km)s P = (P1,-..,Ppm)’, and
p; >0, =1,...,m and Z;n:lpj = 1. The mivM
distribution is a highly flexible tool for modelling mul-
timodal and skewed circular data (Banerjee et al, 2005),
and has tractability as a key advantage: the normalizing
constant is known and estimation by the Expectation-
Maximization (EM) algorithm is relatively easy. Setting

/ 20
A=(ay,...,an) and k; = =,

de, = {Zaj osin(p; — @)v;(Oy)|dt
Jj=1

+ odWy, (®)

v;(0) = == 7
5(6) S P (05 gy, Sy, 0)

has mivM(M,%,p) sdi. The mivM process drift is
a weighted average of the corresponding component
drifts, whose weights are the posterior probabilities of
drawing @; from the mixture components of the sdi.
The drift behaves locally around p; as a; o sin(@ —
)05 () by, with by = 3, cveosin(pay — ) )on (1)
(Figures 1 and 2). Then, p; is only an asymptotic equi-
librium point for o — 0, since lim,_q vk(uj) = 0jk.
The larger o, the smoother the binding of the compo-
nent drifts is.

dt+odW,.

3 Estimation for toroidal diffusions

We focus now on the estimation of the vector parameter
A of a toroidal diffusion

4O, = b(Oy; A)dt + 7(O; \)dWy, (9)

when the data are observations at discrete time points,

{O@ 4} Y. For simplicity, we assume that the time points
are equidistant in the time interval [0,7], T = NA.

The Maximum Likelihood Estimator (MLE) for A € A

is given by

i\ — . AN
AMLE = arg 1}1‘1€a/>1<l()\, {QAZ}ZZO)7

where, using the Markovianity of (9), the log-likelihood
is given by

L(Ai{®4i}i,) = logp(@o; A)

N
+ Z logpa(@ai | @ axi—1); A). (10)
=1

Here pa(-|-; A) is the tpd of (9). The first term in (10) is
often disregarded or set to the sdi of (9). Maximum like-
lihood estimation is, under weak regularity conditions,
consistent and asymptotically efficient when N — oo
with fixed A (Dacunha-Castelle and Florens-Zmirou,
1986), or when A — 0 and T — oo (Sgrensen, 2008).
However, it can rarely be readily performed, as usually
no explicit expression for the tpd exists and this tpd is
only given implicitly as the solution to (3) on TP.

In the following we present and analyse several es-
timation strategies to circumvent the unavailability of
the tpd when dealing with toroidal diffusions. All these
methods rely on an approzimate likelihood function, where
the unknown tpd is replaced by an approximation. For
the sake of brevity, we suppress the, implicitly assumed,
dependence on A in the notation.

3.1 Estimation based on the stationary distribution

The simplest approximate likelihood function is obtained
by replacing the tpd by the stationary density of (9).

Usually, the sdi depends only on a function A” of A.

For instance, for the WN process, A = (A, u, X') and

A = (pn, A71X). Therefore, we denote the station-

ary density by v(-; A”) and state the stationary MLE

of AV as

N
A = log v(@;; \Y). 11
SMLE = aIg Arpg;fy Z; og (@ XY) (11)
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For the vM process, SMLE is semi-explicit (Mardia and
Jupp, 2000, page 198). The JP distribution has implicit
SMLE and is discussed in Jones and Pewsey (2005, Sec-
tion 3). Effective estimation in MvM distributions in-
volves pseudo-likelihood (Mardia et al, 2008). Finally,
inference for mivM distributions can be carried out by
the EM algorithm (Banerjee et al, 2005). The simple
SMLE is of interest for three reasons: (i) for stationary
ergodic processes, it is consistent for A¥ as N — oo for
fixed A (Kessler, 2000); (i) S\EMLE can be used as a
sensible starting value in the optimization routines of
more sophisticated procedures; (iii) it can be supple-
mented by estimators of the rest of A (see Bibby and
Sgrensen (2001), for example).

When the unidentifiability of A by SMLE involves
the diffusion matrix X, an estimator of A can be ob-
tained by an estimator of X' that is unrelated to the
SMLE. Conditionally on @ 5(;_1), © a; is approximately
distributed as WN(@ 5(;—1), AX) when A ~ 0 (high
frequency observations). This, plus the high concentra-
tion of such WN distribution (see Remark 3 below),
gives

PA(O A |Oaii—1)) = fWN(OAi; O Axi—1), AX)
NNJ(;SAE (cmod (@Av - @A(i—l))) .

Thus, an approximate MLE of X' is

N
1
EHF = m ;Cmod (QAi — @A(i—l))

-cmod (@ 4; — @A(i_l))/ . (12)

Under isotropy, 64p = p~'tr[Zur]. The Euclidean
counterpart of (12) is well-known to be a consistent
estimator of X' as A — 0 (for fixed T') due to the con-
vergence in probability to the quadratic variation. The
consistency for Pur follows easily from this result.

The estimator (12) gives a practical method to dis-
entangle the unidentifiability inherent to SMLE. We il-

lustrate this with the WN process. The SMLE (£, S)smLE
for (p,S), where S = LA~1%, can be found by optimiz-

ing (11). The circular means, fi, := atan2( vazl sin(@; ),

SV cos(@;4)), and the high-concentration estimate
of S, L3N cmod (@ia — fir.) cmod (@4 — fi,)', can

be used as starting values. (fi,S)syLe and (12) give
A = I 3ypSgy e, resulting in A = (A, figyg, Yur)-
Similar approaches can be followed for the rest of the
diffusions presented in Section 2.

3.2 Adapted Euler and Shoji-Ozaki pseudo-likelihoods

The well-known Euler pseudo-likelihood can be adapted
for toroidal diffusions with minor changes. The Euler
scheme arises as the first order discretization of the
process, where the drift and diffusion coefficient are
approximated constantly. After wrapping, the scheme
becomes

Op; = cmod(@A(i,l) + b(@A(i—l))A
+VA(Oa¢i-1))ZY),

where Z* ~ N(0,1),i=1,..., N. The wrapping yields
the Euler pseudo-tpd

PR(0 @) == fwn (0; 0+ b(p)A,V(p)A),

When A — oo, the Euler pseudo-tpd converges to the
uniform distribution in TP by spreading its probabil-
ity mass whilst the mean moves along the wrapped
line {cmod (¢ + b(¢)A) : A > 0}. The Euler pseudo-
likelihood is obtained from (10) by replacing the tpd by
the Euler pseudo-tpd.

