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Modelling and Control of Gene Regulatory
Networks for Perturbation Mitigation

Mathias Foo, Jongrae Kim and Declan G. Bates

Abstract—Synthetic Biologists are increasingly interested in the
idea of using synthetic feedback control circuits for the mitigation
of perturbations to gene regulatory networks that may arise due
to disease and/or environmental disturbances. Models employing
Michaelis-Menten kinetics with Hill-type nonlinearities are typi-
cally used to represent the dynamics of gene regulatory networks.
Here, we identify some fundamental problems with such models
from the point of view of control system design, and argue that
an alternative formalism, based on so-called S-System models, is
more suitable. Using tools from system identification, we show
how to build S-System models that capture the key dynamics
of an example gene regulatory network, and design a genetic
feedback controller with the objective of rejecting an external
perturbation. Using a sine sweeping method, we show how the S-
System model can be approximated by a linear transfer function
and, based on this transfer function, we design our controller.
Simulation results using the full nonlinear S-System model of
the network show that the synthetic control circuit is able to
mitigate the effect of external perturbations. Our study is the first
to highlight the usefulness of the S-System modelling formalism
for the design of synthetic control circuits for gene regulatory
networks.

Index Terms—System identification, gene regulatory networks,
feedback control systems, S-System model

I. INTRODUCTION

In complex engineering networks such as transportation
systems, power grids, irrigation networks, etc, the presence of
external perturbations can have serious adverse effects on the
functioning of the overall system. These undesirable effects
include gridlock in the movement of vehicles, major power
outages in residential and industrial areas, and unreliable
water supply to farming areas. In view of this, the problem
of developing a comprehensive theory of network control,
particularly in the presence of perturbations, has recently been
the subject of intensive studies that have provided many useful
tools for the control of complex networks (see e.g. [1], [2],
[3], [4], [5]).

Due to advances in this area, synthetic biologists have
recently began to investigate the application of the aforemen-
tioned tools to the control of biological networks and systems.
Some notable examples can be found in [6], [7], [8], [9], [10],
where strategies based on feedback control theory have been
used to analyse the controllability, observability and stability

This work was supported by Engineering and Physical Sciences Research
Council (EPSRC) and Biotechnology and Biological Sciences Research
Council (BBSRC) via research grant BB/M017982/1. M. Foo and D.G.
Bates are with Warwick Integrative Synthetic Biology Centre, School of
Engineering, University of Warwick, Coventry, CV4 7AL, UK. J. Kim is
with School of Mechanical Engineering, University of Leeds, Leeds, LS2
9JT, UK. M.Foo@warwick.ac.uk, menjkim@leeds.ac.uk,
D.Bates@warwick.ac.uk

of biological networks such that appropriate sets of control
design rules can be developed.

In this paper, we focus our attention on the control of gene
regulatory networks. The ability to control the dynamics of
gene regulatory networks using feedback, especially in the
presence of perturbations, has many potential applications in
the field of synthetic biology, where synthetic circuits can be
developed to implement the proposed controllers and hence
curb the effect of external perturbations due to disease or
environmental changes. We investigate what types of network
models are most appropriate to describe gene regulatory net-
works for the purposes of feedback controller design, and show
how system identification techniques can be used to build such
models based on available gene expression data. Using the
identified models, we design a feedback controller that can
be implemented genetically in order to mitigate the effect of
perturbations that enter the network.

The paper is organised as follows. In Section II, we
present an example gene regulatory network for which we
need to build a model for the purposes of control system
design. In Section III, we evaluate different types of possible
models for gene regulatory networks from the perspective of
controller design. Based on this analysis, in Section IV we
propose a system identification approach for building models
of gene regulatory networks based on the so-called S-System
modelling formalism. The corresponding controller design
procedure for perturbation mitigation is described and closed-
loop simulation results are provided in Section V. Conclusions
are given in Section VI. An early version of this work was
presented in [11].

II. EXAMPLE GENE REGULATORY NETWORK

The DREAM in silico gene regulatory network challenge
was established to serve as a benchmark to assess different
proposed approaches to infer gene regulatory networks from
given experimental data [12], [13], [14]. Typically, time-series
data for each gene (or node) in the network are provided
and the aim is to infer the underlying network, i.e. identify
interconnecting edges, the direction of information flow, etc.
The provided gene regulatory networks are typically subsets
of actual transcriptional networks in model organisms such as
E. coli and S. cerevisiae, and hence are representative of real
biological systems.

In this paper, we choose the DREAM3 Size 10 data set
(hereafter we use the term DREAM3 to denote this network),
which consists of mRNA temporal data on a network com-
posed of 10 interconnecting genes that is a subset of a S.
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Fig. 1: (A) DREAM3 gene regulatory network. Purple circles represent genes and red rectangles represent external inputs.
The arrow denotes the direction of the regulation. (B) Using system identification, the types of regulation in the network are
identified. Arrow head indicates activation and Bar head indicates inhibition. (C) Proposed control design configuration for
rejecting the effect of perturbation. The pathway highlighted in yellow indicates the series of regulations involved from the
control action, U3 to the output gene, N1

cerevisiae gene regulatory network. As the dataset does not
include separate protein data, in the following, we make the
following two assumptions: (i) the temporal evolution of the
protein is similar to the mRNA and (ii) the protein is linearly
translated from mRNA. Following these two assumptions, we
can lump the protein dynamics into the transcription rate of the
mRNA at steady state, and this results in a complete network
that can be described solely using mRNA levels. In this
DREAM3 data set, information regarding the interconnectivity
between each gene is provided, while the regulation type (i.e.
activatory or inhibitory) is unknown. The depiction of these
interactions is shown in Fig. 1(A). To facilitate the controller
design procedure, a model describing the dynamics of the
DREAM3 network is required, and in the following section,
we discuss the selection of an appropriate modelling formalism
for the DREAM3 gene regulatory network.

III. MODEL FORMALISMS FOR CONTROLLER DESIGN

A. Michaelis-Menten and Hill-type models

Model structures employing Michaelis-Menten and Hill-
type nonlinearities are commonly used to describe the dynam-
ics of gene regulatory networks. If the regulation type and the
cooperative binding are known, the modeller can either specify

Fa =
k0Nh

P

KM +Nh
P

(1)

for an activation type of regulation or

Fi =
k0

KM +Nh
P

(2)

for an inhibition type of regulation. In both Eqns. (1) and (2),
NP is the transcription factor, k0 and KM are associated with
the Michaelis-Menten constants and h is the Hill coefficient.

