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Performance Analysis of UAV Enabled Disaster Recovery Network: A
Stochastic Geometric Framework based on Matern Cluster Processes

Ali Mohammad Hayajneh, Syed Ali Raza Zaidi, Des C. McLernon and Mounir Ghogho

Abstract—Drones will be employed by Facebook and Google
for capacity off-loading in front/back hauling scenarios utilizing
drone-empowered autonomous heterogeneous networks. But in
another application, drone-based, post-disaster recovery of com-
munication networks will also be of crucial importance in the
design of future smart cities. So, in order to address the design
issues of these latter networks, we present (from a stochastic
geometric perspective) a comprehensive statistical framework for
the spatial distribution of these hybrid user-centric drone/micro
cellular networks. We introduce the novel idea of using a Ste-
nien’s cell (with variable radius) to model the region over which
the drones will be distributed and the drones will effectively form
a Matern cluster process (MCP) across the original network
space. We then employ this newly developed framework to
investigate the impact of changing several parameters on the
performance of the new drone small-cell clustered networks
(DSCCNs) and we develop appropriate closed-form expressions
that model the performance (later validated via Monte Carlo
simulations).

Index Terms—Drone, Public safety, Stochastic geometry, Un-
manned aerial vehicles, Coverage probability, Optimization, Het-
erogeneous networks.

I. INTRODUCTION

Drones, also called unmanned aerial vehicles (UAVs), will
have an important role to play in future communication
networks that includes public safety, capacity off-loading and
post-disaster recovery (to name but a few applications) [1]–[4].

A. Motivation and Related Work

Recently, public safety networking has received signifi-
cant attention within the third generation partnership project
(3GPP) standardization. 3GPP is currently in the process of
standardizing proximity services (ProSe) via Device-to-Device
(D2D) communication. The central idea behind ProSe is to
form an ad-hoc network where certain nodes of the network
may still have access to operational cellular infrastructure in
a post-disaster situation.

Despite the growing popularity of the aforementioned, drone
assisted networks present an attractive alternative and comple-
mentary deployment option. That is, drones can offer many
advantages to typical ad-hoc networks: (i) they presents fast
and resilient deployment; (ii) they can be controlled via a
centralized network operator to increase compatibility and
interoperability, and (iii) the propagation conditions are much
more favorable and can be further optimized by exploiting con-
trolled mobility of the drones. Here, we will focus on building
an analytical statistical framework to study the randomness of
the network by harnessing stochastic geometry tools in a user-
centric fashion in contrast to previous works [5]–[9].
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In our previous work in [6], we studied the coverage proba-
bility for a constrained recovery area where the destruction
is assumed to be in a small circular region of the space.
However, this is not the case for the performance of the whole
network space recovery. So we introduce the clustered-based
recovery network structure to show a whole network open
space scenario.

In order to define the framework for studying such net-
works, we will focus on cluster-based analytics and Stienen’s
model as an enhancement. Due to the implicit complexity of
heterogeneous communication networks, there is an emerging
research area employing and developing a more realistic
framework for the study of the network. User-centric network
distributions are widely adopted in the modeling of current het-
erogeneous networks [10], [11]. But the uniform homogeneous
Poisson point process (HPPP) that is used does not faithfully
represent the cellular network structure. Hence, cluster-based
analytics that correlate the user and base stations locations
have a better representation and more accurate performance
analysis. In particular, the Matern’s cluster process (MCP), as
an example of the Neman-Scott cluster processes, are widely
used for the representation of cluster-based distributions of
mobile users and base stations (BS). However, clustering in
the previous works comes from the physical distribution of
the users. But in our proposed network structure, clustering
will come from the recovery drone base stations (DBSs)
distributions which is correlated to the holes representing the
centers of the clusters constructed by the flying DBSs.

In addition to the correlation between the users and base
station locations, in post-disaster scenarios we need more
than one flying drone small cell (DSC) to off-load the same
capacity that has been carried by the destroyed traditional
base stations [6]. As a result, the distribution of these drones
around the center of the destruction area and inside of the
hole will form a cluster-based process, where the drones are
acting as a daughter points of a cluster process and the parent
points are the points from the traditional network due to the
uniform thinning (i.e., destruction of base stations). With this
re-configuration of the network, we simply build a drone-
based back/front-hauling network. However, the radius of the
recovery in every hole is not fixed and needs to be defined.
This is a result of the variable Voronoi cell size which in
fact has a Rayleigh distribution and is called a Stienen’s cell
radius [12], [13]. So, unlike other papers where the radius of
the cluster is fixed, we will use a variable cluster radius defined
by the Stienen’s model.