0, p € TP.

The Shoji-Ozaki (Shoji and Ozaki, 1998) scheme
uses a linear approximation for the drift and assumes
the diffusion coefficient constant between observation
times: for ¢ € [s, s+ A), b(X;) = b(X;) + T (X, — Xy),
where J;, = J(X;) denotes the Jacobian of b at X;.
This gives the linear approximating SDE

dX: = (b(Xs)+Ts(Xi—X;))dt+o,dWy, ¢ € [s,s+A).

Conditionally on Xj, this is a multivariate OU process.
Hence, X, | Xg ~ N (py, I'y), with p, := I (exp{J4(t—
s)} —Do(Xy), I'y := f; exp{Js(t — u)}Vsexp{J,(t —
u)}du, and Vg = os0l,. If J, has no pair of reverse-
sign eigenvalues, then

vee (Iy) =(1@Js +J,@1) 1y,
v = exp{JS(t — S)}VS eXp{Jg(t - 8)} - Vs.

(13)

If V1J, is symmetric, then I'; admits a more explicit
form?:

t
r,= / exp{J (t —u)}V, V1
cexp{ V.V (t —u)}V,du
= %J;l(exp{QJs(t —5)} -I)V,. (14)

Interestingly, for the Langevin family of diffusions, V;1J
is guaranteed to be symmetric as long as the diffusion

2 Note the similar argument given in Roberts and Stramer
(2002), albeit in their equation (24) the covariance matrix
is not symmetric, probably because of a typo in (25), which
should have been (J(x)az,n) = J()aqg,n.
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coefficient is constant. This is due to the particular form
of (5), which gives J, = V,H,, where H, stands
for the Hessian of log f at X;. Therefore, (14) simpli-
fies notably the evaluation of the Shoji-Ozaki pseudo-
likelihood for all the toroidal diffusions considered in
this paper.

The Shoji-Ozaki pseudo-tpd for toroidal diffusions is®

X (0] @) == fwn (0; Ea(p),Val(p)), 0, ¢ e T,

where, assuming that V(¢)~1J(p) is symmetric (oth-
erwise use (13) instead of (14)),

Ex(p) =@+ J(p) (exp{J(p)A} — D)b(p),
Va(e) = 3 7(0) exp{27(£)8) ~ DV ().

When J(¢p) shrinks to 0, then Ea(p) = ¢ + b(p)A
and Va(p) = V(p)A, so the Euler scheme follows by
continuity. If all the real parts of the eigenvalues of
J(¢p) are negative, then p° (6| ¢) P fwn (05 —
J(@)b(@), —2J(p) "1V (p)) and the pseudo-tpd does
not degenerate into a uniform density as Euler’s does.
Otherwise, the pseudo-tpd converges to the uniform dis-
tribution in TP exponentially fast (see Figure 3), at a
rate controlled by the maximum positive real part of
the eigenvalues.

A disadvantage of these pseudo-likelihoods is that
they are unimodal, so they cannot capture the multi-
modality of the tpd, a distinctive feature of toroidal
diffusions.

Remark 3 FEwvaluating fwn(-; i, X2) for the above pseudo-

tpds is a computationally demanding task. Several ap-
proximations are possible:

1. High-concentration. Use the closest winding num-

ber as a one-term truncation of the series, i.e.,
b3 (cmod (- — p)).

it. Fized truncation. Mardia and Jupp (2000, page
50) suggests (for p = 1) Yye( 1.oupr 050 — 1 +
2k), which is usually enough for practical purposes
if the argument lays in TP.

113. Von Mises moment matching. Uses the approx-
imation WN(u,0?) ~ VM(M,A;1(6_02/2)), with

3 In Shoji and Ozaki (1998) the drift approximation
is done by Itd’s formula. To obtain a simpler pseudo-
likelihood, we use a local linear approximation of b as
in Ozaki (1985) (for the case p = 1). Without this
extra simplification, the expectation becomes Ea(p) =
Ea(p) + J(@)2(exp{J(9)A} — T — J(p)A)M(p) with
M(p) L [V@HL(@)], ... tr [V(@)Ho(9)])  and

. — 821&(49)) -
HZ(SO) - (6¢k8¢1 1§k,l§p’ 1= 17' <oy P-

A1(k) =Th (k) /Zo(k) (Mardia and Jupp, 2000, page
38). This approximation generalizes easily to the
multivariate case only if X is diagonal. For the bi-

variate case, an alternative is to use a von Mises
score matching (Mardia, 2017).

iv. Adaptive truncation. The Jona-Lasinio et al (2012)’s

‘3o adaptive truncation” can be generalized to the
multivariate case by Bonferroni: Ztih Ops(-—p+
2km) with ky = —kg = 1+ |21_q/(2p)\/diag (¥)
/(27) ], where z,, is the upper a-quantile of a N'(0,1),
ensures a probability mass in TP larger than 1 — .

For p=1,2, a simple compromise between tractability
and accuracy is combining i and i into Zke{_LO,l}p
¢ s (cmod (- — p) + 2km), which has a probability cover-
age of TP larger than 1 — 2370, &(—2).

9j

3.3 Wrapped Ornstein-Uhlenbeck approximation of
the WN process

We now present a specific approximation for the tpd of
the WN process that allows to model the multimodality
in the tpd. Multimodality is not uncommon for toroidal
diffusions since each coordinate can move towards its
mean value in two directions and, contrary to what hap-
pens with the OU process, this implies that neither the
WN nor the MvM processes have tpds within the para-
metric families of the sdis.