In the context of network inference, this type of model
structure can be used only if the type of regulation (activatory

or inhibitory) between each gene in the network is known.
In the event that the type of regulation is unknown, then this
model structure is not suitable as the structure of an activation
or an inhibition type of regulation is different and arbitrarily
assigning them in the model building stage could thus lead to
poor model accuracy.
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Fig. 2: Model of a gene regulatory network taken from
[15] whose dynamics are represented using Michaelis-Menten
kinetics and Hill-type nonlinearities. For this illustration, the
controller, K is a simple proportional-integral (PI) controller
with the controller gains, Kp = 0.01 and KI = 0.02. The path-
way highlighted in yellow indicates the series of regulations
involved from the control action, U to the output gene, N3

A more fundamental problem in the context of synthetic
biology is that models of this type are often not suitable
for subsequent use in the design of synthetic controllers.
For example, let us consider Eqn. (1) and assume that our
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control action (i.e. output of the controller) is given by NP. If
NP� KM , then Fa ≈ k0Nh

P/Nh
P = k0, which renders the control

action ineffective. It is thus imperative that the value of KM
should be sufficiently large to ensure proper control, but as
we will show below, obtaining a reliable estimate of KM from
time series data is often problematic.

To illustrate the problem, we consider a model of a simple
gene regulatory network taken from [15], consisting of seven
interconnecting genes, as shown in Fig. 2, based on a subset
of an E. coli gene regulatory network. Assume that an external
perturbation enters the network through gene 1, its effect on
gene 3 is measured, and fed back to a controller that regulates
gene 6 through the input U . Using the standard modelling
framework employing Michaelis-Menten kinetics and Hill-
type nonlinearities, the associated Ordinary Differential Equa-
tions (ODEs) describing Fig. 2 are given as follows:

dN1

dt
=

k0,1

(KM,1 +Dh)
+ γ1N1

dN2

dt
=

k0,2

(KM,2 +Nh
1 )

+
k0,3Nh

3

(KM,3 +Nh
3 )

+
k0,4Nh

7

(KM,4 +Nh
7 )

+ γ2N2

dN3

dt
=

k0,5Nh
1

(KM,5 +Nh
1 )

+
k0,6

KM,6 +Nh
2
+

k0,7Nh
5

(KM,7 +Nh
5 )

+
k0,8Nh

7

(KM,8 +Nh
7 )

+ γ3N3

dN4

dt
=

k0,9

(KM,9 +Nh
1 )

+ γ4N4

dN5

dt
=

k0,10

(KM,10 +Nh
2 )

+ γ5N5

dN6

dt
=

k0,11Uh

(KM,11 +Uh)
+ γ6N6

dN7

dt
=

k0,12Nh
4

KM,12 +Nh
4
+

k0,13Nh
6

KM,13 +Nh
6
+ γ7N7 (3)

where k0, j, KM, j with j = 1,2... and h are the parameters as-
sociated with the Michaelis-Menten coefficients and Hill-type
nonlinearities, and γ is associated with the degradation term.
Without loss of generality, for the purposes of illustration, we
choose h = 1. The rest of the parameters describing Eqn. (3)
are shown in Table I. These parameters are estimated from
available experimental data in [15], where one data set is used
for parameter estimation and an independent data set is used
for model validation. The parameters are estimated using the
prediction error method with quadratic criterion, i.e.,

Θ̂ = argmin
Θ

1
L

T=7

∑
i=1

L

∑
t=1

[Ni(t)− N̂i(t,Θ)]2 (4)

where T is the number of genes, L is the length of the
data, Θ = {k0, j,KM, jγ j} with j denotes the appropriate index
describing the parameters in Eqn. (4). Ni and N̂i represent
the real experimental data and simulated data from Eqn.
(3) respectively. Eqn. (4) is solved using MATLAB function
fminsearch, which uses the Nelder-Mead simplex algorithm.
For the controller, we choose a standard proportional-integral
(PI) controller with the proportional gain, KP = 0.01 and the

integral gain KI = 0.02, where these parameters can be selected
using standard rules, such as the Ziegler-Nichols tuning rules
(see e.g. [16]).

TABLE I: Parameters for the network model shown in Fig.
2 using Michaelis-Menten with Hill-type nonlinearities model
structure.

Gene Parameter Values
N1 k0,1 = 0.0362, KM,1 = 0.1259, γ1 = -0.4060,
N2 k0,2 = 1.0106, KM,2 = 1.7937, k0,3 = 0.3550,

KM,3 = 1.2069, k0,4 = 0.7472, KM,4 = 1.2858,
γ2 = -2.1362

N3 k0,5 = 2.4007, KM,5 = 0.8218, k0,6 = 0.8511,
KM,6 = 1.7099, k0,7 = 2.8247, KM,7 = 1.6656,
k0,8 = 0.6081, KM,8 = 0.0202, γ3 = -3.8740,

N4 k0,9 = 0.0903, KM,9 = 0.0699, γ4 = -0.7256
N5 k0,10 = 0.5264, KM,10 = 0.9600, γ5 = -0.7466
N6 k0,11 = 0.6541, KM,11 = 1.0891, γ6 = -0.4525
N7 k0,12 = 0.0090, KM,12 = 0.5191, k0,13 = 1.1236

KM,13 = 0.4986, γ33 = -0.9473

In our simulation, shown by the solid blue line in Fig. 3,
when the perturbation enters the network at time 0s it causes
the expression level of N3 to drop from its intended reference
value of 0.718 (Fig. 3(A)). Upon sensing this drop in the ex-
pression level, the controller asserts appropriate control action,
U (Fig. 3(C)) in its attempt to bring the expression level of N3
back to 0.718. However, as shown in Fig. 3(A), a full recovery
of the output to its intended reference value is not achievable.
This is because in the controller’s attempt to perform the
needed recovery, the exerted control action U becomes larger
than KM,11, thus the term k0,11U/(KM,11+U)≈ k0,11 = 0.6541,
which is shown in Fig. 3(D). This implies no appropriate
control action can be given to the network to counter the
effect of the perturbation, resulting in a large error between the
output and reference value (Fig. 3(B)). In reality, however, this
may not necessarily be the case - the apparent limitation is due
to the estimated value of KM,11 from the available experimental
data. If the value of KM,11 is sufficiently larger than U , the
‘saturation’ issue is avoided. In addition, a closer look at the
series of regulation along the pathway highlighted in yellow
shown in Fig. 2 indicates that the values of KM,8 and KM,13
also need to be sufficiently large in order to achieve a proper
control action and recover the levels of N3.

The problems identified above are due to the values of
KM,11, KM,8 and KM,13 that are estimated from the available
experimental data. These estimated values are relatively small
when compared to the necessary control action, leading to
saturated responses and large errors. Thus, a natural question
arises as to whether or not these values (shown in Table
I) represent reliable estimates of these parameters. For the
network shown in Fig. 2, the estimated values of KM,11, KM,8
and KM,13 shown in Table I are the result of using 1 as the
initial values for the parameters in the optimisation problem
defined in Eqn (4). If a different set of initial values is used
for the optimisation, do we obtain similar parameter values to
those shown in Table I particularly for KM,11, KM,8 and KM,13?
To investigate this, we repeated the parameter estimation using
0.01, 0.1, 10 and 100 as initial values for the optimisation, and
the results are shown in Figs. 4 (A), (C) and (E).
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Fig. 3: Feedback control response when perturbation enters
the gene regulatory network shown in Fig. 2. (A) Comparison
with the output and reference values. (B) Error signal between
the reference and output values. (C) Control action, U . (D) The
time series of k0,11U/(KM,11 +U).

