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Abstract  8 

Computer aided design software enables the rapid conceptual creation of a curved surface 9 

geometry, whereas it is neither a convenient nor an obvious task for engineers to create a discrete 10 

grid structure on a complex surface that meets architectural and aesthetic requirements. This 11 

emphasizes the importance of grid generating tools and methods in the initial design stage. This 12 

paper presents an efficient design tool for the synthesis of free-form grid structures based on the 13 

“guide line” method, employing a fast and straightforward approach which achieves grids with rods 14 

of balanced length and fluent lines. The process starts with defining a limited number of curves 15 

(named the “guide lines”) on the surface, which are then used to determine the directions of the 16 

‘rods’ of the grid. Two variations of this concept are introduced in this paper: the ‘Guide Line 17 

Scaling Method’ (GSM) and the ‘Two Guide Lines with Two End Vertices Method’ (2G2VM). Case 18 

studies are provided which illustrate the successful execution of these procedures. The results 19 

show that the free-form grid structures generated with the proposed methods feature a regular 20 

shape and fluent lines, thereby satisfying aesthetic requirements. These two methods have been 21 

programmed into the software ZD-Mesher, enabling rapid grid generation for structural design 22 

purposes. 23 

Keywords: Free-form surface; Grid structure; Guide line; Free form structures; Guide line scaling 24 

method. 25 

 



1 Introduction 1 

New techniques in computer aided design, such as parametric modelling and scripting, have 2 

enabled a new level of sophistication in design. Among other developments, this has facilitated the 3 

increased inclusion of 3D free-form surfaces in structures, marrying the expression of architectural 4 

creativity with the application of cutting-edge technology. Complex free-form structures are one of 5 

the most visually striking trends in contemporary architecture. A number of structures with 6 

attractive designs and eye-catching shapes have recently been erected, as shown in Fig. 1 (a) to (d). 7 

While they are constructed with sometimes vastly different materials, they all exemplify the 8 

emergence of free-form grid structures. 9 

                 10 

(a) British Museum Great Court (London, UK)                    (b) Vela-roof in Milan Trade Fair (Milan, Italy)[1] 11 

   12 

(c) Shenzhen Sports Center stadium (Shenzhen, China) (d) Toledo timber grid shell (Naples, Italy)[2] 13 

Fig. 1. Examples of free-form grid structures. 14 

If a curved surface with a suitable form is chosen and well-positioned supports are added, an 15 

efficient flow of the forces within the structure can be obtained [3], where a single layer grid-shell 16 
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structure consisting of a lattice of rods can be used to transmit the external loads down to the 1 

foundations mainly by means of axial forces within the members. This structural form often brings 2 

benefits in the form of reductions in material usage, enhanced aesthetics, better structural 3 

performance, ease of fabrication and an increase in unobstructed service space. However, it is not 4 

always obvious how to create an efficient grid structure on a given surface. For example, Fig.2 5 

illustrates the roof structure of Daishan Sports Stadium in China by Ding and Wang [4]. The curved 6 

free-form surface shown in Fig.2 (a) was determined by the architect in the early conceptual design 7 

stage, but subsequently the structural analysis required an arrangement of nodes and elements on 8 

the curved surface. In this particular case, this was achieved manually with tedious iteration, with 9 

the result being shown in Fig.2 (b). Fig.2 (c) shows the resulting structure in an architectural 10 

rendering with the skeleton in Fig.2 (b) covered by roof panels. Given the increasing popularity of 11 

free-form grid structures, a practical grid generation tool which can quickly and efficiently generate 12 

a structural grid on a given free-form surface is necessary in order to assist structural designers, 13 

particularly in the early design stage. 14 

Earlier studies on free-form grid structures have mainly concentrated on the structural design 15 

aspects [1, 5], form-finding methodologies [2, 6], connections [7] and optimization techniques [8-16 

10]. However, previous research on grid generating methodologies is rather limited. Park et al. [11] 17 

and Shepherd and Pearson [12] demonstrated that topology optimization methods can be used to 18 

create an efficient structural grid on a predefined surface, with both studies presenting a layout 19 

optimization algorithm for both single and double layer shells in the conceptual design stage. Wu 20 

et al. [13] conducted theoretical and experimental research on grid generation for a cable 21 

supported dome using topology optimization techniques. However, a drawback of all these 22 

topology optimization studies [11-13] is that the resulting topology is rather coarse and cannot 23 

directly be used in design (i.e. some refinement is required). 24 
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（a） （b） （c）

 1 

Fig. 2. Creation of a free-form single layer grid structure (Daishan Sports Stadium, Daishan City, China) [4]. 2 

Research has also been conducted at the University of Cambridge [14] with the aim of 3 

generating practical and efficient grids over free-form surfaces, while considering the mechanical 4 

performance under multiple load cases. In this process a discrete grid structure consisting of 5 

repeating quadrilateral or triangular cells was first specified. A homogenization process was then 6 

used to represent this lattice of rods by anisotropic continuum shell elements for the purpose of 7 

structural analysis. The rod orientations were then optimized using a Genetic Algorithm.  8 

In other research by Su et al. [15], the main stress trajectories on the surface under loading 9 

were used in a grid generation tool. A modified ‘advancing front’ mesh technique was thereby used. 10 

While this method is geared towards an efficient structural performance of the grid, an iterative 11 

process and FE analysis are needed in the grid generation procedure, requiring significant 12 

computational time. Another drawback of this method is that it may lead to a non-uniform grid 13 

with distorted unit cells, as show in the generated grid for Sun Valleys at the Shanghai EXPO in Fig.3. 14 

Distorted grid

 15 

Fig. 3. Grid layout results generated in [15]. 16 
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In practice, rather than optimizing structural performance, it is sometimes more important to 1 

generate a grid on a curved surface which is aesthetically pleasing and which satisfies the 2 

uniformity criteria, i.e. where unit cells have regular shapes and rods are composed of fluent lines. 3 

Therefore, many of the previous research studies have concentrated on mesh generation over a 4 

surface without taking into account structural performance. For example, Shepherd and Richens [3] 5 

proposed the Subdivision Surface method, where an initial triangular or quadrilateral mesh is first 6 

imposed onto a free-form surface and then subdivided over a number of iterations to fit the 7 

original surface. An alternative approach was applied in  the design of the Vela-roof of the Milan 8 