The approximation relies on the connection of the
WN process with the tractable multivariate OU pro-
cess:

dX, = A(p — X,)dt + X2dW,, (15)
with p € RP, ¥ a covariance matrix, and A such
that A='X is a covariance matrix. The last assump-
tion ensures that the OU process is ergodic and time-
reversible, and as a consequence, implies a simple ex-
pression for the covariance matrix of the tpd (see be-
low). Under this setting, the process is ergodic, time-
reversible, and has stationary density A (u, %A‘lz').
We denote by WOU, standing for Wrapped multivari-
ate OU process, to the wrapping of (15). Assuming that
X, ~ N (p, 3A713), the conditional density of WOU
is given by Proposition 1 and the tpd of (15):
pXVOU(a | 08) = Z fWN(0§ll’§n7Ft)wm(05)ﬂ (16)

meZzZpr

¢1a-15(x — p+ 2mm)
Zkezp ¢%A—12(X — p + 2km)

W (X)
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Fig. 3 The four approximations to the tpd p:(- | 8o) for the two-dimensional WN process, with g = (—Z 737”) (round facet),

2

and ¢ = 0.25. From left to right: PDE solution with g9 = 0.01, WOU tpd approximation, Euler pseudo-tpd, and Shoji-Ozaki
pseudo-tpd. The WN process has parameters a = (1, 1,0.5), u = (0,0) (triangular facet), and ¥ = diag (1, 1).

where, by the same argument used in (14),
W= p+e A0, — p+ 2mm),

t
: 1
r,= / e A e A s = 5A*l(I —exp{—2tA})X.
0

The conditional density (16) can be seen as a wrapping
of the tpd of (15) weighted by the sdi of the wind-
ing numbers, which resembles the structure of the WN
process drift: a weighting of linear drifts like (15) ac-
cording to the winding number sdi in order to achieve
periodicity. Albeit (16) and the tpd of the WN process
are different, they behave similarly in many situations.
The next corollary from Proposition 1 formalizes these
arguments.

Corollary 1 Suppose @, solves (7) with @y = 0y,
and let @ZNOU be the wrapping of the solution to (15),
where Xg ~ N (u, %A‘lZ'). We condition, moreover,
on @YY = @,. Then:

. Ast — 0, 0; — 6y and QXVOU — 6@ in probability.

ii. Ast — oo, both @, and @}'°V converge in distri-
bution to a WN(p, ;A1 X)),

iii. When A=13 — 0 with X bounded, @; —@}*°Y —
0 in probability, so the distributions of ®; and @XVOU
are similar in the limit.

. pYOU satisfies fwn (0o; p, 3 AT Z)pVOU(0860) =
fWN(B; M, %A_lz)p;NOU(ao | 9), ve,0, € TP (just
like py).

Proof The first two statements for the WN process are
well-known for any diffusion, and it follows from (16)
that, for @ # 0y, lim;_,op;Y°Y(0|6y) = 0 and that
lim; 0o pYOU(060) = fwn(0;p, %A‘lZ‘). The last
statement follows from (16) and the fact that the OU
process is time-reversible when A=Y is positive def-
inite. We give a rough sketch of a proof of the third
statement. The result follows because the tpd of the
WN process is asymptotically equal to the tpd of the
OU process in the high concentration limit. To see this,

suppose that X; solves (15) with X = 0 (we can ig-
nore the other starting points), and that @, solves (7)
with @y = 6, both driven by the same Wiener process.
Then Y, := X; — @, solves Y, = —AYdt+dZ;, with
Y, = 0, where

t
Z,= — A Z / (u— Os — 2km) wi(Oy)ds
kezr\{o} 70

+A/O (n—0;) (1 —we(Oy))ds.

Y, = fot e~ A(t=5)dZ, — 0 in probability, then the
two distributions of ®; and X; will be the same in the
limit. This follows because Awy (@) — 0 and A(1 —
we(0)) — 0 for k € ZP\{0} and —7 < 0 < 7 (we
consider only the case wind(p—6) = 0 because P[|@; —
p| < w) — 1), and hence Z; — 0 in probability for all
s <t. O

The tractability of (16) degenerates quickly with the
dimension, but it can be readily computed for p =1, 2,
two highly relevant situations in practice. We focus
our attention on implementation matters for the non-
trivial case p = 2. The first point of inquiry is what
parametrization of A and X' leads to a covariance ma-
trix A=1 X, which guarantees a non-degenerate WN sdi.

Lemma 1 Let A and X be 2 X 2 matrices, X = (O’%,
palag;palag,ag) positive-definite. Assume ay,ag > 0.
Any matriz A such that A~'X is a covariance matric
has the form

A— ( oy % (043 + %p(O@ - Oé1))>
% (043 - %p(az - 061)) Q2 ’

2 2
with o < w + aas.

The parametrization with p = 0 provides a compromise
between flexibility and simplicity, and will be employed
throughout (first occurrences in Figures 3 and 5). With
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p = 0 the dependence between components is modelled
by as, which is clear from

1 a0} —a3o109
P 5 )
2(arag —a3) \—azo102 @103

The second point is the efficient computation of
e~ ™A and I'y. In virtue of Corollary 2.4 of Bernstein and

1
SATIY =
2

tA _ : ._ ,s(A)tsinh(q(A)t)
So (1993), e* = a(t)I+b(t)A with b(t) :=e (A

(if g(A) = 0, then, by continuity, b(t) = e*A)t) a(t) :=
esA)t cosh(q(A)t)—s(A)b(t), s(A) := tr[2A] ,and q(A) ==
V/]det(A — s(A)I)|. Therefore,

1
Ir=st)-A'Y+i(t)x,

: (1)

with s(t) = 1 — a(—2t) and i(t) = —3b(—2t). Expres-
sion (17) shows neatly the interpolation between the
infinitesimal and stationary covariance matrices and is
especially useful if it is required to compute the tpd for
several t’s.

To conclude, we highlight some of the advantages
of the WOU approximation over the Euler and Shoji-
Ozaki pseudo-likelihoods for the WN process. Firstly,
WOU is able to capture the multimodality of the tpd
(see Figure 3) and has the correct sdi. Secondly, WOU
is faster to compute than Shoji-Ozaki, as it does not
require exponentiation and inversion of the Jacobian
matrix for each observation, but only once.

3.4 Likelihood by numerical PDE solution

An alternative to approximate likelihoods is to compute
the “exact” (up to a prescribed accuracy) MLE by a nu-
merical solution of (3). This approach is computation-
ally expensive, but remains valid for arbitrary diffusions
and discretization times. Moreover, it provides insight-
ful visualizations of the tpd. In the following, we discuss
how to solve numerically (3) for dimensions p = 1, 2.

8.4.1 One-dimensional case

We consider a state grid G := {x1,...,zp, } In [—7,7)
constructed with step Az := ]%T’Tz, and such that zr, 11
=21 = —7 and zp = xp, = T — Az. We also con-
sider a time grid in [0,7] with At := % For consis-
tency with the common notation for PDEs, we refer by

u(z,t) to pi(x [ ps) == f'ﬂ-l pt(x ] d)ps(4)dg, the solution
of the PDE for the initial condition (at time s) given
by a circular density ps. The vector u”, n =0,..., M,
denotes the tpd evaluated at G at time s + nAt. We
write b; := b(x;) and o? := 02(x;), i =1,..., M,.