TABLE II: Estimated parameters given different initial values
for optimisation as shown in Fig. 4 (A), (C) and (E).

Initial Gene Parameter Values
Value
0.01 N3 k0,5 = 1.6657, KM,5 = 0.7744, k0,6 = 1.2067,

KM,6 = 2.1379, k0,7 = 1.0197, KM,7 = 0.4737,
k0,8 = 0.8413, KM,8 = 1.4508, γ3 = -2.9516,

N6 k0,11 = 0.3914, KM,11 = 0.0118, γ6 = -0.5621
N7 k0,12 = 0.0093, KM,12 = 0.5206, k0,13 = 0.8078

KM,13 = 0.0540, γ33 = -1.1136
0.1 N3 k0,5 = 1.8356, KM,5 = 0.7843, k0,6 = 1.1053,

KM,6 = 1.5175, k0,7 = 1.7524, KM,7 = 2.1010,
k0,8 = 0.8168, KM,8 = 0.1019, γ3 = -3.5506,

N6 k0,11 = 0.4247, KM,11 = 0.1192, γ6 = -0.5462
N7 k0,12 = 0.0091, KM,12 = 0.5330, k0,13 = 0.8627

KM,13 = 0.1068, γ33 = -1.0819
1 N3 k0,5 = 2.4007, KM,5 = 0.8218, k0,6 = 0.8511,

KM,6 = 1.7099, k0,7 = 2.8247, KM,7 = 1.6656,
k0,8 = 0.6081, KM,8 = 0.0202, γ3 = -3.8740,

N6 k0,11 = 0.6541, KM,11 = 1.0891, γ6 = -0.4525
N7 k0,12 = 0.0090, KM,12 = 0.5191, k0,13 = 1.1236

KM,13 = 0.4986, γ33 = -0.9473
10 N3 k0,5 = 2.5208, KM,5 = 0.9741, k0,6 = 1.7396,

KM,6 = 0.7365, k0,7 = 1.7937, KM,7 = 2.5356,
k0,8 = 0.1980, KM,8 = 15.2691, γ3 = -4.0848,

N6 k0,11 = 1.0025, KM,11 = 9.0799, γ6 = -0.1412
N7 k0,12 = 0.0049, KM,12 = 0.6385, k0,13 = 1.5460

KM,13 = 10.0345, γ33 = -0.1460
100 N3 k0,5 = 1.0820, KM,5 = 0.7472, k0,6 = 1.4625,

KM,6 = 1.4727, k0,7 = 0.2059, KM,7 = 1.5799,
k0,8 = 0.8413, KM,8 = 145.0575, γ3 = -1.9053,

N6 k0,11 = 1.0059, KM,11 = 120.4219, γ6 = -0.0090
N7 k0,12 = 0.0104, KM,12 = 0.6691, k0,13 = 1.5496

KM,13 = 99.4842, γ33 = -0.0211

The plots show that the estimated parameter values are very
different to the ones shown in Table I. Using terminology
from the field of system identification, there is no consistent
estimate of the model parameters, as given different initial
values for the optimisation, the optimiser can find different
sets of parameters (see Table II) that are equally well able to
reproduce the experimental data, as shown in Figs. 4 (A), (C)
and (E).
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Fig. 4: Comparison of model and experimental data for differ-
ent sets of estimated parameter given different initial values
for optimisation. The initial values used for optimisation are
0.01, 0.1, 1, 10 and 100. Only genes in the highlighted
pathway in Fig. 2 are shown. The experimental data shown
here is an independent data set that is not used for parameter
estimation. Left panel: Subfigures (A), (C) and (E) show
the plots using Michaelis-Menten with Hill-type nonlinearities
model structure for genes 3, 6 and 7 respectively. Here, the
estimated values of KM are close to the initial set of parameters
used for optimisation. Right panel: Subfigures (B), (D) and (F)
show the plots using S-System model structure for genes 3, 6
and 7 respectively. The notation p0 denotes the parameter set
obtained when initial value of 1 is used for the optimisation
(shown in Table I). The notation p : 0.1,1,10→ p0 indicates
the estimated parameters using initial values of 0.1, 1 and 10
are similar to p0.

From Table II, we note that there is one set of parameters
that includes large values of KM,11, KM,8 and KM,13. Using
these larger values of KM,11 = 120.4219, KM,8 = 145.0575 and
KM,13 = 99.4842, we repeat the simulation of the feedback
controller shown in Fig. 2. As shown by the solid red line in
Fig. 3(A), the same controller is now able to exert a proper
control action to mitigate the effect of the perturbation, as the
value of KM,11 is now larger than the control action, U (Fig.
3(C)) and no issues with saturation are observed (Fig. 3(D)).

The results shown here suggest that for this typical experi-
mental data set and network structure, the estimated values of
the model parameters, in particular KM,11, KM,8 and KM,13, are
not consistent. This clearly poses a significant problem when
designing a controller to mitigate the effects of perturbations
on this network, since different estimated values of KM,11, KM,8
and KM,13 lead to very different closed-loop behaviour of the
control system. In light of this, coupled with the previously
mentioned need for a priori knowledge of regulation type
to use the Michaelis-Menten with Hill-type nonlinearities
model structure, an alternative modelling formalism is clearly
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required in order to allow for the rational design of feedback
controllers. The alternate model formalism needs to have a
general structure that can accommodate both activatory and
inhibitory regulations, and more importantly, the estimated
model parameters from experimental data should be consistent,
so that it can be reliably used for controller design.

B. S-System models

The so-called S-System modelling formalism has been pro-
posed as an alternative approach to describe the dynamics of
gene regulatory networks. The S-System modelling framework
was originally developed from the field of biochemical system
theory (see e.g. [17], [18]), and when it has been used to
describe the dynamics of gene regulation (see e.g. [19], [20]),
it has been shown to be as accurate as Michaelis-Menten
with Hill-type nonlinearity models (see [21]). In particular,
the authors in [21] rigorously analysed the ‘validity’ range of
the concentrations produced by both S-System and Michaelis-
Menten models to determine which model differs most from
the ‘true’ concentration obtained via experiment. It was found
that, not only were S-System models as accurate as Michaelis-
Menten type models within the same concentration range, but
the S-System models were more accurate over a wider range of
concentrations. Based on this and other analyses, the authors
suggested that the S-System model formalism better represents
the actual biochemical system.

The S-System models we consider in this work have the
following form:

dNi

dt
= ai

M1

∏
j=1

N
pi, j
j +bi

M2

∏
j=1

N
qi, j
j +

M3

∑
j=1

ci, jU j (5)

where i denotes the number of biochemical component, ai > 0,
bi < 0 and ci, j ∈ (−∞,+∞) are constants, Ni represents the
biochemical component, M1 and M2 are the total number of
components involved in the interaction, U j is the external input
and M3 is the number of input. The power exponent terms,
pi, j and qi, j are associated with the production and degra-
dation terms respectively. For simplicity, we assume qi, j = 1
throughout this paper, so that a positive value for the parameter
pi, j represents activation while a negative value represents
inhibition. Thus, the S-System model has a general structure
that can accommodate either an activation or inhibition type
of regulation via the sign of pi, j, and no prior knowledge of
the type of regulation at each node in the network is required
in the model building process.