Trade Fair [1], where the rod directions and connection positions were generated using clusters of 9 

auxiliary lines. In a first stage, auxiliary lines were introduced to generate grid cells in the nearly 10 

non-curved regions. In the next step, additional lines aligned with the principal flow of stresses 11 

were added to the curved regions using a different shape of grid. Iterative adjustments were then 12 

made in order to optimize the grid. Liu et al.[16] proposed an approach to automatically generate a 13 

2D quadrilateral mesh under arbitrary line constraints. The method begins with discretizing the 14 

constraining lines within the domain into a number of segments. Next, a triangular mesh is 15 

generated using the Delaunay Triangulation Algorithm, taking into account the initial discretized 16 

lines. The triangular mesh is then transformed into an all-quad mesh using an advancing front 17 

method, starting from the line constraints, which roughly keeps the features of the initial triangular 18 

mesh. Finally, the resulting quadrilateral mesh is optimized to reduce the number of irregular 19 

nodes. Du Peloux et al [17] and Hennicke and Schaur [18] used a “compass method” to generate a 20 

quadrilateral mesh with constant rod length on a NURBS surface. In this method two initial crossing 21 

guide-curves are drawn on the surface and divided by a compass into segments of constant chord 22 

length. The nodes are then used as the centres of circles, drawn by the compass on the surface, 23 

and the intersecting points of the circles form new nodes in a repeating process. Based on the 24 
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Delaunay triangulation method, Muylle et al. [19] developed a mesh generation procedure 1 

intended for finite element analysis by presenting a new point creation scheme for obtaining 2 

unstructured uniformly sized two-dimensional triangular meshes. It is shown in their paper that the 3 

final mesh depends significantly on the initial distribution of points. In another research study by 4 

Branets and Garey [20], a local cell quality metric which takes into account the element shape and 5 

size was proposed and used to construct a variational functional for a grid smoothing algorithm. 6 

The method used the geometric quality metric as the objective and applied a damped Newton 7 

scheme to solve the optimization problem in order to obtain a grid with better quality.  8 

Grid generation methods, if implemented in software, can provide an interactive design 9 

environment which does not suppress creativity, but rather makes it possible to receive instant 10 

feedback on an initial design. Such software also allows the exploration of different design options 11 

and can incorporate multi-objective optimization algorithms to help the user to quickly identify a 12 

particularly promising design direction [3]. 13 

This paper aims to develop a practical methodology to quickly generate a grid on a predefined 14 

curved surface with given boundaries. The method focusses on obtaining a regular geometry, 15 

rather than on structural performance. It allows grid generation based on a limited number of 16 

guidelines using operations such as offset, scaling, rotation and projection. While structural 17 

performance is currently not taken into account in the proposed methodology, a performance 18 

aspect can be added by selecting guidelines based on the stress trajectories under governing loads 19 

[21]. Optionally, a further sizing optimization of the structural members can then be performed 20 

based on the generated grids. The here proposed methodology is innovative on the basis of 21 

introducing the concept of a “guideline” and two new ways of grid generation are presented, 22 

namely the ‘guide line scaling’ method (GSM) and the ‘two guide lines with two end vertices’ 23 

method (2G2VM). The proposed algorithms have been implemented in the general-purpose 24 
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programming language C++ and a Graphical User Interface has been developed. A number of case 1 

studies are presented to illustrate the successful execution of the algorithms and the effectiveness 2 

of the software. 3 

2 Guide Line Definition 4 

To be practically relevant, the generated grid should meet certain aesthetic and architectural 5 

requirements. For a given surface there are various solutions which may satisfy those 6 

requirements, even when expressed in terms of objective criteria such as grid regularity, rod 7 

uniformity, and pattern fluency. A simple example is shown in Fig.4 (a) and Fig.4 (b), where two 8 

grid patterns are considered: an orthogonal grid parallel to the sides and an orthogonal-diagonal 9 

grid. Which one is the more favourable pattern in terms of appearance most likely depends on the 10 

individual preference of the architect, although one could argue that the grid style presented in 11 

Fig.4 (b) portrays a sense of vividness and is therefore preferable. 12 

 13 

(c) (d)

(a) (b)

 14 

Fig. 4. Guide lines and generated grid on a plane surface: (a) Regular grid parallel to the edges; (b) Diagonal 15 

grid at 45
°

; (c), (d) corresponding guide lines. 16 

Given this context, a practical and feasible approach consists of defining a ‘guide line’ on the 17 

surface that sets the tone of the grid and reveals the intent of the designer. The red curves shown 18 
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in Fig.4 (c) and Fig.4 (d) fulfill exactly this function in this simplified example. The selection of guide 1 

line depends on the designer’s preference. An innovative architect might choose a guide line that 2 

will provide less obvious solutions than the grids shown in Fig.4. This will however not hinder the 3 

application of the proposed method. Rather the efficiency of the algorithm will assist the designer 4 

in assessing multiple options in an acceptable time. 5 

3 Surface Representation 6 

In the proposed approach, the Non-Uniform Rational B-Spline (NURBS) is applied to describe 7 

curves and surfaces. To this end, the B-spline basis functions need to be introduced first. Let 8 

0 n{u ,...,u }=U  be a non-decreasing sequence of rational numbers, i.e., 
i i 1u u ,  i 0,...,n 1+≤ = − . The 9 

numbers 
iu  are called the ‘knots’, and U  is the ‘knot vector’. The i

th
 B-spline basis function of 10 

degree p, denoted by 
i,pN (u) , is then defined in terms of an independent variable u as follows [22]: 11 

i i 1

i,0

i p 1i
i,p i,p 1 i 1,p 1

i p i i p 1 i 1

1   if u u u
N (u)