B. Contribution & Organization

The contribution and organization of this paper are as
follows:

1) The comprehensive spatial modeling of a drone-based
user-centric clustered public safety network is consid-
ered over a partially destructed/off-loaded cellular net-
work. The impact of various parameters such as path-
loss, number of DBSs, density of micro base stations



(MBSs) and the altitude of the DBSs on both the DSCN
and the cellular network coverage is investigated (see
section II).

2) Borrowing tools from stochastic geometry, we present a
statistical framework for quantifying the performance of
large scale DSCNs deployment for different scenarios of
the implementation geometry. Also, the analytical frame-
work is subsequently employed for design optimization
by studying the effect of changing some of the design
parameters.

3) The impact of the number of DBSs (and their height) on
the coverage probability performance metric for drone
mobile users (DMUs) is investigated (see section IV).

4) Finally, some critical design issues (explored for future
developments) are also summarized (see section VII).

C. Notation.

Throughout this paper, we employ the following mathe-
matical notations. The counting measure of a point process
Φ(B) provides a count of points inside the compact closed
subset B ∈ R

2 (i.e., bounded area). The probability density
function (PDF) for a random variable X is represented as
fX(x) with the cumulative density function written as FX(x).
The exclusion symbol \ represents the exclusion of a subset
from a superset. The expectation of a function g(X) of a
random variable X is represented as EX [g(X)]. The bold-face
lower case letters (e.g., x) are employed to denote a vector in
R

2 and∥x∥ is its Euclidean norm. The Laplace transform (LT)
of any random variable Z is LZ(s) (i.e., LT of the PDF of
the random variable).

II. NETWORK AND PROPAGATION MODEL

A. Deployment Geometry

Spatial Model for Post-disaster Cellular Network: Consider
a large scale macro-cellular network where the locations of
the BSs is modeled by a HPPP Φ = {x0,x1, ...,x∞, ∀ xi ∈
R

2} (as in [14]) with density λ. The post-disaster cellular
network is constructed by location independent thinning of Φ
with probability of thinning po. More specifically:

Φµ = {x ∈ Φ : 1(x) = 1} with density λµ = psλ, (1)

where 1(.) denotes a Bernoulli random variable. Notice that
the thinning process results in a new HPPP Φµ which has
density λµ such that λµ = (1− po)λ = psλ, where ps is the
BS survival probability. So, a new HPPP ΦS will result from
the thinning and the translation such that

ΦS = Φ \ Φµ, (2)

which has a density λS = poλ.

Network Model for DSCN: In order to fill the coverage
holes Nd DSCs are deployed as replacements for each
destructed BS in Φs. As Φs in the HPPP, such deployment
topology results in a Poisson cluster process. Then the union
of all the DSCs in the space around the parent Poisson
process ΦS with intensity λS forms a cluster process defined
as

ΦC
∆
=

∪

i∈{0,2,...,n−1}

{ΦCi
+ xi}, (3)

where ΦCi
is a cluster with Nd DCSs such that ΦCi

=
{y1, ...,yNd

, ∀ yi ∈ R
2} and n is the number of elements

in ΦS . Also, the clusters in ΦC , without loss of generality,

are divided into two sets of clusters: (i) the one called the
representative cluster which contains the set of all points

around x0 and is defined by ΦCin

∆
= ΦC0 , and (ii) the set of

all cluster process points except the points in the representative

cluster and is defined by ΦCout

∆
= ΦC \ ΦC0

1.
We assume that the DSCs are uniformly distributed around

each destroyed MBS thus forming the well known Matern’s
cluster process (MCP). In a MCP, a fixed number of points
(Nd) are distributed uniformly in the two dimensional space
according to the density function

fM (x) =
1

πσ2
M

, ∥x∥ ≤ σM , (4)

where σM is the radius of the cluster. Then the distribution
of the points around the cluster center follows the PDF
fMR (r) = 2r

σ2
M

. We introduce a modified Matern’s model where

the radius of the cluster is actually dependent upon the size
of the Stienen cell of the destroyed MBS. This is considered
a good approximation for the radius of the destroyed cell.
We also modify the traditional models of a Poisson cluster
processes to integrate the implicit size changing cells effect
for a more realistic recovery model. Thus, the distribution of
σM is considered to be the same distribution as the generalized
Stienen’s cell radius, i.e.,

fσM
(σM ) = 2πλτσM exp

(

−πλτ2σ2
M

)

. (5)

Here, setting the value of τ = 2 gives the distribution of
the radius of the maximum inscribed circle centered on the
position of the destroyed MBS and equal to half of the
distance to the nearest neighbor in the original tessellation
which is the well-known Stienen’s cell radius. Tunning the
value of τ will tune the radius of the recovery area where the
DBSs will be distributed.