The S-System model describing the gene regulatory network
shown in Fig. 2 is given as follows:

dN1

dt
= b1N1 + c1D+d1

dN2

dt
= a2N

p2,1
1 N

p2,2
3 N

p2,3
7 +b2N2

dN3

dt
= a3N

p3,1
1 N

p3,2
2 N

p3,3
5 N

p3,4
7 +b3N3

dN4

dt
= a4N

p4,1
1 +b4N4

dN5

dt
= a5N

p5,1
2 +b5N5

dN6

dt
= b6N6 + c6U

dN7

dt
= a7N

p7,1
4 N

p7,2
6 +b7N7 (6)

Note that for dN1/dt, a constant value denoted by d1 is
added to the model to ensure the overall mRNA level stays
positive since D is negatively correlated with N1 and b1 is
negative due to the degradation term. Like before, we use
one set of experimental data for parameter estimation and an
independent set of data for model validation. The parameters
are estimated using the prediction error method with quadratic
criterion (Eqn. (4)) with Θ = {ai,bi,ci,d1, pi, j} where i and
j denote the appropriate indices in Eqn. (6). The estimated
parameters, using 1 as the initial value for all parameters in
the optimisation, are given in Table III.

TABLE III: Parameters for the network model shown in Fig.
2 using S-System model structure.

Gene Parameter Values
N1 b1 = -0.3789, c1 = -0.2488, d1 = 0.2724,
N2 a2 = 0.4729, p2,1 = -0.0490, p2,2 = 0.0015,

p2,3 = 0.0360, b2 = -1.2252
N3 a3 = 5.6808, p3,1 = 0.2232, p3,2 = -0.0568,

p3,3 = 0.0210, p3,4 = 0.3906, b3 = -6.4230,
N4 a4 = 0.0695, p4,1 = -0.8931, b4 = -0.6381
N5 a5 = 0.2552, p5,1 = -0.1822, b5 = -0.5814
N6 b6 = -1.8949, c6 = 1.3030
N7 a7 = 0.5916, p7,1 = 0.0001, p7,2 = 0.4048

b7 = -0.7338

We repeat the feedback control design using the same
configuration shown in Fig. 2. The feedback control response
when a perturbation enters the gene regulatory network is
shown in Fig. 5. When the S-System model is used, the
controller is able to produce an appropriate control action to
attenuate the effect of the disturbance. There is no saturation
issue observed, unlike in the scenario where the Michaelis-
Menten with Hill-type nonlinearities model structure is used.

We proceed further to check whether the estimated param-
eters for the S-System model are consistent or not. As before,
we choose the initial parameter values for the optimisation to
be 0.01, 0.1, 10 and 100. The resulting estimated parameters
are given in Table IV. The results shown in Figs. 4 (B), (D)
and (F) indicate that, using this model structure, the estimated
parameters are now consistent. Denoting p0 as the estimated
parameter set obtained when 1 is used as the initial value for
optimisation, we observe that when initial values of 0.1 and
10 are used, the estimated parameters are close to p0 (see
Table IV). When initial values of 0.01 and 100 are used, the
estimated parameters are not close to p0, but in this case the
model responses do not reproduce the experimental data.

Taken altogether, these results suggest that we are able
to obtain consistent estimates of the model parameters from
experimental data when using the S-System model structure,
making this modelling formalism much more suitable for
use in the design of feedback controllers for perturbation
mitigation.
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TABLE IV: Estimated parameters given different initial values
for the optimisation as shown in Figs. 4 (B), (D) and (F).

Initial Gene Parameter Values
Value
0.01 N3 a3 = 0.0008, p3,1 = 0.0137, p3,2 = -0.0098,

p3,3 = 0.0101, p3,4 = 0.0111, b3 = -0.0129,
N6 b6 = -0.0102, c6 = 0.0099
N7 a7 = 0.5620, p7,1 = 0.0002, p7,2 = 0.0107

b7 = -0.7522
0.1 N3 a3 = 2.0744, p3,1 = 0.1772, p3,2 = -0.0950,

p3,3 = 0.0278, p3,4 = 0.3888, b3 = -2.5312,
N6 b6 = -1.8702, c6 = 1.3104
N7 a7 = 0.2737, p7,1 = 0.0003, p7,2 = 0.2681

b7 = -0.3564
1 N3 a3 = 5.6808, p3,1 = 0.2232, p3,2 = -0.0568,

p3,3 = 0.0210, p3,4 = 0.3906, b3 = -6.4230,
N6 b6 = -1.8949, c6 = 1.3030
N7 a7 = 0.5916, p7,1 = 0.0001, p7,2 = 0.4048

b7 = -0.7338
10 N3 a3 = 5.1614, p3,1 = 0.1791, p3,2 = -0.0745,

p3,3 = 0.0259, p3,4 = 0.3456, b3 = -6.3618,
N6 b6 = -1.9653, c6 = 1.3513
N7 a7 = 0.5153, p7,1 = 0.0003, p7,2 = 0.3256

b7 = -0.6566
100 N3 a3 = 8.1321, p3,1 = 0.2214, p3,2 = -0.0610,

p3,3 = 0.0249, p3,4 = 117.9354, b3 = -0.2774,
N6 b6 = -119.4802, c6 = 82.1233
N7 a7 = 0.8009, p7,1 = 0.0004, p7,2 = 106.1156

b7 = -0.1311
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Fig. 5: Feedback control response when a perturbation enters
the gene regulatory network that is modelled using the S-
System formalism. (A) Output and reference values. (B) Error
signal between the reference and output values. (C) Control
action, U . (D) The time series of c6U .

IV. IDENTIFICATION OF AN DREAM3 NETWORK USING
S-SYSTEM MODEL

In the previous section, we have illustrated why the S-
System model formalism is a more appropriate way to model
gene regulatory networks for the purposes of control system
design. We now proceed to use the S-System model structure
to identify, model, and design a biologically implementable
perturbation mitigation controller for the DREAM3 network.
Fig. 1(A) shows the interconnection between the genes in the
DREAM3 gene regulatory network. In contrast to the network
shown in Fig. 2, here no information is provided regarding

the type of regulation between the interconnecting genes, and
therefore we use system identification techniques (see e.g.
[22]) to infer the type of regulation within the network. Note
that, since no information regarding the type of regulation
between the interconnecting genes is available, the Michaelis-
Menten with Hill-type nonlinearities model structure cannot
be used in this case.