0  otherwise

u uu u
N (u) N (u) N (u)

u u u u

+

+ +
− + −

+ + + +

≤ <
= 


−−
= +

− −

                      (1) 12 

In the above equations, i = 0,…, n-p-1, so that there are n-p basis functions of degree p. Note 13 

that 
i,0N (u)  is a step function which is identically equal to zero everywhere, except in the half-open 14 

interval [ )i i 1u u ,u +∈ . The higher order basis functions
i,pN (u)  are then formed by taking a linear 15 

combination of two basis functions of degree (p-1). The half-open interval [ )i i 1u ,u +  is commonly 16 

called the i
th

 knot span. It can have zero length since knots do not need to be distinct. 17 

A p
th

-degree NURBS curve is shown in Fig. 5 and is defined by [22]: 18 

( )

n

i,p i

i 0

n

i,p i

i 0

N (u)w

(u) x(u), y(u), z(u)     a u b

N (u)w

i

=

=

= = ≤ ≤
∑

∑

P

C                             (2) 19 
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where ( )i i i ix , y , z=P  are the control points, 
iw  are the weight factors, n is the number of control 1 

points and 
i,pN (u)  are the p

th
-degree B-spline basis functions according to Eq. (1), defined on the 2 

knot vector: 3 

 p 1 r p 1

p 1 p 1

U {a,...,a,u ,...,u ,b,...,b}+ − −
+ +

=                                             (3) 4 

where r n p 1= + + is the number of knots. Adding the zero length knot spans in Eq. (3) ensures 5 

that there are exactly n + 1 basis functions of degree p. It is also noted that the weight factors 
iw  6 

are constrained to positive values for all i. 7 

Control 

points P2

P1 P3

Pi

Pn

 8 

Fig. 5. The relationship between the curve and its control points. 9 

Introducing the notation:  10 

i,p i

i,p n

j,p j

j 0

N (u)w
R (u)

N (u)w
=

=

∑
     (4) 11 

Eq. (2) can be rewritten in the form: 12 

n

i,p i

i 0

(u) R (u)
=

= ⋅∑C P       (5) 13 

where 
i,p{R (u)}  are the rational basis functions, which are piecewise rational functions of [ ]u a,b∈ . 14 

In general, NURBS defined curves have the following two important geometric characteristics 15 

[22, 23], which will prove useful at a later stage: 16 
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(1) 
n

i,pi 0
R (u) 1

=
=∑  for all u [a,b]∈ , which, together with 

0,p n,pR (a) R (b) 1= = , implies: 
0(a) =C P  and 1 

n(b) =C P . In other words, the starting point of the curve is the first control point, while the end 2 

point of the curve is the last control point, as shown in Fig. 5. 3 

(2) Affine invariance: an affine transformation can be applied to the curve by applying it to the 4 

control points. Affine transformations include translations, rotations, scaling and shearing. NURBS 5 

curves are also invariant under perspective projections. 6 

An NURBS surface (shown in Fig. 6) of degree p in the u direction and degree q in the v direction 7 

is a bivariate vector-valued piecewise rational function of the form [22]: 8 

n m

i,p j,q i,j i,j

i 0 j 0

n m

i,p j,q i,j

i 0 j 0

N (u)N (v)w

(u,v)     a u b,c v d

N (u)N (v)w

= =

= =

= ≤ ≤ ≤ ≤
∑∑

∑∑

P

S                     (6) 9 

where 
i,jP  forms a bidirectional control net of points, 

i,jw  are the weight factors and 
i,pN (u)  and 10 

j,qN (v)  are the non-uniform rational B-spline basis functions defined on the knot vectors: 11 

 

 







p+1 r-p-1

p+1 p+1

q+1 s-q-1

q+1 q+1

U= {a,...,a,u ,...,u ,b,...,b}

V= {c,...,c,v ,...,v ,d,...,d}
                                                      (7) 12 

wherer = n+p+ 1 and s= m+ q+ 1.  13 

Control points

Free-form surface

 14 

Fig. 6. Curved surface and its control points. 15 
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The above NURBS equations for describing surfaces and curves can be used to represent a 1 

curved architectural surface, as well as a guideline for grid generation (as introduced in the 2 

previous section of the paper). A guideline lying on the NURBS surface 
u,v u,v u,v x ,y ,z(x , y , z ) (u,v)= S  is 3 

thus defined by an NURBS curve in three-dimensional space as: 4 

w w w x,y ,z(x , y , z ) (w)= C                                                          (8) 5 

It is thereby noted that the guideline also has a 2D representation in the parameter space (u,v) of 6 

the surface. This is illustrated in Fig. 7. Indeed, the 3D guideline can be seen as the result of a two-7 

time mapping procedure, with a two-dimensional NURBS curve 
w w u,v(u , v ) (w)= C  lying in the 8 

parametric field of the surface (Fig. 7) as the intermediate step: 9 

w w w x,y ,z w w x,y ,z u,v(x , y , z ) (u , v ) ( (w))= =S S C                                   (9) 10 

It is obvious that all of the coordinates obtained by this two-time mapping method lie exactly on 11 

the surface so that the guide line is embedded within the curved surface. One of the advantages of 12 

having this 2D representation of the guideline (and any subsequent curves generated on the 13 

surface) in the parameter space (u,v) is that points of intersection between curves are much easier 14 

calculated in the space (u,v) and then mapped onto the surface than calculated in 3D space. 15 

 16 

Fig. 7. Mapping method from parametric space to 3D space. 17 
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A three-dimensional curve can easily be obtained from its two-dimensional representation by 1 

the above mapping procedure. The solution to the inverse problem (obtaining the 2D 2 

representation when the curve is known in 3D space) is documented in [22]. 3 

4 Projecting a Point onto a Surface 4 

An algorithm to project a generic point ( )x,y,z=P  perpendicularly onto a surface (u,v)S  is needed 5 

in both grid-generating methods. 6 

In order to achieve this, the following vector field is first defined: 7 

(u,v) = (u,v) -r S P                                                     (10) 8 

which is made subject to the following two conditions: 9 

u

v

(u,v) (u,v) (u,v) 0

(u,v) (u,v) (u,v) 0

= ⋅ =
 = ⋅ =

f r S

g r S
                                              (11) 10 

The subscripts u and v thereby indicate differentiation with respect to u and v, respectively. The 11 

above equations express that a point on the surface (u,v)S needs to be found at which the normal 12 

to the surface points to the point ( )x,y,z=P . The above equations can be solved iteratively by 13 

defining the following matrices in the i
th

 iteration: 14 

i 1 i

i

i 1 i

u u u

v v v

+

+

∆ −   
= =   ∆ −   

δ                                                    (12) 15 

2

u uu u v uvu v

i 2
u v u v vu v vv

 + ⋅ ⋅ + ⋅ 
= =   

 ⋅ + ⋅ + ⋅   

S r S S S r Sf f
J

g g S S r S S r S
                               (13) 16 

i i

i

i i

(u ,v )