We employ the so-called Crank-Nicolson scheme for
discretizing (3), which can be rewritten as

o 9 19°
5 = — 5o b@u(e.1) + iﬁ(oz(x)utﬂ,ﬂ)

Crank-Nicolson is a well-known scheme for diffusion
and convection-diffusion PDEs such as (3). It is based
on a trapezoidal-like approximation of the forward dif-
ference of the time derivative that is combined with a
centered finite differences of the state derivatives:

n+1
uf ™t —ur 1

i = TL+1 n
At 2 [+ B
2
Fr = AL (viuyy — 2B5u} + aiuf ),
with r := 74(?5)27 ¥ = (—bi+1Aa: + U§+1) r, Bi == o,

and «; = (bi_le + 02-2_1) r. The next step in time of

the solution, u™*!, is implicitly given by the system
=201 m ay
F-Dut —ar, F=| 2 2%
. YM, -1
VM, am, —26m,
d":= — (F+I)u"

— youl+(28-1)ou"—aou’,  (I8)
with subscript £ denoting the vector with entries cir-
cularly shifted F1 position. It is well-known (Thomas,
1995, page 225) that this periodic tridiagonal system
can be solved efficiently by tacking the tridiagonal sys-
tems By; = d,, and By, = w (where F = B — wz/),
and using the Sherman-Morrison formula: u"*! = y; +
1f/§f;2 y2. The latter tridiagonal systems can be jointly
solved by a modification of the Thomas algorithm, since
they share coefficient matrix. The cost of the solution is
O (M M,). In addition, since F is constant with respect
to time, the tridiagonal LU factorization underlying the
Thomas algorithm can be reused, yielding a complexity
factor reduction of 5/8 on the tridiagonal solver.

3.4.2 Two-dimensional case

We consider now two grids G, and G, analogous to G,
but of sizes M, and M, and steps Az and Ay. We refer
by U(IE, Y, t) to pt(x7 Yy | ps) = fT2 pt(% Y | (P)pg(QO)d(P,
where p; is a toroidal density giving the initial condi-
tion (at time s). The matrix U™, n = 0,..., M;, de-
notes the tpd evaluated at G, x G, at time s +nAt. We

: — S A2 20\ 2 —
write b.; j = b.(x:,v;), 0L = o (i, y5), Oy =
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o, (i, y]) with z standing for x ory, and i = 1,..., M,,

j=1,...,M,. With this notation, (3) becomes
ou 0
5= 2 [ 5@ puly.b)
ze{z,y}
10?2, ,
+ 7@( Z(x,y)u(x,y,t))

82

+ 8?33;(%@ (z, y)u(z, y,1))

The Crank-Nicolson scheme proceeds as in the one-
dimensional case:

n+1 n
Wiy W5 _

At

with finite differences that can be collected into three
terms associated to the partial and mixed derivatives:

]‘ n mn
5 [P+ Fll (19)

n o ._ m n n
Fi,j F’Elj+Fy'LJ+FIylj7
2
@5i,g At ( wwuz+1y 2Bﬂv;w“i,j + Aw;wuz‘—l,j) )
2

n

Y3t,J = At ( Yst Jul ,Jj+1 2By1 JUZJ + Aya 7Ju13 1)

2
n . ++ +,—, n
Fa:y 9,5 ° At (Cz L+1,]+1 Oi,j ui+1,j—1
s n -, n
= O Uiy + O Ul )
At - At
We have denoted r, := a2 T2y = §Azap and
2
Iy = (=bz; i1, AT + Jz;iJrLj)TJL’?
_ . 2
Lyiig = (=byij+14y + Uy;i,j+1)rya
va‘vj (biﬂl 1]AZ+O'I1 1])7"w,
Aysij = (byij—1 4y + Uy ij— DTy
2 +E
Bzﬂ',j = 04,5T 2 C = Ogy;ixl,j£1Tzy-

Let F = F, + F, +
ping U" into F(U") =

F,y be the linear functions map-

F,(U")+ F,(U") + F,,,(U") =
(P + gy + Fryu i) = (F7) and I the identity
function. Then, we can express (19) as

(Fo + Fy + Foy = (U™ = —(F + 1)(U").  (20)

If the left and right hand sides of (20) are stacked
column-wise, (20) becomes an MyM, x M;M, peri-
odic 9-diagonal system. This system cannot be solved
so efficiently as in the tridiagonal case, requiring a more
complex algorithm or a generic sparse LU factorization.

An alternative approach that reduces drastically the
computational burden of solving (20) is to adopt an Al-
ternating Direction Implicit (ADI) scheme. ADI schemes
split the multidimensional finite differences in a series of
univariate discretizations with simpler associated sys-
tems. Originally developed for the diffusion equation,

they were extended to the convection-diffusion equa-
tions with a mixed derivative term by McKee et al
(1996), in the so-called Douglas scheme. This scheme
proceeds with an explicit multivariate step corrected by
two unidimensional Crank-Nicolson steps, whose pur-
pose is to stabilize the explicit step:

Yo =U"+ AtF(U") (explicit) (21)

Y, — §LF(Y1) = Yo — 4LF,(U")  (implicit) (22)
Y. - 4LF,(Ys) =Y — 4LF,(U")  (implicit) (23)
Ut =Y,

Consequently, if the matrix equations in (21)—(23) are
transformed into linear systems by column-wise stack-
ing for (21) and (22), and row-wise stacking for (23),
the Douglas scheme transforms the difficult task of solv-
ing (20) into solving two periodic tridiagonal systems
of size M, M,. Specifically, the steps in (21)—(23) are
carried out using

vec(Fyy(Y)) =vec(CTF)oyy 4o
—vec(CT oy .
—vee(C ) oy
+vec(CT 7 )oy_ _,

Vi +.c:=vec(Yi 1)
vec(F(Y)) =vec(I'y) oye+ — 2vec(By) oy,

+ vec(A,) oy —,

vec(F,(Y)') =vec(I",) oy, 4 — 2vec(B}) oy,
+ vec(Ay) oy -,

ye :=vec(Y), vy, :=vec(Y').