System identification techniques have been used to build
models of gene regulatory networks in several previous stud-
ies, including [23], [24], [25], where linear black box network
models were considered and the directions and the types of
regulation were identified based on available data on gene
expression profiles. In this paper, we consider a nonlinear
grey box S-System model, given that we have prior knowledge
about the network interconnections, and focus our attention on
the identification of the type of regulation between the inter-
connecting genes. We use one data set for parameter estimation
and another independent data set for model validation. Note
that both the estimation and validation data sets used are the
provided temporal profiles from the DREAM3 gene regulatory
network challenge. The S-System model for the DREAM3
gene regulatory network following Fig. 1(A) is given by

dN1

dt
= a1N

p1,1
2 N

p1,2
4 N

p1,3
5 +b1N1

dN2

dt
= b2N2 + c2U1

dN3

dt
= a3N

p3,1
1 N

p3,2
5 +b3N3

dN4

dt
= a4N

p4,1
9 +b4N4

dN5

dt
= a5N

p5,1
7 +b5N5

dN6

dt
= a6N

p6,1
4 +b6N6

dN7

dt
= a7N

p7,1
8 +b7N7

dN8

dt
= b8N8 + c8U2

dN9

dt
= b9N9 + c9U3 +d9

dN10

dt
= a10N

p10,1
7 +b10N10 (7)

Again note that for dN9/dt, a constant value denoted by d9
is added to the model to ensure that the overall mRNA level
stays positive since U3 is negatively correlated with N9 and
b9 is negative due to the degradation term. The parameters
are estimated using Eqn. (4) with Θ = {ai,bi,ci,d9, pi, j} and
T = 10.

Using 1 as the initial value for all parameter in the opti-
misation, the estimated parameters of Eqn. (7) are given in
Table V. Fig. 6 shows the comparison between the S-System
model and the real data on the validation data set. The initial
conditions for solving the ODEs are the first data points of
each gene taken from the experimental data set.

From the estimated parameters shown in Table V, we are
able to determine the type of regulation in the network,
where a positive value of the power term denotes activation



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2017.2771775, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 7

TABLE V: Estimated parameters for the DREAM3 S-System
model.

Gene Parameter Values
N1 a1 = 0.2757, p1,1 = 0.3502, p1,2 = 0.0559,

p1,3 = -0.2789, b1 = -0.4023
N2 b2 = -0.1875, c2 = 0.0946
N3 a3 = 0.1478, p3,1 = -0.0021, p3,2 = 0.1393,

b3 = -0.1481
N4 a4 = 0.0023, p4,1 = -5.1622, b4 = -0.3555
N5 a5 = 0.1199, p5,1 = 0.0760, b5 = -0.2057
N6 a6 = 0.2567, p6,1 = -0.0120, b6 = -0.3035
N7 a7 = 0.0607, p7,1 = 0.1104, b7 = -0.1237
N8 b8 = -0.0298, c8 = 0.0108
N9 b9 = -0.1793, c9 = -0.0268, d9 = 0.1733
N10 a10 = 0.0139, p10,1 = -1.5609, b10 = -0.0480
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Fig. 6: Comparison between S-System model and DREAM3
data on the validation data set that is not used for parameter
estimation.

while a negative value of the power term denotes inhibition.
Reassuringly, all the a priori known degradation terms were
identified to have negative values, in accordance with current
biological data on the network.

The comparison between the S-System model and the
real data on the validation data set shows good agreement,
suggesting a good level of accuracy of the model. To quantify
this, we calculate the Mean Square Error (MSE) for each gene
between the S-System model and the real data. The MSE is
computed using,

MSE =
1
L

L

∑
t=1

[Ni(t)− N̂i(t,θ)]2 (8)

where L is the length of the data, Ni and N̂i respectively
represent the experimental and the simulated data and i =

1,2, . . . ,10. Table VI shows the computed MSE for both the
estimation and validation data sets.

TABLE VI: MSE for both estimation and validation data sets.

MSE MSE
Gene (Estimation) (Validation)
N1 0.0029 0.0054
N2 0.0013 0.0021
N3 0.0014 0.0031
N4 0.0009 0.0010
N5 0.0010 0.0037
N6 0.0017 0.0036
N7 0.0019 0.0016
N8 0.0012 0.0088
N9 0.0033 0.0050
N10 0.0017 0.0128
MSET 0.0171 0.0470

The total MSE, MSET , is obtained by summing all the
individual MSE from each genes. In general, the MSE values
are small and similar between the two data sets. With the
regulation types in the DREAM3 network as identified, the
network interactions are as shown in Fig. 1(B).

A. Modelling of DREAM3 with Michaelis-Menten with Hill-
type nonlinearties

Now that the regulation types between each node (activation
or inhibition) have been identified, we can also use Michaelis-
Menten with Hill-type nonlinearities to model the DREAM3
network, as follows:

dN1

dt
=

k0,1Nh
2

KM,1 +Nh
2
+

k0,2Nh
4

KM,2 +Nh
4
+

k0,3

KM,3 +Nh
5
+ γ1N1

dN2

dt
=

k0,4Uh
1

KM,4 +Uh
1
+ γ2N2

dN3

dt
=

k0,5

KM,5 +Nh
1
+

k0,6Nh
5

KM,6 +Nh
5
+ γ3N3

dN4

dt
=

k0,7

KM,7 +Nh
9
+ γ4N4

dN5

dt
=

k0,8Nh
7

KM,8 +Nh
7
+ γ5N5

dN6

dt
=

k0,9Nh
4

KM,9 +Nh
4
+ γ6N6

dN7

dt
=

k0,10Nh
8

KM,10 +Nh
8
+ γ7N7

dN8

dt
=

k0,11Uh
2

KM,11 +Uh
2
+ γ8N8

dN9

dt
=

k0,12

KM,12 +Uh
3
+ γ9N9

dN10

dt
=

k0,13

KM,13 +Nh
7
+ γ10N10 (9)

We want to investigate whether the Michaelis-Menten with
Hill-type nonlinearities model would encounter the same
problem of inconsistent parameter estimates as highlighted
in Section III-A. For the purposes of illustration, we focus
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only on the highlighted pathway that involves the series of
regulation from the control action to the output gene (see Fig.
1(C)) and as before set h = 1.

We repeat the parameter estimation exercise (i.e., using Eqn.
(4)) where we choose 0.01, 0.1, 10 and 100 as the initial values
for the optimisation for both Michaelis-Menten with Hill-type
nonlinearities and S-System model structures, focusing only
on genes 1, 4 and 9. The results are shown in Fig. 7 and the
estimated model parameters are given in Tables VII and VIII

TABLE VII: Estimated parameters given different initial val-
ues for the optimisation as shown in Figs. 7(A), (C) and (E).