Spatial Model for MUs: It is assumed that the distribution
of the users around the center of the clusters is the same as the
DBSs with the same density. This follows from the fact that
every DBS is associated to only one user in the same channel
resource block. Hence, we map ΦC 7→ ΦuC for the set of the
users around cluster centers with density λC 7→ Ndλ

u
C .

B. Propagation Model

Path Loss Model: Combining the LoS/NLoS losses and
LoS/NLoS probability as in [2], the total average path-loss
from MU to DBS can be quantified as:

l̄d(r) = κ̄−1(r)(r2 + h2)−1, (6)

where κ̄(r) = KNLoS + KLoS−KNLoS

1+a1 e−b1η tan−1(h
r

)+b1 a1
, KLoS and

KNLoS are environment and frequency dependent parameters

such that Ki = ζi
(

c/(4πfMHz)
)−α

, ζi is the excess path loss
for i ∈ {LoS,NLoS} and α is the path loss exponent which
is equal to 2 (as can be found in the literature of drone-based
small cell applications), a1, b1, c1 are environment dependent
constants, η = 180/π and h is the drone altitude. The large
scale path loss for the down-link of the cellular network is
modeled by the well-known power law path loss function

lµ(r) = K−1r−α, (7)

where α (the path loss exponent) has typical values for
small/micro cells between 2 and 4. K is the excess path loss

1We also write ΦCx
= ΦCi

to denote to the cluster around the parent
point xi ∈ ΦS .



coefficient and has typical values between 100 dB and 150 dB
(see [15] for details).

Small Scale Fading: It is assumed that large scale path loss
is complemented with small scale Rayleigh fading such that

|g|
2
∼ Exp(1). Also, it is assumed that the network is operating

in an interference limited regime, i.e., the performance of
all links is dependent upon co-channel interference and the
thermal noise at the receiver front-end is negligible.

C. Transmission Model

In this paper we assume that the DMU is associated to
nearest BS (i.e., the BS which maximizes average received
SNR) and transmitters on the same frequency are considered
as co-channel interferers. These out-of-cell interferers can be
classified into three categories: (i) the interference received
from MBSs working on the same channel as the serving DBS,
(ii) the interference from the set of DBSs located inside the
representative cluster and called “intra-cluster interferers”, and
(iii) the interferers from out of the representative cluster and
called “inter-cluster interferers”.

Lastly, we assume that the average number (N̄d) of co-
channel active DBSs inside any of the clusters has a Poisson
distribution which is also related to the number of channel
resources used (Nc) by N̄d =

Nd

Nc
.

III. DISTANCE DISTRIBUTIONS FOR MCP

In this section, we characterize link distance distributions
which are required to quantify the large scale path-loss given
by (6). These distributions are employed to quantify coverage
probability in section IV. We consider a typical user at location
∥x∥ = Vo from the center of the representative cluster and
served by the link to the nearest DBS with a distance R1 =
∥x− y1∥ where y1 represents the location of the nearest DBS.
Then to evaluate the distribution of the distance R1, we need to
make a random variable transformation and then apply order
statistics rules on the well-known distribution of the DBSs
distance R to cluster center which has the PDF:

fMR (r) =
2r

σ2
M

, 0 ≤ r ≤ σM , (8)

and CDF FMR (r) = r2

σ2
M

, 0 ≤ r ≤ σM
2. Then, by performing

a joint random variable transformation of fMR (r) such that

D(r, vo) =
√

v2o + r2 − 2vor cos(θ) where θ is the angle

between the lines R and Vo with the PDF fΘ(θ) =
1
2π , 0 ≤

θ ≤ 2π, the distribution of the distance D will have the PDF
(9) and the CDF can be easily obtained by integrating the PDF
[16]3.

Next, the distribution of the distance R1 = r1 from the
typical MU and the nearest DBS can be evaluated as in the
next proposition.

Proposition 1. The PDF of the distance R1 = r1 from the
typical user at a distance Vo from the cluster center to the
nearest DBSs for MCP can be evaluated as in (10) on the
next page.