(u ,v )

 
= − 

 

f
κ

g
                                                         (14) 17 

All the functions in the matrix 
iJ are thereby evaluated at the point i i(u ,v ) . In the i

th
 iteration, the 18 

2 2×  system of linear equations in the unknown vector iδ  is solved: 19 

 12 



           i i i=Jδ κ                                                              (15) 1 

After obtaining iδ the new coordinates (u, v) are calculated:  2 

i 1 i i 1 iu u u, v v v+ += + ∆ = + ∆                                             (16) 3 

The convergence criteria are given by: 4 

i 1≤ εδ                                                               (17) 5 

u i i i i v i i i i

2 2

u i i i i v i i i i

(u ,v ) ( (u ,v ) ) (u ,v ) ( (u ,v ) )
,

(u ,v ) (u ,v ) (u ,v ) (u ,v )

⋅ − ⋅ −
≤ ε ≤ ε

− −
S S P S S P

S S P S S P
                  (18) 6 

where 1ε  is the tolerance for the Euclidean distance between successive iteration points, while 7 

2ε  is the tolerance for orthogonality of the vector r relative to the tangent plane to the surface. 8 

The value of 2ε  was taken as 10
-6

 in the examples presented in this paper, while the values of 1ε  9 

ranged from 10
-3

 mm to 1 mm, depending on the magnitude of the dimensions of the surface. 10 

At the same time, it should be checked in each iteration whether the points i i(u ,v )  remain 11 

within the boundaries of the surface (u,v)S . 12 

In the next Sections 5 and 6, the “Guideline Scaling Method” (GSM) and the “Two Guide Lines 13 

with Two End Vertices Method” (2G2VM) will be introduced. These methods will be used to 14 

generate grids on a number of surfaces and a comparison will be carried out with the results of 15 

a “Mapping Method” presented in [24], which was developed for mesh generation in finite 16 

element analysis. This latter method also works on the principle explained in Fig.7.  17 

In Section 7 the steel-and-glass grid of the British Museum Great Court Roof will be investigated 18 

as a benchmark example for the various algorithms. The results of the GSM and the 2G2VM will 19 

be compared with the grid originally presented by Williams [25], who analytically defined the 20 

shape of the roof in the form of mathematical functions. 21 
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5 Guide Line Scaling Method (GSM) 1 

5.1 Description of Algorithm 2 

 3 

Fig. 8. Main steps of GSM, as schematically illustrated for a flat surface: (a) definition of initial guide line; (b) 4 

generation of new end points; (c) scaling of the guideline; (d) translation/rotation of the guideline, followed 5 

by projection onto the surface; (e) generation of grid points; (f) final triangular grid.  6 

In the GSM, the following steps are taken (Fig. 8): 7 

1. An initial guide line is sketched on the curved surface. Alternatively, one of the boundaries of 8 

the surface, if appropriate, may be selected as a guide line (Fig.8 (a)). 9 

2. An NURBS representation (u,v)S  is fitted to the surface, while the initial guide line defined on 10 

the surface in Step 1 is represented by an NURBS curve 
0C in three-dimensional space. The 11 

control points of the NURBS curve 
0C  are 

i ,   i 0,1,...,n=P . 
0P  and 

nP  are the first and the last 12 
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control points, which are also the two end points of the curve (as explained in Section 3) (Fig.8 1 

(b)). 2 

3. In order to generate a new curve on the surface in the shape of the original guide line, the end 3 

points of the original guide line 
0P  and 

nP  are first moved forward in space by a constant 4 

(chosen) distance L in the direction of the vector  5 

D N= ± × τ
  

                                                                (19) 6 

As shown in Fig. 9, N


is the normal vector to the surface at the end point of the guide line and τ  7 

is the tangent vector to the guide line. Therefore, D


 constitutes a direction perpendicular to the 8 

guide line in the tangent plane of the surface.  9 

Guide line

nP

0P

τ


N


D
 L

 10 

Fig. 9. Advancing direction of the guide line. 11 

It is clear that, in general, the end point of the vector D


 does not lie on the surface boundary. 12 

Therefore, the end point of D


 is first projected onto the surface, using the procedure explained 13 

in Section 4 of the paper. This yields a point D’ on the surface, as well as the normal 
2N


 to the 14 

surface at D’ (Fig. 10). A straight line through the point D’ is then defined with direction:   15 

2T D N= ×
  

                                                                 (20) 16 

The point on the boundary curve with the shortest distance to this straight line is then 17 

determined using the procedure documented in [26]. Carrying out this procedure for both end 18 

 15 



points 
0P  and 

nP  of the original guide line results in two new points 
0
′′′P  and 

n
′′′P  on the boundary 1 

curve. 2 

τ


N


D


0P

'''

0P

nP

2N


T


Guide line

D'

L

 3 

Fig.10. Obtaining the next end point on the boundary curve. 4 

4. 
0
′′′P  and 

n
′′′P are then connected with a new curve in the shape of the original guideline. An affine 5 

transformation of the original guideline which, in the general case, consists of a scaling, a 6 

translation, and a rotation, is thereby necessary (Fig.8 (c)). 7 

Let 
1l  be the Euclidean distance between 

0P  and 
nP , while the Euclidean distance between 

0
′′′P  8 

and 
n
′′′P  is denoted by 

2l . If
1 2l l≠ , a scaling of the original guide line is required: 9 

i i n 2 1 n= ( - ) l l + ,  i = 0,1,...,n′ × ÷P P P P                        (21) 10 

where 
i
′P  are the control points of the scaled curve.  11 

The control points are then translated according to the formula below: 12 

i i n n= + ( ), i = 0,1,...,n-  ′′ ′ ′′′P P P P                             (22) 13 

where 
i
′′P  are the control points after the curve is scaled and translated. 14 