Initial Gene Parameter Values
Value
0.01 N1 k0,1 = 0.6428, KM,1 = 1.6590, k0,2 = 0.1856,

KM,2 = 0.0127, k0,3 = 0.2160, KM,3 = 2.7946,
γ1 = -0.6389,

N4 k0,7 = 0.0002, KM,7 = 0.0124, γ4 = -0.1675
N9 k0,12 = 0.0038, KM,12 = 0.0725, γ9 = -0.000001

0.1 N1 k0,1 = 0.7106, KM,1 = 1.6914, k0,2 = 0.2425,
KM,2 = 0.1409, k0,3 = 0.2087, KM,3 = 1.9633,
γ1 = -0.5968,

N4 k0,7 = 0.0003, KM,7 = 0.1005, γ4 = -0.1671
N9 k0,12 = 0.0231, KM,12 = 0.7250, γ9 = -0.0001

1 N1 k0,1 = 0.6868, KM,1 = 1.5259, k0,2 = 0.4995,
KM,2 = 1.0623, k0,3 = 0.1982, KM,3 = 2.7770,
γ1 = -0.4799,

N4 k0,7 = 0.0004, KM,7 = 1.5874, γ4 = -0.1657
N9 k0,12 = 1.4335, KM,12 = 8.3217, γ9 = -0.1852

10 N1 k0,1 = 0.7539, KM,1 = 0.9300, k0,2 = 0.5454,
KM,2 = 9.3423, k0,3 = 0.2165, KM,3 = 2.1919,
γ1 = -0.6471,

N4 k0,7 = 0.0005, KM,7 = 9.2461, γ4 = -0.1643
N9 k0,12 = 1.5362, KM,12 = 20.3145, γ9 = -0.0707

100 N1 k0,1 = 0.7995, KM,1 = 1.1288, k0,2 = 0.5369,
KM,2 = 83.2009, k0,3 = 0.2240, KM,3 = 1.6028,
γ1 = -0.6607,

N4 k0,7 = 0.0004, KM,7 = 99.3634, γ4 = -0.1643
N9 k0,12 = 9.3453, KM,12 = 105.3270, γ9 = -0.0897

TABLE VIII: Estimated parameters given different initial
values for the optimisation as shown in Figs. 7(B), (D) and
(F).

Initial Gene Parameter Values
Value
0.01 N1 a1 = 0.2585, p1,1 = 0.3542, p1,2 = 0.0392,

p1,3 = -0.2917, b1 = -0.4143,
N4 a4 = 0.0001, p4,1 = -0.0055, b4 = -0.1656
N9 b9 = -0.1043, c9 = -0.0132, d9 = 0.1051

0.1 N1 a1 = 0.2589, p1,1 = 0.4126, p1,2 = 0.0590,
p1,3 = -0.2674, b1 = -0.3307,

N4 a4 = 0.0002, p4,1 = -0.0864, b4 = -0.1657
N9 b9 = -0.1043, c9 = -0.0132, d9 = 0.1067

1 N1 a1 = 0.2757, p1,1 = 0.3502, p1,2 = 0.0559,
p1,3 = -0.2789, b1 = -0.4023,

N4 a4 = 0.0023, p4,1 = -5.1622, b4 = -0.3555
N9 b9 = -0.1793, c9 = -0.0268, d9 = 0.1733

10 N1 a1 = 0.3429, p1,1 = 0.4194, p1,2 = 9.9089,
p1,3 = -0.3139, b1 = -0.1267,

N4 a4 = 0.0025, p4,1 = -5.6379, b4 = -0.4444
N9 b9 = -13.9910, c9 = -2.6026, d9 = 12.3031

100 N1 a1 = 0.3180, p1,1 = 0.3997, p1,2 = 112.6809,
p1,3 = -0.2893, b1 = -0.1622,

N4 a4 = 0.0035, p4,1 = -5.1136, b4 = -0.4614
N9 b9 = -140.4127, c9 = -25.0935, d9 = 123.3048

As shown in Fig. 7, the estimated parameters using the
Michaelis-Menten with Hill-type nonlinearities model are not
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Fig. 7: Comparison of model and experimental data for differ-
ent sets of estimated parameter given different initial values
for optimisation. The initial values used for optimisation are
0.01, 0.1, 1, 10 and 100. Only genes in the highlighted pathway
shown in Fig. 1(C) are shown. The experimental data shown
here is an independent data set that is not used for parameter
estimation. Left panel: Subfigures (A), (C) and (E) show
the plots using Michaelis-Menten with Hill-type nonlinearities
model structure for genes 1, 4 and 9 respectively. Here, the
estimated values of KM are close to the initial values for
optimisation. Right panel: Subfigures (B), (D) and (F) show
the plots using S-System model structure for genes 1, 4 and 9
respectively. The notations p0 and p : 0.01,0.1,1,10,100→ p0
follow the same interpretation given in previous section.

consistent, as different sets of parameter are able to reproduce
the dynamics of the experimental data equally well. For the S-
System model, however, we obtain consistent estimates of the
model parameters for genes 1 and 9 when the initial values
used for optimisation are 0.01, 0.1 and 1, while for initial
values of 10 and 100, the resulting parameters cannot repro-
duce the experimental data. For gene 4, we obtain consistent
estimates of the model parameters when the initial values used
for optimisation are 1, 10 and 100, while for initial values of
0.01 and 0.1 there is again poor agreement between model
responses and experimental data.

B. Discussion on the parameter estimates of the model struc-
tures

Through our analysis of different modelling formalisms
for the gene regulatory networks considered here, we have
illustrated the inconsistent estimates of the model parameters
obtained when using Michaelis-Menten with Hill-type nonlin-
earities model. This means that these model parameters are not
identifiable from the available experimental data. One reason
for this could be that these experimental data do not excite
the relevant dynamics (in particular the saturation region)
thus making the data not informative enough to obtain a
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consistent estimate. This inconsistent estimate is related to
the notion of ‘practical parameter identifiability’ (see e.g.
[26], [27]) where the available experimental data is unable
to excite the relevant dynamics to provide consistent estimate
for a given model structure, as observed here. The problem
of inconsistent parameter estimates is also observed in [28],
where the authors attempt to build a comprehensive network
model for the plant circadian system, and the interactions
between genes are modelled using the Michaelis-Menten with
Hill-type nonlinearities model structure. The model parameters
are estimated from experimental data, which are the temporal
profiles of the circadian genes and proteins and a total of eight
different parameter sets are found to be able to reproduce
the experimental data. The estimated values of the Michaelis-
Menten coefficients (KM) from these eight sets of parameters
cover a large range of possible values (from 0.01 to 490).

Although its relevance from the point of view of control
system design has not to-date been considered, the problem of
obtaining consistent estimates of parameters in the Michaelis-
Menten model structure has been previously investigated (see
the review paper [29] and references therein). In [30] and [31],
different methods for fitting the Michaelis-Menten equation
were analysed, and both studies concluded that different
fitting methods will give different estimates of the parameters
unless the experimental data is free from error (which in
biological reality it never is). Different approaches to estimate
the Michaelis-Menten coefficients have also been studied in
[32], [33] and [34], and those studies concluded that it is
difficult to obtain a consistent estimate of the Michaelis-
Menten coefficients unless particular design considerations are
taken into account.

On the other hand, for the parameters of the S-System
model, our two illustrative examples indicate that these pa-
rameters are locally identifiable [35], as we are able to obtain
consistent parameter estimate when different initial values
are used for the optimisation. The identifiability of model
parameters using a power law type of model structure (that
includes the S-System model) has been investigated in [36].
Their analyses show that while in general it is practically
challenging to obtain consistent estimate for all the parameters
in the model, one can obtain consistent estimates of the model
parameters under certain conditions. Recent work by [37]
also shows that with an appropriate choice of optimiser, one
can obtain consistent parameter estimates using the S-System
model structure.