U™t is obtained by setting Y equal to U, Y; or
Y, in the above expressions and by solving (22) and
(23) as (18) was. Then, the total cost of the solution
is O (MM M,). Note that the row-stacking vector yJ!
can be directly obtained from y!' by extracting the in-
dexes ((ke —1) mod M,)M, + | % _IJ +1, k. =1,.

M, M,, of the latter (analogous for the converse). We
refer to the neat expository paper of In 't Hout and
Foulon (2010) for further description of ADI schemes.

3.4.8 Remarks on the discretization schemes

The Crank-Nicolson and Douglas schemes are tailored
solutions for solving (3) that exploit the particular PDE
structure. It is worth to note that, among other meth-
ods, a well-known approach to solve PDEs is the method
of lines. This method is prone to create stiff systems,
which need to be handled properly by a meta-solver
that chooses between stiff and non-stiff solvers (e.g.,
the lsoda implementation in Soetaert et al (2012)).
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Not surprisingly, in our application we found that the
efficiency and reliability of the tailored solutions were
superior to the latter, much more general, meta-solver.

Some theoretical remarks about the schemes em-
ployed are given as follows. The Crank-Nicolson scheme
is conservative (hence the Douglas scheme is too), which
can be easily seen from the periodic tridiagonal sys-
tem. It is also second-order consistent in time and space
(with the discretization used), with the appealing prop-
erty of being unconditionally stable with respect to At.
The Douglas scheme is first-order consistent and un-
conditionally stable when applied to two-dimensional
convection-diffusion equations with a mixed derivative
term. See In 't Hout and Foulon (2010) for the descrip-
tion of second-order ADI schemes of the same computa-
tional complexity (but with a factor increase of at least
two). Both unconditional stabilities refer to the usual
framework of constant coefficients.

8.4.4 Likelihood evaluation

The PDE numerical solutions approximate p:(0 | ps) =
Jr» 2¢(0 | @)ps(@)dep, where py is a density over T? giv-
ing the initial condition. Therefore, p:(0|6y) can be ap-
proximated by considering a concentrated WN (8, 031)
as the initial condition. For a fixed grid, og must not be
set to an arbitrarily small value, as it will create a sharp
initial condition poorly discretized and prone to raise
numerical errors. A possible rule of thumb is to choose
a small o such that the periodic trapezoidal rule of the
discretized WN(8y, 021) is close to one.

We illustrate the evaluation of the log-likelihood
(10) from the PDE solution for p = 1. The extension to
p = 2 is conceptually straightforward, albeit cumber-
some in notation. Given the sample {O4;}Y; and the
grid G, let denote by P := p;(G | G) the M, x M, tpd ma-
triz of the process discretized in G. The j-th column of
P is obtained by solving the PDE with initial condition
WN(z;,08). We can approximate px(©; | Oi-1)A
P by linear interpolation:

pa (QiA|Q(i—1 A)

1
Z Wk (©4i) Pyy (i) kg0 (i—1)+191(Oagi—1)),  (24)
k10

with go(i) := 24277, wo () = W»
e O)
Ax

and wy(0) =
. The log-likelihood is obtained by plugging (24)
into (10). The advantage of doing so is that the num-
ber of PDE solutions required for a single log-likelihood
evaluation remains bounded by M, irrespectively of N.
In addition, we only need to compute the columns of P

) from

corresponding to the unique set of indexes {go () + ! :
i=0,...,N—1,1=0,1}. A simpler, though less pre-
cise, alternative to (24) is to use constant interpolation
for © A¢;—1). This results in a lower number of PDE so-
lutions, specially in the two-dimensional case. Finally,
if the drift is antisymmetric around a point p, then
p(0]p) = pt(2u — 0|21 — ¢). Hence, if G is circu-
larly centered at p, half of the columns of P contain
redundant information. The situation is analogous for
P = 2: if b(91 - /,61,92 - /1,2) = —b(/,él - (91,/,&2 - (92),
V6,02 € [—m,m), and G, and G, are both centered at
w1 and pe, respectively, then only half of the columns
of P are required. If the drift is isotropic, then only one
fourth of the columns are needed.

4 Simulation study

We measure now the performance of the likelihood ap-
proximations given in Section 3. Two types of empir-
ical analysis are employed. First, we compare the di-
vergences between the true tpd of a diffusion and its
approximations across time. Second, we examine the
errors of the approximate likelihoods in estimating A in
several diffusions.

4.1 Kullback-Leibler divergences for WN and vM
processes

All the estimation approaches described on Section 3
share a common root: the substitution of the true tpd
pt by an approximation pf. The goodness-of-fit of these
approximations has a direct influence on MLE since,
for a general parametric setting, MLE is equivalent to
minimizing the Kullback-Leibler divergence of the para-
metric pdf from the empirical pdf. We propose to mea-
sure the Kullback-Leibler divergence of p(-|8,) from

+(-|0s) by weighting with the stationary density the
contributions of each initial point :

D;*_/TP/Tpptew (pt(ele))u(es)dBdOS.

~0]0,)
The curve D2 gives a succinct summary of the goodness-
of-fit of any approximation to the tpd across time. Its
effective computation — when no analytical expression
for the tpd exists — can be done with the PDE solution
to the tpd. Some care is needed though. The PDE solu-
tion involves the initial condition in the form of a con-
centrated WN(8, 021). This initial condition implies
that the PDE solution is approximating p; ;2 2(06)) :=

Jro (0] @) fwn (s B0, 03 )dep rather than p;. Therefore,
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90
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a more adequate approach is to smooth also the ap-
proximations in the computation of D; to perform a

fair comparison:
-2(010;)
2(016;)

/ / U 52(6005) 10g<

TP
v(05)d0do;.

We explore the DA »2 curves for several variants of

t,05

the approximations given in Section 3, denoted as S
(Stationary density), E (Euler), SO (Shoji-Ozaki), UE
(Unwrapped Euler — the usual Euler pseudo-likelihood),

USO (Unwrapped Shoji-Ozaki), EvM, SOvM, and WOU.

Suffix vM denotes the use of a vM distribution (moment
if one-dimensional; score if two-dimensional) matching
approximation to the WN distribution appearing in the
pseudo-likelihoods.