If 
0
′′P  and 

0
′′′P  happen to coincide with each other, then the translated control points are the end 15 

points of the new curve. In general, however, 
0
′′P  and 

0
′′′P  do not coincide and the scaled and 16 

translated guideline also needs to be rotated so that 
0
′′P  and 

0
′′′P  coincide (Fig. 11). 17 
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          1 

(a) 
0
′′P  and 

0
′′′P  are coinciding           (b) 

0
′′P  and 

0
′′′P are not coinciding. 2 

Fig. 11. Adjustment of the generated curves. 3 

The axis of rotation is the straight line through the point 
n
′′P (=

n
′′′P ) with direction R , 4 

perpendicular to the plane determined by the three points: 
0
′′′P , 

0
′′P  and 

n
′′P : 5 

0 n 0 n( ) ( )′′ ′′ ′′′ ′′= − × −R P P P P     (23) 6 

The angle of rotation γ  is determined by: 7 

0 0

0 n

2arcsin
2

′′′ ′′−
γ =

′′ ′′−
P P

P P
     (24) 8 

The coordinates of the new control points 
i
′′′P  can then be obtained from the coordinates of 

i
′′P  9 

through a coordinate transformation. A new curve 
1C is subsequently defined by the control 10 

points 
i
′′′P  and the same weight factors, knot vector and degree as the original guide line. 11 

However, this curve 
1C , in the general case, does not lie on the curved surface (u,v)S .  12 

5. A number of discrete points on the curve 
1C are projected onto the surface (u,v)S , using the 13 

procedure explained in Section 4 of this paper. 14 

6. After these points on the surface (u,v)S are obtained, the corresponding points (u,v) in the 15 

parameter space are calculated. A 2D NURBS curve is then fitted through these points in the 16 
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parameter space and mapped back onto the 3D surface. This is done to ensure that the new 1 

curve is completely embedded within the surface (u,v)S (Fig.8 (d)). 2 

7. The above procedure is then repeated a sufficient number of times by advancing successive 3 

curves to cover the whole surface (Fig.8 (e)). These curves are then subdivided along their 4 

lengths into an integer number of segments with equal chord length, approximately equal to the 5 

preferred rod length L1 of the grid (Fig.8 (e)), with the aim of achieving regular grid cells. The 6 

following algorithm is used: 7 

Starting from one end of the curve, segments with a chord length L1 are added along the curve 8 

until the other end is reached. A ‘left-over’ segment with chord length L2 is typically 9 

encountered at the other end (Fig. 12). If L2 is sufficiently small (e.g. less than δ = 0.2L1), the final 10 

segment with length L2 can potentially be amalgamated within the previous segment, thus 11 

accepting one slightly longer segment along the curve. If L2>δ, the nodes between the segments 12 

are adjusted to accommodate a slightly longer chord length L1+L2/(N-1), where (N-1) is the 13 

number of segments. This does not yet guarantee that the length L2’ of the new left-over 14 

segment is zero, since distances in this procedure are measured along the chords, rather than 15 

along the curve. Iterations are therefore necessary.  16 

After segmentation, the straight lines connecting the end points of each segment form the first 17 

set of rods of the grid. 18 
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 1 

Fig.12. Segmentation of the curve: (a) Guideline; (b) First subdivision with chord length L1; (c) Merging of the 2 

last two segments if L2 < δ, and (d) Iterative adjustment if L2 > δ. 3 

8. The remaining rods of the grid are obtained by connecting points lying on adjacent curves 4 

(Fig.8 (f)). An algorithm was thereby used which makes a distinction between three sub-5 

cases in order to reduce the possible occurrence of irregular grid cells containing very sharp 6 

angles and improve the grid quality. In order to automate this process, the following 7 

algorithm is followed: 8 

 First, the angles α and β determined by the i
th

 and the (i+1)
th

 curve, as shown in Fig. 13, are 9 

calculated. Based on these angles, three different cases can be identified: 10 

(a) Both α and β are smaller than (or equal to) 90°. 11 

(b) One of the angles (either α or β) is larger than 90° and the other one is smaller than (or 12 

equal to) 90°. 13 

(c) Both α and β are larger than 90°. 14 

 15 

Fig.13. Angles between adjacent curves (β≤α≤90°). 16 
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All three cases lead to analogous procedures and the algorithm for case (a) can be adapted to the 1 

other two cases in an almost trivial way. Therefore, the discussion is here focused on the case (a).  2 

As shown in Fig.14 (a), we consider two adjacent curves with n points (P0, P1, …, Pn－1) on the i 
th

 3 

curve and m points (Q0, Q1, …, Qm－1) on the (i+1)
th

 curve. Indicating the angle at point B in the 4 

triangle ABC as ∠ABC, we successively calculate (Fig.14 (b)): ∠Q0P1P2, ∠Q0P2P3 ,… until we reach 5 

a point Pk where ∠Q0PkPk+1＞90°. The point Q0 is then connected to P1, P2 … Pk by straight lines 6 

(Fig.14 (b)). The above procedure is subsequently repeated for the next point Q1 (i.e. a point Pl is 7 

sought for which ∠Q1PlPl+1＞90°), as well as for Q2, Q3, …. When either the point Qm-1 at the end 8 

of the (i+1)
th

 curve is reached, or the point Pn-1 at the end of the i
th

 curve, three possible scenarios 9 

can be envisaged: 10 

 (a) There are unconnected points Pq … Pn-1 left on the i
th

 curve (Fig. 14(c)). In this case, those 11 

residual points are connected to Qm－1 (as shown with dashed lines in Fig. 14(c)). 12 

(b) All points on both curves are connected and there are no residual points (Fig. 14(d)). 13 

(c) There are residual points Qq … Qm-1 on the (i+1)
th

 curve (Fig. 14(e)). In this case, those residual 14 

points are connected to Pn－1 (as shown with dashed lines). 15 

It can be seen from Fig.14 that sharp angles may still exist in the resulting grid. However, some 16 

minor merging and deleting operations can be used to improve the grid. 17 

 18 
(a) 19 
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   1 

(b)                                                                                  (c) 2 

  3 

(d)                                                                                 (e) 4 