V. DESIGN OF A FEEDBACK CONTROLLER FOR
PERTURBATION MITIGATION

Here, we show how the S-System model of the considered
gene regulatory network can be used to design a controller for
perturbation mitigation. To achieve an implementable design, a
genetic-based controller is required, and there are frameworks
available for such designs (see e.g. [38], [39]). In this paper,
we employ a frequency domain control design methodology,
motivated by the design framework proposed in [39]. In order
to design controllers in the frequency domain, a linear model
is required. As the S-System is a nonlinear model, we linearise

it to obtain a transfer function model using the sine sweeping
method (see e.g. [22], [40]).

A. Sine sweeping method

In the sine sweeping method, sinusoidal input signals over
the frequency range of interest are given as the inputs to the
system. The output responses within the frequency range are
then analysed in terms of their magnitude and phase relative
to the input signal. By collecting these magnitude and phase
values, the frequency response and transfer function model of
the system can be easily obtained. Here, we summarise the
procedure for obtaining a transfer function model using the
sine sweeping method method and refer readers to [22], [40]
for complete details.

Consider a sinusoidal input u(t) = Asin(ω0t), where A is
the amplitude and ω0 is the frequency. For any linear time
invariant system, the output would be also sinusoidal with the
same frequency but with scaled amplitude and a phase shift.
In practice, the output response is subject to transient effects,
as well as the effects of nonlinearities and disturbances d(t),
yielding,

y(t) = Bsin(ω0t +φ)+d(t)+ transient+nonlinearities (10)

where B = A|G( jω0)|, φ = ∠G( jω0) = tan−1 Im|G( jω0)|
Re|G( jω0)|

and
G( jω0) is the transfer function relating the input and output
with j denotes the imaginary number.

The effects of transients and nonlinearities can be removed
by neglecting the initial part of the data and assuming that the
linear dynamics make the dominant contribution to the overall
response. To reduce the effect of d(t) on y(t), one can use a
correlation method [22], where the idea is to correlate y with
a sine and cosine of the same frequency and average it over
the length of the data NL (see Fig. 8).

×

×

y(t)

 
∑

N
L

1
I
S
(N

L
)

I
C
(N

L
)

cos ω
0
t

sin ω
0
t

∑
N
L

1

Fig. 8: Correlation method.

From Fig. 8, we obtain,

IS(NL) =
1

NL

NL

∑
t=1

y(t)sin(ω0t)

IC(NL) =
1

NL

NL

∑
t=1

y(t)cos(ω0t) (11)

Substituting Eqn. (10) into (11), and after some algebraic
manipulation, we arrive at
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IS(NL) =
A
2
|G( jω0)|cosφ − A

2
|G( jω0)|

1
NL

NL

∑
t=1

cos(2ω0t

+φ)+
1

NL

NL

∑
t=1

d(t)sin(ω0t)

IC(NL) =
A
2
|G( jω0)|sinφ − A

2
|G( jω0)|

1
NL

NL

∑
t=1

sin(2ω0t

+φ)+
1

NL

NL

∑
t=1

d(t)cos(ω0t) (12)

From Eqn. (12), the second term for both IS(NL) and IC(NL)
will go to zero as NL → ∞. Assuming d(t) is a stationary
stochastic process with zero mean value and covariance func-
tion Rd(l) such that ∑

∞
l=0 l|Rd(l)| < ∞, the third term for

both IS(NL) and IC(NL) will be zero as NL → ∞, since the
variance of the third term decays at a rate of 1/NL (see
[22] for details). From the remaining terms of Eqn. (12), the
magnitude, |G( jω0)| and the phase, ∠G( jω0) can be estimated
using the following equations, i.e.

|G( jω0)|=
2
√

I2
S (NL)+ I2

C(NL)

A

∠G( jω0) = tan−1 IC(NL)

IS(NL)
(13)

For the DREAM3 network, we assume that the input to
the network is through U3 and the output of interest is the
expression of gene N1. We apply sinusoidal signals of the form
3sin(ωt)+3 with the frequency ω ranging from 0.001 rad/s
to 1.000 rad/s. Despite using a nonlinear model, we note that
the output sinusoidal responses have the same frequency as the
input and no subharmonics are apparent, indicating a dominant
linearity of the model. By computing the magnitude and phase
values using Eqn. (13), the Bode plot of the DREAM3 network
from input U3 to output N1 is obtained and shown in Fig. 9.
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Fig. 9: Bode plot of DREAM3 network from input U3 to output
N1.

From the Bode plot, we note the following: (i) At low
frequency, the magnitude of the system is about -22.5dB.

(ii) The corner frequency is 0.11 rad/s. (iii) At the corner
frequency, the slope is close to -40dB/dec and the phase is
approximately -90◦, suggesting a second order system with
repeating poles. Thus, the transfer function relating input U3
to output N1 can be approximated by

N1(s)
U3(s)

=
0.075

(1+ s
0.11 )

2 =
0.0009

s2 +0.22s+0.012
(14)

From the sine sweeping method, the linear transfer function
of the gene regulatory from U3 to N1 is given by Eqn. (14). We
compare the accuracy of the linear model with the nonlinear S-
System model through a step response comparison, as shown
in Fig. 10. Since the base signal level used in the sine sweeping
method is 3, the input is stepped from 3 to 4.
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S−System Model
Linearised Model

Fig. 10: Step response comparison between the linear model
obtained through sine sweeping method and the full nonlinear
S-System model.

From Fig. 10, we observe similar performance between the
two models in terms of their transient responses, i.e. similar
rise time and settling time. On the other hand, the steady state
levels between the two models are different with the linear
model having a higher steady state level compared to the
nonlinear model. Nevertheless, the difference between these
two steady state level is relatively small, indicating acceptable
accuracy of the linear model in approximating the nonlinear
S-System model relating input U3 to output N1.

With this transfer function identified, we can proceed with
the design of the controller using a frequency domain ap-
proach.

B. Design of a genetic phase lag controller

Here, we illustrate the design of the genetic phase lag
controller. A phase lag controller is chosen, as this type of
controller is typically used to improve disturbance rejection
and reduce steady state errors. The phase lag controller has
the following form:
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K(s) =
K1

s+aP
+K2

=
K2(s+aP +

K1
K2
)

s+aP
(15)

where the zero of the controller z =−(aP +(K1/K2)) and the
pole of the controller p =−aP, with the gain of the controller
being K2. As both the gain and phase margins of the system
obtained from the Bode plot are infinite, our primary focus
is on improving the transient dynamics of the disturbance
rejection and reducing the steady state error.

The transfer function given in Eqn. (14) is a type 0 system,
and with the use of a phase lag controller, there is no integrator
in the open loop gain to eliminate the steady state error. As
such, when choosing the pole of the phase lag controller, we
try to place the pole, aP as close as possible to the origin.
Likewise, the static error constant, Kp = 0.0027K2 should be
chosen as large as possible to reduce the steady state error.
The choice of the design parameters are constrained by the
achievable biological values and following the range of allow-
able values given in [39]; the following allowable parameter
ranges are adhered to: 0.0002 ≤ aP ≤ 0.0040, K1 < 2.3 and
K2 < 1.8.