Proof. Let Nd BSs be distributed uniformly inside a circle
of radius σM , Then the derivation of the nearest neighbor

2We also assume that the distance Vo = vo from the DMU to the cluster
center is a random variable with the PDF fM

Vo
(vo) =

2vo
σ2
M

, 0 ≤ vo ≤ σM .

3We use fM
R (r|vo) to represent the PDF of D with slight notation abuse.

distribution amongst the Nd DBSs follows the order statistics
using the fact that for general Nd i.i.d random variables
Zi ∈ {Z1, Z2, ..., ZNd

} with PDFs fZi
(z) ordered in ascend-

ing order. Then the PDF of Z1 = min
i
(Zi) can be written as

fZ1(z) = N
(

1− FZi
(z)

)N−1
fZi

(z) [17]. Then, by applying
this to (9), we can write the density of the distance R1 as

f
M
R1

(r1|vo, σM )=






fM

R
(1)
1

(r1|vo, σM ), 0 ≤ r1 ≤ σM − vo,

fM

R
(2)
1

(r1|vo, σM ), σM − vo < r1 ≤ σM + vo

(11)

where

f
M

R
(1)
1

(r1|vo, σM ) = Nd(1− F
M

R(1)(r1|vo, σM ))Nd−1
f
M

R(1)(r1|vo, σM )

(12)

f
M

R
(2)
1

(r1|vo, σM ) = Nd(1− F
M

R(2)(r|vo, σM ))Nd−1
f
M

R(2)(r1|vo, σM ).

(13)

�

Proposition 2. The distribution of distance Rx = rx from
the in-cluster DBSs interferers to the typical user located
at distance Vo from the cluster center (conditioned that the
nearest neighbor DBS is at distance R1 = r1 with the
distribution in (10)) can be written as

fMRx
(rx|vo, r1) =











2rx
σ2
M

−r21
, 0 ≤ rx ≤ σM − vo,

2rx
πσ2

M

arccos

(

r2x+v2
o−σ2

M
2vorx

)

1−ψ , σM − vo < rx ≤ σM + vo.

(14)

Proof. The proof of this is simple. Following from the fact
that the distance to the nearest interferer is larger than the
serving distance R1, then the area of circle formed by the
distance from the typical user and the serving DBS is truncated
from the whole area. Therefore, we can write the conditional
distribution of this event as follows:

fMRx
(rx|vo, σM , r1) = fMR (rx|vo, σM ), R > R1 = r1

=
fMR (rx|vo, σM )

1− FMR (r1|vo, σM )
. (15)

Hence, by substituting fMR (rx|vo, σM ) and its CDF, we com-
plete the proof of (14). �

Following from the above proposition, we can easily show
that the distribution of distances from the typical user at Vo
to the out-of-cluster interferers can be evaluated in the next
proposition.

Proposition 3. The PDF of the distance distribution from
the typical user at distance Vo from the cluster center to the
interfering DBSs from out of the representative cluster can be
written as

fMRo
(ro|u, σM ) = fMR (ro|u, σM ). (16)

Proof. The proof of this follows the same steps as for (9)
by doing the joint transformation for the uniformly chosen
DBS. �



f
M
R (r|vo, σM ) =







fM

R(1)(r|vo, σM ) = 2r
σ2
M

, 0 ≤ r ≤ σM − vo,

fM

R(2)(r|vo, σM ) = 2r
πσ2

M

arccos

(

r2+v2
o−σ2

M

2vor

)

, σM − vo < r ≤ σM + vo.
(9)

f
M
R1

(r1|vo, σM ) =







fM

R
(1)
1

(r1|vo, σM ) = 2Ndr1
σ2
M

(

1−
r21
σ2
M

)Nd−1

, 0 ≤ r1 ≤ σM − vo,

fM

R
(2)
1

(r1|vo, σM ) = 2Ndr1
πσ2

M

arccos

(

r21+v2
o−σ2

M

2vor1

)

(1− ψ)Nd−1
, σM − vo < r1 ≤ σM + vo.

(10)

where ψ =
r21

π σ2
M

(

θ11 − 1
2
sin

(

2 θ11

))

+ 1
π

(

θ12 − 1
2
sin

(

2 θ12

))

, θ11 = arccos

(

r1
2−σ2

M+vo

2vor1

)

and θ12 = arccos

(

−r1
2+σ2

M+vo

2voσM

)

.