Fig.14. Connecting points on two adjacent guide lines. 5 

5.2 Case Studies 6 

5.2.1 Chen Shan Botanical Gardens 7 

The Shanghai Chen Shan Botanical Gardens contain three conservatories with an irregular ‘bean 8 

shape’ in plan view (Fig. 15). As a case study, a grid was generated for one of the buildings using 9 

the GSM. An NURBS surface was first fitted to the shape, as shown in Fig. 16.  10 

 11 

Fig. 15. Panorama of Chen Shan Botanical Gardens. 12 

 13 

Fig. 16. NURBS surface and guide line. 14 
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The direction of the initial guide line had a substantial impact on the resulting grid. Three 1 

different initial guide lines were considered in this example, as shown in Fig. 16. In accordance with 2 

the GSM algorithm the guide lines were translated in space over a constant distance, which sets 3 

the method apart from the 2G2V method applied on the same structure in Section 6.2.1. Figs. 17 4 

and 18 present the resulting curves covering the surface. The computing time on a typical desktop 5 

computer are shown in Table 1 for these 3 cases. It took around 2 minutes to achieve the set of 6 

curves. The computing time needed for triangulation was negligible compared to the time used for 7 

guide line advancement.  8 

 
(a) Plan view of case 1 

 
(b) Isometric view of case 1 

 
(c) Plan view of case 2 

 
(d) Isometric view of case 2 

 

(e) Plan view of case 3 

 

(f) Isometric view of case 3 

Fig. 17. GSM results for Chen Shan Botanical Gardens with different initial guide lines 9 

 10 

 11 
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(a) Plan view of case 1 

 
(b) Isometric view of case 1 

 
(c) Plan view of case 2 

 
(d) Isometric view of case 2 

 

(e) Plan view of case 3 

 

(f) Isometric view of case 3 

Fig. 18. Triangular grid pattern obtained after connecting the adjacent guide lines shown in Fig.17 1 

Table 1. Computing times for triangular grid generation for Chen Shan Botanical Gardens 2 

Cases 
Guide line generation 

computing time (ms) 

Triangulation computing 

time (ms) 

Total computing time 

(ms) 

1 (Triangle) 78492 7 78499 

2 (Triangle) 112701 7 112708 

3 (Triangle) 115750 5 115755 

 3 

By combining two of the sets of guide lines shown in Fig.17, the diamond grid patterns shown in 4 

Fig.19 can be obtained. These quadrangular grids generated by the GSM are smooth and 5 
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homogeneous, although some triangular cells of small and irregular size are present on the 1 

boundaries. 2 

 

(a) Plan view 

 

(b) Isometric view 

Fig.19. Quadrangular grid generated using the GSM for Chen Shan Botanical Gardens 3 

In order to compare the generated grid to the results of the Mapping Method, a triangular grid 4 

was generated by adding diagonal rods in each quadrangular grid cell shown in Fig.19. The results 5 

are shown in Fig. 20, while the grid generated using the Mapping Method [24] is shown in Fig. 21.  6 

        7 

(a) Plan view     (b) Isometric view 8 

Fig. 20. Triangular grid pattern generated using the GSM for Chen Shan Botanical Gardens. 9 

 

Irregular grid cells

 10 

Fig.21. Grid pattern generated using the Mapping method [18] for Chen Shan Botanical Gardens. 11 
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A comparison between Figs.20 and 21 shows that, while fluent grids were obtained using both 1 

the GSM and the Mapping Method for the surface of the Chen Shan Botanical Gardens, the results 2 

of the Mapping Method prove to be visually smoother. However, the rod lengths obtained using 3 

the GSM are much more uniform than in the case of the Mapping Method. The latter method 4 

results in zones on the surface with grid cells which differ significantly in both size and shape from 5 

the rest of the surface. Moreover, fairly sharp corners are routinely encountered in the grid cells. 6 

5.2.2 Extruded surface 7 

In order to further test the algorithm, an arbitrary NURBS surface was generated, as shown in 8 

Fig.22. This surface was obtained by extruding a profile NURBS curve along a straight line segment 9 

while simultaneously scaling it. It is worth noting that this surface technically does not qualify as a 10 

free-form surface in its true sense. The left boundary was in this case chosen as an initial guide line. 11 

The GSM as well as the Mapping Method were applied, resulting in the grids shown in Fig.23 and 12 

24, respectively. It can be concluded in this case that using the GSM and the Mapping Method both 13 

result in a grid pattern with great fluency and excellent uniformity of the rod lengths. 14 

   15 

(a) Plan View    (b) Isometric view 16 

Fig. 22. Random surface. 17 
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 1 

(a) Top View     (b) Isometric view 2 

Fig. 23. Resulting grid after application of GSM. 3 

  4 

(a) Top View     (b) Isometric view 5 

Fig. 24. Resulting grid using the Mapping Method. 6 

6 Two Guide Lines with Two End Vertices Method (2G2VM) 7 

6.1 Algorithm Description 8 

In contrast to the GSM, the 2G2VM requires the definition of not one, but two initial guide lines. 9 

Each of the guide lines intersects at its ends with the surface boundaries. These boundaries are 10 

subsequently subdivided into a number of equal (chord) length intervals separated by ‘vertices’. 11 

The original guide line is then advanced by moving the end points to the next two vertices on the 12 

boundaries while applying steps 4-6 of the previous section. The process is repeated for the 13 

remaining vertices. An identical procedure is then applied to the second guide line. The points of 14 

intersection of both sets of guide lines then form the nodes of the grid. 15 
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The main steps of the 2G2VM are shown schematically for a pair of red and blue guide lines in 1 

Fig. 25.  2 

 3 

Fig.25. Main steps of the 2G2VM, shown schematically for a flat surface: (a,b) Two initial guide lines are 4 

defined and boundaries are divided; (c) New curves are generated by advancing the first guide line; (d) 5 

Second guide line is advanced to generate a grid. 6 

It worth noting that, in many cases, no twin vertex exists for some of the vertices at one end of 7 

the boundary line, as shown in Fig.26. To solve this problem, the boundary curves should be 8 

extended. Several methods can be proposed to achieve this. For instance, a circle with a curvature 9 

equal to the curvature of the boundary curve at its end point can be used. 10 

 11 

Fig. 26. Schematic diagram of curves after complementing the vertices A and B. 12 