Figures 4 and 5 show the Kullback-Leibler curves for
the WN process with p = 1 and p = 2, under different

drift strengths and diffusivities. We highlight as follows
their main features. First, WOU outperforms in almost
all scenarios and times the other approximations. The
main exceptions are the lower left scenarios of both
figures, representing processes with a high diffusivity
(small drifts and large diffusivities), where WOU is out-
performed by SO and E for a significant range of inter-
mediate times. In addition to S, WOU is the only ap-
proximation whose accuracy improves as time increases,
above a certain local maximum in the Kullback-Leibler
divergence. Second, the Euler and Shoji-Ozaki pseudo-
likelihoods deteriorate or stabilize as time increases,
except for scenarios with low and moderate diffusiv-
ity where SO is close to WOU (and both are close to
the true tpd). E is systematically behind SO in perfor-
mance, usually by several orders of magnitude. S is, as
expected, giving a poor performance unless ¢ is large.
Third, the wrapped versions of the pseudo-likelihoods
dominate uniformly the unwrapped ones, both having
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similar performances if the process is highly concen-
trated. Indeed, the wrapping of SO is key in preventing
the spread of probability mass outside T? when the Ja-
cobian of the drift has positive eigenvalues and ¢ grows,
which raises numerical instabilities (e.g., lower right
panel of Figure 5). Finally, matching the WN distribu-
tion of E and SO by a vM has different effects depending
on the method. For E, the results are similar for both E
and EvM, except for a bump in small times with high
diffusivities. However, SOvM consistently adds a high
bias to SO, resulting in significant higher divergences.
As a general advice, we recommend to approximate the
tpd of the WN process by WOU, SO and E, in this
order.

We reproduce the same experiment on the vM pro-
cess, with results collected in Figures 6 and 7. The
highlights are similar except for the following differ-
ences. First, the good properties that WOU has for the

WN process do not hold any more, evincing its process-
specificity. S is now the only approximation whose accu-
racy improves over time. Second, SO is systematically
above E in performance, yet this difference is reduced
as SO is not the true tpd under high-concentration.
Third, the vM distribution match does not provide a
better approximation to the tpd, despite the sdi being
vM. EvM is again close to E and EvM except for small
t’s where EvM adds a substantial bias for scenarios with
moderate and high diffusivities. The same happens for
SOvM in p = 1, whereas for p = 2 SOvM increases the
Kullback-Leibler divergence by several orders of magni-
tude when compared to SO in the scenarios with high
diffusivity. Our general advice is to approximate the
tpd by SO and E, in this order.
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4.2 Empirical performance of the approximate
likelihoods

We compare now the efficiency of WOU, SO, and E —
the best performing tpd approximations, according to
the weighted Kullback-Leibler divergences — in estimat-
ing the unknown parameters of the diffusion (9) from
a trajectory {@ ;1Y . In this section, we set N = 250
and assume that o(;;A) = X7 is known in order to
avoid the inherent unidentifiabilities of A when A is
large and the tpd converges to the sdi. We explore the
behaviour of the estimators for dimensions p = 1,2,
time steps A = 0.05,0.20,0.50,1.00, and for represen-
tative parameter choices of the WN process and of two
challenging diffusions. For p = 1, we also consider the
PDE-based approximation to the likelihood. The tra-
jectories are simulated using the E method with time
step 0.001 and then subsampled for given A’s.

In order to summarize the overall performance of
a collection {5\] = (;\j71,...,5\j7K) cj=1...,J} of
K-variate estimators of A, we consider a global mea-
sure of relative performance. This measure is the com-
ponentwise average of Relative Efficiency (RE), where
the relative efficiency is measured with respect to the
best estimator at a given component in terms of Mean
Squared Error (MSE):

K
. 1 S
RE(A;) =% E RE(Aj k| A ),
k=1

SV MSE(\,
RE()‘j,kp\*,k) = M’
MSE(A; x)
MSE(A, 1) == r{linJMSE(j\M)_
j=1,...,

Hence, if 5\j is the best estimator for all the compo-
nents of A, then RE(j\j) = 1. We estimate RE(X]-) by
Monte Carlo with 1000 replicates, where 5\j is obtained
by maximizing the approximate likelihood with a com-
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mon optimization procedure that employs (11) as start-
ing values.

4.2.1 WN process

Table 1 shows the relative efficiencies for E, SO, WOU,
and PDE with p = 1. When averaging across scenarios
and discretization times, the global ranking of perfor-
mance is: WOU (0.9195), PDE (0.8831), SO (0.8766),
and E (0.7642). On average, E is the best performing
method for A = 0.05, followed closely by SO. How-
ever, the relative performance of E severely decays as
A increases. A similar pattern is present for SO, al-
though the decay in relative efficiency is less severe,
being by a narrow margin the best performing method
for A = 0.20 (above E and WOU with an absolute
difference lower than 0.5%). PDE is significantly un-
derperforming for A = 0.05,0.20, which is explained
by the bias induced by the initial condition: gy = 0.1
was considered as a compromise between tractability

(M, = 500, M; = [100A]) and accuracy. PDE becomes
the best performer on average for A = 0.50, 1.00, where
the effects of the initial condition become less impor-
tant. WOU shows an intermediate profile with an indu-
bitable advantage: on average, its relative efficiency has
an absolute difference with respect to the best perform-
ing method of less than 2.5%. This fact is what makes it
the best method on the global ranking of performance.

Table 2 gives the relative efficiencies for E, SO, and
WOU in p = 2. When averaging across scenarios and
discretization times, the global ranking of performance
is: WOU (0.9608), SO (0.8372), and E (0.6607). Sim-
ilarly to p = 1, E is the best performing method for
A = 0.05 and its relative efficiency quickly decays as A
increases. SO and WOU perform similarly for low diffu-
sive scenarios (o = 1), but for 0 = 2 WOU significantly
outperforms SO for A = 0.20, 050, 1.00, a fact explained
by the proneness of the tpd to be multimodal in those
situations. The competitive performance of WOU for
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‘ a=05 o= H a=1 o=1
A ‘ E SO WOU PDE H E SO WOU PDE
0.05 | 0.9799  0.9392 0.9608 0.7596 0.9888  0.9229 0.9241 0.7276
0.20 | 0.9631 0.8554 0.8878 0.8319 0.9937  0.8425 0.8422 0.7852
0.50 | 0.8941 0.7444 0.9016  0.9340 0.6907 0.9904 1.0000 0.9826
1.00 | 0.5685 0.7504 0.8978  1.0000 0.5329 0.9763  0.9972  0.9969
‘ a=05 o=2 H a=1, o=2
A ‘ E SO WOU PDE H E SO WOU PDE
0.05 | 0.9688 0.9972  0.9700 0.9098 0.9392 0.9431  0.9205 0.8760
0.20 | 0.7586  0.9740 0.8586 0.7805 0.8040 0.8670 0.9319  0.9380
0.50 | 0.6272 0.9565 1.0000 0.8535 0.6297 0.7321 0.8368  1.0000
1.00 | 0.2784 0.6904 1.0000 0.8578 0.6090 0.8437 0.7823  0.8964

Table 1 Relative efficiencies for WN diffusion with p =1 and p = 7.

p = 1,2 under all scenarios and A’s, in addition to its
affordable computational cost, places it as the preferred
estimation method for the WN process.