IV. COVERAGE PROBABILITY

In order to characterize the link level performance of
DSCNs, we employ coverage probability as a metric. The
coverage probability of an arbitrary user is defined as the
probability at which the received signal to interference ratio
(SIRMs) is larger than a pre-defined threshold, β such that

PMs
c = Pr{SIRMs ≥ β}. (17)

Then, considering that both the DBSs and the MBSs networks
are sharing the same channel resources, SIRMs can be quan-
tified as,

SIRMs =
Pd |g|

2
l̄d(r1)

IΦCin
+ IΦCout

+ IΦµ

=
Pd |g|

2
l̄d(r1)

Itot
. (18)

where

IΦCin
=

∑

y∈ΦCin

Pd |g|
2

(

h2 +∥x0 + y∥2
)−1

κ̄
(
∥x0 + y∥

)

IΦCout
=

∑

x∈ΦS\x0

∑

y∈ΦCx

Pd |g|
2

(

h2 +∥x+ y∥2
)−1

κ̄
(
∥x+ y∥

)

IΦµ =
∑

x∈Φµ

Pµ |g|2 lµ(∥x∥). (19)

Here r1 represents the distance from the DMU to the nearest

DBS; |g|
2

is the channel power gain coefficient and it is
assumed to be the same for all the links; IΦCin

represents
the received interference from the DBSs in the representative
cluster; IΦCout

represents the received interference from the
co-channel DBSs concurrently transmitting with the consid-
ered representative link from out of the cluster; IΦµ

is the
interference received from the retained MBSs; and Pµ and Pd
are the transmit power for the MBS and DBS respectively.

In light of the above, the coverage probability can be
evaluated as

PMs
c = Pr{SIRMs ≥ β}

(a)
= Er1 [EItot [exp (−sItot)]],

(b)
= Er1 [LIΦCout

(s|r1, σM )LIΦCin

(s|r1, σM )LIΦµ
(s)],(20)

where s = β
(

r21 + h2
)

κ̄(r1)/Pd, (a) is obtained by averaging
over the channel coefficient and (b) is obtained by applying the
definition of the Laplace transform and then using the addition
property of the Laplace transformation of independent random
variables.

A. Coverage Probability for MCP

To complete the analysis of the coverage probability, we
need to quantify the Laplace transformations for the interfer-
ence at the typical DMU. In the next lemma, we introduce
the Laplace transform of the distribution of the in-cluster
interference for the MCP.

Lemma 1. The Laplace transform of the interference at the
DMU from the in-cluster DBSs for MCP can be evaluated as

LIΦCin

(s) =

Nd
∑

i=1





∫ ∞

r1

fMRx
(rx|vo, σM )

1 + sPd

κ̄(rx)(h2+r2x)

drx





i−1

ξ(i, Nd),

(21)

where ξ(i,Nd) = N̄ i
d exp(−N̄d)/i!Σ

Nd

k=1
N̄k

d exp(−N̄d)
k! .

Proof. Please refer to Appendix A. �

In order to complete the analysis of the coverage proba-
bility, we also need to derive the Laplace transform of the
interference from out-of-cluster DBSs - see Lemma 2.

Lemma 2. The Laplace transform of the interference distri-
bution at the DMU from out-of-cluster DBSs for MCP can be
evaluated as in (22).

Proof. Please refer to Appendix B. �

Now, we will relax the dependency between the drone
network parent points and the location of the retained base
stations to evaluate the Laplace transform of the interference
at the DMU from the surviving MBSs.

Lemma 3. The Laplace transform of the interference distri-
bution (at the drone typical user) from the retained MBSs with
density λµ = (1− po)λ can be approximated as follows:

LIΦµ

(s) = E(exp(−sIΦµ
))

(a)
= exp

(

− 2π
λµ
Nc

s−
2
αP

− 2
α

µ

K− 2
α sinc

(

2
α

)

)

.

(23)

Proof. The proof of this is straightforward from the Laplace
transform of the PPP where (a) is obtained by taking the
expectation over the fading channel coefficient assuming i.i.d
Rayleigh channels followed by the probability generating
functional (PGFL) of the PPP then followed by Cartesian to
polar transformation. �

In the next theorem, we evaluate the coverage probability
for a drone typical user with fixed recovery cell radius.



LIΦCout
(s) = exp

(

− 2πλS

∫ ∞

0

(

1− exp
(

−
Nd

Nc

∫ ∞

0

(

1−
1

1 + sPdκ̄(ro)(h2 + r2o)

)

f
M
Ro

(ro|u, σM ) dro
))

u du
)

. (22)

TABLE I: Simulation parameters.