6.2 Case Studies 13 

6.2.1 Chen Shan Botanical Gardens 14 

The project of the Chen Shan Botanical Gardens previously discussed in Section 5.2.1 is again 15 

considered, this time using the 2G2VM, in order to allow a comparison with the GSM. The 16 
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boundaries of the surface were divided in 48 segments with equal chord length. The resulting 1 

curves, taking the same three initial guide lines defined in Section 5.2.1 as a starting point, are 2 

shown in Fig.27. The computing times on the same desktop computer are shown in Table 2 for the 3 

three cases. It took approximately 2 minutes to generate a set of curves. Both the GSM and the 4 

2G2VM were able to generate sets of smooth curves, while the GSM curves appeared more 5 

uniform in terms of intermediate spacing. 6 

 
(a) Plan view of case 1 

 
(b) Isometric view of case 1 

 
(c) Plan view of case 2 

 
(d) Isometric view of case 2 

 
(e) Plan view of case 3 

 
(f) Isometric view of case 3 

Fig. 27. 2G2VM results for Chen Shan Botanical Gardens with different initial guide lines  7 

Table 2. Computing time needed to generate guide line set using 2G2VM for Chen Shan Botanical Gardens 8 

Cases  Computing time (ms) 

1 102000 

2 120000 

3 117000 

 9 
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Combining two sets of curves from Fig. 27, the quadrangular grid shown in Fig.28 was obtained. 1 

Compared to the GSM results presented in Section 5.2.1 (Fig. 19), the grids are smoother and more 2 

fluent, although the cell size has become less homogeneous. There are also fewer irregular cells 3 

presenting near the boundary. 4 

 
(a) Plan view 

 
(b) Isometric view 

Fig. 28. Quadrangular grid pattern generated using the 2G2VM for Chen Shan Botanical Gardens 5 

6.2.2 Sun Valley and Shenzhen Bay Sports Center 6 

Sun Valley, located in the Shanghai World Expo Park, is made up of six single-layer steel lattice 7 

shells with circular or elliptical cross-sections in the horizontal plane. One of the shells is shown in 8 

Fig.29 (a). The height of the structure is 41.5 m and the diameters of the top and the bottom circles 9 

are 90 m and 20 m, respectively. This relatively simple structure is used to illustrate the 10 

methodology and efficiency of the proposed 2G2VM grid generation procedure. As shown in Fig.29 11 

(b), an NURBS curved surface was first established to represent half of the shell. Two scenarios 12 

were investigated: two crossing oblique guide lines and two crossing boundary guide lines. The 13 

resulting grid patterns were also compared with one generated using the Mapping Method. 14 
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 1 

Fig. 29. Sun Valley in Shanghai World Expo Park: (a) perspective view and (b) NURBS surface. 2 

Two Crossing Oblique Guide Lines 3 

In this example, a grid pattern was generated using the 2G2VM which is similar to the “Big Tree” 4 

structure of Shenzhen Bay Sports Center (Fig.30 (a)). Two crossing oblique guide lines (as shown in 5 

Fig.30 (b)) were defined on the surface in order to achieve a rhomboid grid cell.  6 

 7 

Fig.30. (a) “Big Tree” grid of Shenzhen Bay Sports Center (b) Two crossing guide lines. 8 

Subsequently, pairs of vertices were formed by dividing the upper and lower semi-circles into 16 9 

equal segments. Due to the fact that only half of the shell was modelled and that corresponding 10 

vertices were offset in the horizontal direction, the boundary curves had to be extended and 11 

additional vertices generated. This is illustrated in Fig.31. It is noted that, in this case, both guide 12 

lines made use of the same boundaries. 13 

(b) 

(a) 
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 1 

Fig. 31. Generation of vertex pairs. 2 

The method results in a rhomboid grid by advancing the two guide lines, as shown in Fig. 32. 3 

Optionally, by materializing one of the diagonals of each rhomboid cell, a triangular grid pattern 4 

can be formed, as shown in Fig. 33. 5 

For comparison, the Mapping Method was also used to generate quadrilateral and triangular 6 

grids and the results are shown in Fig.34. Both the 2G2VM and the Mapping Method resulted in 7 

satisfactory grid patterns. However, the 2G2VM achieved more fluency, while the designer, 8 

through the definition of the initial guidelines, also has more control over the grid in this method.  9 

 10 

(a) Front View     (b) Top View 11 

Fig. 32. Quadrilateral mesh with two crossing oblique guide lines. 12 
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(a)Front view  (b) Isometric view 2 

Fig. 33. Triangular mesh with two crossing oblique guide lines. 3 

 4 

Fig. 34. Quadrilateral and triangular meshes using the Mapping method. 5 

Two Crossing Boundary Guide Lines 6 

In this example, the top semi-circle and the left side boundary were selected as guide lines, as 7 

shown in Fig. 35. Vertices were generated by dividing all four boundaries into 16 equal parts. By 8 

adopting the 2G2VM, a quadrilateral mesh was generated, as shown in Fig. 36. A triangular mesh 9 

(shown in Fig. 37) can also be obtained by making one of the diagonals of each quadrilateral grid 10 

cell explicit. The quadrilateral mesh is essentially identical to the one obtained using the Mapping 11 

Method (Fig. 34), while the 2G2VM achieves a more fluent triangular mesh thanks to avoiding the 12 

seemingly random orientation of the diagonals in the Mapping Method (Fig. 34). 13 
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 1 

Fig. 35. Vertices on the boundary curves. 2 

 3 

(a) Front view    (b) Isometric view 4 

Fig. 36. Quadrilateral mesh with two crossing boundary guide lines. 5 

 6 

(a) Front view    (b) Isometric view 7 

Fig. 37. Triangular mesh with two crossing boundary guide lines. 8 

It is noted that the resulting grids presented for the relatively simple case of the Sun Valley and 9 

Shenzhen Bay Sports Center can also be achieved in a more direct way by exploiting the symmetry 10 

of revolution i.e. by first discretizing the upper and lower boundary curves and then directly 11 

 33 



connecting the opposite points. However, this example mainly serves to illustrate the methodology. 1 

In the next section, both the GSM and 2G2VM are applied to a more complex surface. 2 

7 British Museum Great Court Roof 3 

The steel and glass roof of the British Museum Great Court covers a rectangular area which is 70 4 

m in width and 100 m in length. The Reading Room, which has a cylindrical shape with a diameter 5 

of 44 m, is located at the centre of the court. The shape of the roof can be expressed as a 6 

mathematical function and more information is provided in [25]. The rods in the roof range in 7 

length from 1 m to 3 m. As an additional case study the here proposed methods (GSM and 2G2VM) 8 

were applied to generate a grid on the roof of the British Museum Great Court. The original surface 9 

and mesh are shown in Figs. 38 (a) and (b), respectively. 10 

 

(a) original surface 

 

(b) original mesh 

Fig. 38. The British Museum Great Court roof. 