‘ a=1, o=1 H a=2 o=1
A ‘ E SO WOU H E SO WOU
0.05|0.9765 0.9244 0.8999 || 0.9920 0.8452 0.8460
0.20 | 0.9985 0.8214 0.8229 || 0.7234 0.9978 0.9993

0.50 | 0.5679 0.9868 0.9972 | 0.4370 1.0000 0.9980
1.00 | 0.4296 0.9872 0.9998 || 0.3467 1.0000 0.9970
‘ a=1, o=2 H a=2 o=2
A ‘ E SO WOU H E SO WOU
0.05| 0.9297 1.0000 0.9422 || 0.9635 0.8752 0.8793
0.20 | 0.8249 0.9573 0.9916 || 0.6017 0.7333 1.0000
0.50 | 0.6050 0.6607 1.0000 || 0.3797 0.6406 1.0000
1.00 | 0.5254 0.5432 1.0000 || 0.2690 0.4214 1.0000

4.2.2 Other processes

The WC diffusion has a remarkably different drift from
the WN process (Figure 1). As a consequence, the tpd
of the WC diffusion quickly becomes highly non-WN
(multimodal, “heavy tails”, peaked), both the opposite
defining features of the pseudo-tpds. This affects the
relative efficiencies for E, SO, and PDE given in Ta-
ble 4, whose global performance is: PDE (0.9727), SO
(0.4587), and E (0.4131). The supremacy of the PDE,
except for small drift (o« = 0.5) and A = 0.05, is ev-
ident. Thus, Table 4 is an illustration of the low effi-
ciency of applying the Euler and Shoji-Ozaki pseudo-
likelihoods for highly non-WN processes at arbitrary
As.

Table 2 Relative efficiencies for WN diffusion with p = 2,

n= (g,fg), ar=az=a,az = 5,and X' = 021
Tpd C t.
P t—0 tcRt t— o0 ompl
approx. expediency
E *okkkk Kk * *okkkk
SO Fokkk Fkk Fkk Hokk
WOU Kok Kk *okkk FokAhk Fokkk
PDE KAk Kok kkk Fokkkk *

Table 3 Comparative of estimation methods for the WN
process in p = 1,2. The number of stars ranges from one to
five. The more stars, the better performance in the category.
The first three columns give the behaviour of the tpd approx-
imation when t is small, intermediate, and large, respectively.

\ a=05 o=1 I a=1, o=
A| E SO PDE || E SO  PDE
0.05| 0.9277 1.0000 0.7682 || 0.5715 0.5938 0.9309
0.20 | 0.5968 0.7315 1.0000 || 0.3418 0.3524 1.0000
0.50 | 0.3548 0.4264 1.0000 || 0.2923 0.3030 1.0000
1.00 | 0.3068 0.3295 1.0000 || 0.2865 0.2774 1.0000
\ a=05 oc=2 I a=1, o=2
A E SO  PDE || E SO  PDE
0.05|0.9686 0.8947 0.8646 || 0.7325 0.6734 1.0000
0.20 | 0.8114 0.8720 1.0000 || 0.0213 0.1196 1.0000
0.50 | 0.1867 0.3634 1.0000 || 0.0258 0.0880 1.0000
1.00 | 0.1417 0.2396 1.0000 || 0.0441 0.0750 1.0000

Table 4 Relative efficiencies for the WC diffusion (p = 1)

with p= 7.

Finally, Table 5 shows the relative efficiencies of E
and SO for a mivM diffusion with antipodal means.
In order to avoid spurious maximums, ¢ was estimated
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by SMLE and then kept fixed when optimizing the ap-
proximate likelihood. The global performances are: SO
(0.9655), and E (0.8920). The analysis by A’s shows
that, as in the WC diffusion, SO is performing better
than E except for A = 0.05. However, inspection of the
tpd shows a prevalent multimodality, which points to-
wards a low efficiency of the pseudo-likelihoods when
A is not small.

| q=025 || ¢=050 || ¢=075
A | E sO | E sO | E SO
0.05]0.9282 0.9595 | 0.9851 0.9620 | 0.9716 0.9527
0.20 | 0.8678 0.9901 || 0.8999 0.9616 || 0.9517 0.9296
0.50 | 0.8312 0.9825 || 0.8223 0.9454 || 0.9448 0.9640
1.00 | 0.8867 0.9984 || 0.8625 0.9742 || 0.7525 0.9661

Table 5 Relative efficiencies for the mivM diffusion with p =

27 M = (%7%77%77g), A = (%7%7%7%)7 P = (q71 7(1),

and o = 1.

5 Application to molecular dynamics

Toroidal data arises from the representation of the back-
bone of a protein made of n amino acids as a sequence
of n — 2 pairs of dihedral angles (¢, 1), thus as a point
in T2("=2) The dihedral angles capture the rotations
around the N-C, and C,—C bonds, which are the re-
maining degrees of freedom of the backbone (if the bond
angles and bond lengths are assumed fixed to their ideal
values). Molecular dynamics simulations are widely em-
ployed to study the folding and the dynamical proper-
ties of proteins, providing ultra high frequency trajec-
tories of protein structures. The dihedral angles of the
time-varying backbone result in a trajectory {(¢1,a,
1[)171'A, ceey ¢n—2,iA, ¢n—2,iA)}ZN:0- Diffusive models on the
torus are appropriate tools to summarize these trajec-
tories and, once fitted, can be used as computationally
affordable emulators of the physical process.