C. Simulation Results

While the design of the controller is carried out using the
linear model, for implementation, we carried out our simula-
tion using the nonlinear S-System network model. In most
gene regulatory network perturbation mitigation problems,
we are interested in maintaining the steady state level of a
particular gene of interest in the presence of a perturbation.
Biologically, this can be interpreted as maintaining the level
of expression of a gene of interest to ensure optimal biological
function. Thus, in this simulation example, we are interested in
maintaining the steady state level of N1 at its desired reference
value in the presence of a perturbation. Here, we assume that
the perturbation enters the network through U1 and our control
action is provided by U3 as depicted in Fig. 1(C).

In the absence of a perturbation, the steady state level of
N1 is 0.486, thus, our control objective is to maintain the
steady state level of N1 close to 0.486 in the presence of a
perturbation. In our simulation, a perturbation in the form of
a step response with amplitude of 2 enters the network at
time 4000s. As can be seen in Fig. 11(A), without control,
the steady state level of N1 increase to 0.63 and is unable to
return to its desired value.

In the design of the phase lag controller, the following
values are chosen. To have the pole close to the origin, we
choose aP = 0.0002. To have the static error constant as large
as possible, we choose K2 = 1.7. For K1, we initially consider
two cases, i.e. K1 = 0.04 (controller’s zero close to origin) and
K1 = 2 (controller’s zero far from the origin). The simulation
results are shown in Fig. 11(B). For a small value of K1,
we see that the performance of the system is slow and at
time 6000s, there is still a noticeable steady state error, i.e.
0.044. On the other hand, for a large value of K1, we see
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Fig. 11: (A) N1 set-point regulation (without control). (B) N1
set-point regulation (with control). Black solid line: Set-point.
Red dotted line: N1 response to small K1. Blue dashed line:
N1 response to large K1. Green dash-dotted line: N1 response
to optimised K1.

a significant improvement in the performance, where we get
a faster response and an almost zero steady state error, i.e.
0.0008.

0.001 0.01 0.1 1
−40

−20

0

20

40
With control

M
ag

ni
tu

de
 [d

b]

0.001 0.01 0.1 1
−60

−40

−20
Without control

0.001 0.01 0.1 1
−200

−150

−100

−50

0

ω [rad/s]

P
ha

se
 [°

]

0.001 0.01 0.1 1
−200

−150

−100

−50

0

ω [rad/s]

(A) (C)

(B) (D)

Fig. 12: (A) & (B) Gain and phase plots of system with
control. Red dotted line: Small K1, Blue dashed line: Large
K1. Green dash-dotted line: Optimised K1. (C) & (D) Gain
and phase plots of system without control.

The Bode plots of the system with and without control
are shown in Fig. 12. For a small value of K1, we note that
the phase margin of the system is 97◦. On the other hand,
for a large value of K1, despite the good performance, we
note that the phase margin of the system reduces from 97◦

to 10◦, which is less than typically specified values. Thus,
a compromise between the transient performance and overall
stability robustness needs to be performed when designing
the controller, and this trade-off can be effectively managed
through the choice of the controller parameter K1. Accord-
ing to standard specifications, the phase margin is typically
required to be between 45◦ to 60◦ (see e.g. [16]) to achieve
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satisfactory performance. To find the ‘optimal’ value of K1 that
can achieve fast response, small steady state error and achieve
a phase margin in the aforementioned range, we proceed as
follows.

The transfer functions of the process and the lag compen-
sator are given by Eqns. (14) and (15) respectively. Rewriting
them here together with the substitution of aP = 0.0002 and
K2 = 1.7, as well as defining GOL(s) as the open loop gain
transfer function, we have the following expression.

GOL(s) =

[
0.075

( s
0.11 +1)2

][(
1.7(s+0.0002+ K1

1.7 )

s+0.0002

)]
(16)

Replacing s = jω , and after some algebraic manipulation
we have

GOL( jω) =
Q(T1 jω +1)

(T2 jω +1)2(T3 jω +1)
(17)

where Q = (0.1275 + 375K1), T1 = 1/(0.0002 + K1
1.7 ), T2 =

1/0.11 and T3 = 1/0.0002.
The magnitude and phase of GOL( jω) can be computed as

follows,

|GOL( jω)|= 20log10 Q+20log10 |T1 jω +1|
−40log10 |T2 jω +1|+20log10 |T3 jω +1|

∠GOL( jω) = tan−1(T1ω)−2tan−1(T2ω)

+ tan−1(T3ω) (18)

and we are now left with the task to find K1 and ω to achieve
our desired phase margin.

From the Bode plot in Fig. 12(A), we observe that to achieve
the desired phase margin would require the gain cross over
frequency of GOL( jω) to be around the frequency 0.05 rad/s.
With ω = 0.05, solving K1 such that |GOL( jω)| = 0 and 45◦ ≤
∠GOL( jω)+180≤ 60◦ are satisfied, we obtain the optimal K1
= 0.8.

As shown by the green dash-dotted line in Fig. 11(B), with
K1 = 0.8, the magnitude plot has shifted to the left. This left
shift in magnitude changes the gain cross over frequency from
0.1 rad/s to the one we specified, i.e. 0.05 rad/s. On the other
hand, the phase plot is similar to the case when using large
K1. Nevertheless, more importantly, the Bode plot shown in
Fig. 12(A) and (B) shows that the new phase margin is 47.4◦

when using K1 = 0.8, which is within the preferred range and
a significant improvement compared to using large K1.

VI. CONCLUSIONS

Although several modelling formalisms are now available
for the representation of gene regulatory networks, the ques-
tion of their suitability for the design of synthetic feedback
control systems has so far received little attention in the
literature. In this paper, we show that standard modelling
approaches employing Michaelis-Menten models with Hill-
type nonlinearities are not appropriate for use in the design
of synthetic controllers, for two reasons. Firstly, such models
require the type of regulation between interacting genes in

the network to be known a priori, which is highly unlikely
to be the case in general. Even more problematically, the
values of the particular parameters in such models on which
the controller design depends cannot in general be reliably
identified from standard time-series data.

As an alternative approach, we propose the use of the S-
System modelling formalism. While the use of the S-System
modelling formalism for describing the dynamics of gene
regulatory networks is well established, its usefulness for the
purposes of control design has not so far been investigated.
Here, we showed that using this modelling formalism com-
bined with standard system identification procedures allows us
to establish the type of regulation between each gene, obtain
consistent estimates of model parameters, and hence derive a
model that is suitable for the design of a synthetic genetic
feedback controller. Given that the design of the considered
genetic feedback controller is carried out in frequency domain,
we showed that the nonlinear S-System model can be approx-
imated by a second order linear transfer function using the
sine sweeping method. Based on this transfer function model,
we designed a genetic phase lag feedback controller, whose
structure and parameter values can be readily implemented
biologically. Simulation results show satisfactory performance
of the controller in mitigating external network perturbations.
The proposed modelling and control system design approach
considered here has been tailored to the problem of mitigating
external perturbations in gene regulatory network. However,
the proposed approach can be readily extended to address
other control problems (e.g. reference tracking) and should
have wide potential application to network control problems
throughout the field of synthetic biology.
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