The surface was first divided into four sub-surfaces using the diagonals of the rectangular plan. 11 

Each method was then applied to the sub-surfaces, after which the grids of the sub-surfaces were 12 

merged together. Some of the intermediate steps, as well as the final grid resulting from the GSM 13 

are shown in Figs. 39 and 40, respectively. Figs. 41 and 42 illustrate the intermediate and final 14 

results using the 2G2VM. 15 

 34 



 

(a) Advancing the guide line on the sub-surface 

 

(b) Segmentation and connection 

Fig. 39. Intermediate steps of grid generation using the GSM on the British Museum Great Court 

roof. 

 1 

Fig. 40. Triangular grid on the British Museum Great Court roof using the GSM. 2 

 

(a) Subdivision of the boundaries 

 

(b) Advancing the guide lines  

Fig. 41. Intermediate steps of grid generation using the 2G2VM on the British Museum Great Court 

roof. 
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 1 

Fig. 42. Quadrilateral grid on the British Museum Great Court roof using the 2G2VM 2 

The triangular grid pattern on the British Museum Great Court roof surface obtained using the 3 

GSM, pictured in Fig. 40, has somewhat similar features to the original design and shows very good 4 

fluency, although some irregularly sized and shaped cells exists along the diagonals near the 5 

corners. However, the rod length is more uniform in the GSM grid, due to the fact that the 6 

algorithm was developed specifically with rod uniformity in mind. Fig. 42 illustrates the 7 

quadrilateral grid generated using the 2G2VM. The fluency of the pattern and the uniformity of the 8 

rods are both very good, although some irregular cells are encountered along the boundary lines of 9 

the sub-surfaces. 10 

The mean value and the variance of the rod lengths were calculated for each of the three grid 11 

patterns and are compared in Table 3. While the mean values of the rod lengths are approximately 12 

the same, the variance of the rod lengths is reduced by 42% compared to the original grid when 13 

using the GSM. This again illustrates the advantage of the GSM in obtaining uniform grids. On the 14 

contrary, the quadrilateral grid generated using the 2G2VM is far less uniform than the original 15 

triangular grid.  16 

 17 
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 1 

Table 3. Mean value and variance of the rod lengths in three grids 2 

Grid generation method 
Mean value of rod lengths 

(mm) 

Variance of rod lengths  

(mm
2
) 

Original Mesh (triangular) 2047 207150 

GSM (triangular) 2032 120136 

2G2VM (quadrangular) 2126 464820 

 3 

8 Software Development 4 

Both presented grid generation methodologies (GSM and 2G2VM) were programmed into 5 

software called ‘ZD-Mesher’, specifically developed by the authors for the purpose of free-form 6 

grid generation. The software was developed for a Microsoft Windows operating system, using C++ 7 

and the IDE of Microsoft Visual Studio 2013. The GUI framework was based on MFC (Microsoft 8 

Foundation Classes). A screenshot of the GUI is shown in Fig. 43. 9 

 10 

Fig. 43. GUI of the ZD-Mesher software. 11 

The framework of the software is illustrated in Fig. 44. Apart from implementing the algorithms 12 

for grid generation, the software provides essential visualization and data exchange functions. It 13 

also provides commands assisting with sketching a curve on the surface, dividing a curve into 14 
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segments by number or by length and merging several curve sections into a single curve for further 1 

operations. The software is also able to exchange data with other commercial software packages as 2 

part of an integrated design process. Data formats such as IGES, STEP, BREP, and STL are supported. 3 

As a result, the software can communicate with almost any industrial CAD/CAM product. In 4 

addition, the software can export the geometric data to commercially available structural analysis 5 

packages such as ANSYS [27], ABAQUS [28] and SAP2000 [29].  6 

Core for Mesh generation

New grid generation 

algorithms (GSM, 2G2VM)

Data Structures

Visualization

Other CAD Systems & 

Structural Analysis Systems

(such as ANSYS [18], 

ABAQUS [19], SAP2000 

[20])

Data Output

Graphic User Interface 

modelling

Other CAD Systems

(formats such as 

IGES, STEP, BREP, 

STL)

Data Input

 7 

Fig. 44. Framework of the software. 8 

9 Conclusions 9 

The paper presents an efficient design tool for grid generation on a free-form surface. The 10 

proposed methods are based on the concept of a guide line, which allows an initial expression of 11 

architectural intent. The guide line is advanced over the surface by moving the endpoints, 12 

performing an affine transformation of the guide line and projecting it back onto the surface. Two 13 

variations are presented: the GSM, where a single guide line is used and the resulting curves are 14 

broken into segments, and the 2G2VM, where the grid is obtained as the intersection points of two 15 

sets of curves, each obtained by advancing a guide line. Consequently, the GSM yields triangular 16 

grids, while the 2G2VM results in quadrilateral grids (which optionally can be subdivided into a 17 

triangular grid). 18 
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Some practical case studies for both the GSM and 2G2VM are provided. The results indicate that 1 

a diverse range of constructible and visually expressive solutions can be obtained.  2 

While the presented research has focused on developing a fast and straightforward approach 3 

which achieves grids with rods of balanced length, further research will aim to improve the 4 

algorithms by: 5 

1)  considering the planarity of the grid cells and other construction constraints in the grid 6 

generation process [30]. The planarity of quadrilateral grid cells is important when fastening 7 

the covering panels to the main structure in order to prevent possible brittle failure of 8 

materials due to warping. 9 

2) giving the designer more freedom and flexibility by allowing the a variable advancing 10 

distance of the guide lines. 11 

 12 
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