We consider data from molecular dynamics simu-
lations of the protein G (Protein Data Bank identi-
fier 1GB1) around its native state. This protein con-
tains n = 56 amino acids and, due to its relatively
small size and availability of extensive experimental
data, is commonly considered in the molecular dynam-
ics literature. The molecular dynamics simulations were
done using the CHARMMS36 force field with the EEF1-
SB solvent model (Bottaro et al, 2013) during T' =
100 nanoseconds equally discretized in 10000 time cuts,
which afterwards were subsampled to N = 1000. For

the sake of illustration, we study two specific trajec-
tories: {¢a;}Y, of the 9-th amino acid (Glycine, be-
tween Asparagine and Lysine), and {(¢ai, ¥ai)}Y, of
the 14-th amino acid (Glycine, between Lysine and Glu-
tamate). These one- and two-dimensional trajectories
exhibit multi- and unimodal patterns that are repre-
sentative of the general case.

The one-dimensional multimodal trajectory was mod-
elled with a diffusion driven by a mixture of two vM dis-
tributions, as given in (8). The fitting was done with the
PDE method with M, = 500, M; = 20, and oy = 0.01.
We used SMLE and (12) as starting values, and fixed
the mixture proportions to the stationary estimates to
avoid spurious minima. The optimization took 115 sec-
onds in a 1.7 GHz core for 566 likelihood evaluations
and gave & = (9.06,5.00), it = (0.23,—2.91), 6 = 1.08,
and p = 0.56. The first row of Figure 8 presents a
graphical summary of the parametric fit. The first panel
shows the observed data and a simulated trajectory
from the fitted model, which captures the main pat-
terns of the observed data, except for some outliers.

In order to evaluate the goodness-of-fit of the para-
metric model — and due to the absence of formal tests
directly applicable in this setting, to the best of the au-
thors’ knowledge — we compared graphically the para-
metric fits of the drift and diffusion coefficient with their
nonparametric estimations. To that aim, we considered
the following Nadaraya-Watson estimator for the drift

N-1
by (0) := Z Wh(0,0.4:)Y5,
1=0
ecos(O—QA,ﬂ,)/h2

(25)

Wh(0,04;) = Z;V:_Ol oo (9B an) i’
with Y; := cmod (QA(iJrl) - @Ai) /A and h as the band-
width parameter. For the diffusion coefficient, we set
Y; = (emod (O a(it1) — @Ai))z /A and then took the
square root in the estimate. To remove the smoothing
bias of (25), we smoothed the parametric estimate by
considering Y; = b(©;4; A) in (25), hence equating both
biases under the correct specification of the model. The
second panel in first row of Figure 8 compares the non-
parametric and smoothed parametric estimates of the
drift. Both drifts are shadowed according to a kernel
density estimate that emphasizes the regions were the
data is present. For those regions, there is a close match
between both estimates. The third panel shows a simi-
lar analysis for the diffusion coefficient, whose nonpara-
metric estimate exhibits mild departures from & in the
regions with high density.
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Fig. 8 Summary plots for the fits of {¢)a;}}, (first row; 9-th amino acid) and {(¢ai,¥a:)}, (second row; 14-th amino
acid). From left to right, by columns: observed trajectory and a sample from the fitted model; NonParametric (NP) and
Parametric (P) drift estimates; NP and P diffusion estimates. Shading is done according to a Kernel Density Estimate (KDE)

of the observed data.

For modelling the two-dimensional and unimodal
trajectory we employed a bivariate WN diffusion with
unconstrained X. The fitting was done with the WOU
approximation using SMLE and (12) for starting val-
ues. The optimization took 14 seconds for 2739 approx-
imate likelihood evaluations. The first panel in the sec-
ond row of Figure 8 shows the correct match between
the simulated and the observed trajectories, again ex-
cept for some outliers from the latter. The next panel
shows the comparison between the vector fields for the
smoothed parametric and nonparametric drifts. They
show a strong agreement on the drift structure at re-
gions with presence of data, both in magnitude and di-
rection. The parametric vector field (o1(¢,; 5\),
o2 (b, ; 5\)) and the mnonparametric (61, (,v),
G2.h, (9,1)) have a proper match for the regions with
data, the latter being constant in most of T?. The non-
parametric estimates were constructed by considering
product kernels on the covariates. All the bandwidths
were automatically selected by cross-validation.

6 Conclusions

We introduced ergodic diffusions on the torus as the
natural processes with stationary distributions equal
to well-known toroidal distributions. The WN process,
with an available analytical approximation to its tpd, is
shown to be the most tractable OU-like toroidal process
among the different proposals. This approximation out-
performs the wrapped Euler and Shoji-Ozaki pseudo-
likelihoods, and shows an affordable computational cost
for one and two dimensions. In addition, we provide
numerical solutions of the one- and two-dimensional
Fokker-Planck PDEs for approximating the true tpd,
which serve as benchmarks of the accuracy of the ap-
proximating tpds. A thorough simulation study explored
the performance of the approximate likelihoods under
different scenarios. Finally, a data application illustrated
the usefulness of the new diffusive models for modelling
molecular dynamics simulations.

We summarize some important practical conclusions.
For estimating the WN process, we recommend to use
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WOU as a first option for a fast and accurate approxi-
mation in dimensions p = 1, 2. For a general process, we
advise to employ PDE with p = 1 if accuracy is a prior-
ity, and SO in case speed is. For p = 2, SO is preferred
to E, but both are prone to underperform severely for
highly non-WN tpds, which can be visualized using the
PDE solution.

The development of a general and computationally
fast method for approximating an arbitrary tpd, that
is able to cope with multimodality, remains an open
challenge. A promising avenue is methods based on
simulation, which have been successful for Euclidean
diffusions; see e.g. Beskos et al (2006), Papaspiliopou-
los and Roberts (2012), Sermaidis et al (2012), Bladt
et al (2016), and references in these papers. The sim-
plest algorithm by Beskos et al (2006a) is well suited for
exact simulation of the transient diffusion (i.e., before
wrapping) because of the periodicity of the coeflicients,
and the method in Sermaidis et al (2012) is applica-
ble to Langevin diffusions. It is therefore likely that the
exact simulation methods can be adapted to toroidal
Langevin diffusions by finding ways to deal with the
wrapping when simulating diffusion bridges. It is also
of interest to study whether the coupling methods un-
derlying the diffusions bridge simulation technique in
Bladt et al (2016) can be adapted to the torus setting.
Another interesting approach would be to include the
winding number for each observation as a latent vari-
able and apply methods like the EM algorithm or the
Gibbs sampler for likelihood inference.

Software

The software sdetorus, available at https://github.
com/egarpor/sdetorus, contains the implementations
of the methods described in the paper and the files re-
quired for reproducing all the empirical analyses.
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