Parameter Value Description

ζLoS , ζNLoS 1,20 dB Excess path loss
fMHz 900 MHz Carrier frequency

α 3.5 Path loss exponent
K 132 dB Excess path loss for micro cells

a1, b1 9.6, 0.28 Environment dependent constants

λ1 1× 10−5 Base stations density
Nc 3, 2 Available number of channels
Pd 2 dBW Drone cell transmission power
Pµ 5 dBW MBS cell transmission power

Theorem 4. The coverage probability of drone typical user
with fixed recovery cell radius σM can be evaluated for
Matern’s cluster processes as

PMs
c =

∞
∫

0

∞
∫

0

∞
∫

0

LIΦCout
(s)LIΦCin

(s)LIΦµ
(s)

×fMR1
(r1|vo, σM )fMVo

(vo)fσM
(σM ) dr1 dvo dσM . (24)

V. AREA SPECTRAL EFFICIENCY AND ENERGY

EFFICIENCY

Until now, we have studied the coverage probability as a
link level performance analysis. To cover the whole network
figures of performance, we need to study the Area Spectral
Efficiency (ASE) of the network in order to perform a network
level performance analysis. In this section we show analysis
of ASE for MCP.

Proposition 4. Given the coverage probability in (24), the
throughput (i.e., Area Spectral Efficiency) of the network for
the modified MCP can be evaluated as

TM = ASEM = λCNdNcP
Ms
c log2 (1 + β) . (25)

For a comprehensive study of the network, we also make
use of the term energy efficiency (Eeff ). The Eeff in general
can be evaluated as [18]:

Eeff =
Area Spectral Efficiency

Average Network Power Consumption
=

TM

λCNdPd

,(26)

=
NcP

Ms
c log2 (1 + β)

Pd

b/J/Hz. (27)

With the above expressions for the coverage probability and
energy efficiency, then we can study the performance of the
UAV assisted recovery networks. In the the next section, we
will show the results and present discussion of the proposed
model.

VI. RESULTS AND DISCUSSION

In this section, we show numerical results for the coverage
probability (PMs

c ) and the energy efficiency (Eeff )of drone-
based communication recovery network deployment. Further-
more, we assume that the DBCN is operating in an urban
environment with the parameters shown in Table I. Also, as
described in the previous sections, we consider a Rayleigh
fading wireless channel. The discussion will consider both of
these.
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Fig. 1: Coverage probability for arbitrarily chosen DMU for
Stenien’s recovery for MCP (see (24)). Original MBS and MU
densities is λ = 1 × 10−6. The destruction probability po =
0.1. α = 3.5. Nd = 5 and Pd/Pµ = 0.2.
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Fig. 2: Coverage probability for DMU. Original MBS and MU
densities is λ = 1×10−6, the destruction probability po = 0.1.
α = 3.5 and Pd/Pµ = {1, 2, 3, 4} × 10−2.

Figure 1 depicts the coverage probability against the altitude
of the drones for a MCP where the Stenien’s cell size is
deployed (see (24)). The coverage probability shows that for
a thinning probability of 0.1, where 5 drones are deployed
in every cluster, there is an optimal drone altitude which
is changing slightly alongside with the number of channels
deployed. For example, there is an altitude difference of 20m
when increasing the number of channels from 2 to 3. This
also increases the coverage probability. Also, the change of
coverage probability while changing the number of channels
is not fixed and we notice that it is increasing while increasing
the altitude of drones.

Figure 2 shows the coverage probability against the number
of drones per cluster for multiple configuration of transmit
power ratios for MCP where the Stenien’s cell size is deployed
(see (24)). The coverage probability curves show that, for
a fixed transmit power ratio, there is an optimal number of
drones at which the higher densification of the clusters will
not increase the coverage probability. For example, for the
configuration where the ratio Pd/Pµ = 1%, we need only 3
drones to achieve the optimal coverage. But, this cannot be
said without looking at the energy efficiency metrics. That
is, the densification of the of the network will increase the
throughput while the coverage will only slightly change.

Figure 3 shows the energy efficiency against the number of
drones per cluster for multiple configurations of the transmit
power ratios for MCP where the Stenien’s cell size is deployed
(see (26)). No optimal number of drones can be seen for the
energy efficiency. That is, as we increase the number of the
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Fig. 3: Energy efficiency for drone mobile user. Original MBS
is λ = 1×10−6, the destruction probability po = 0.1, α = 3.5,
and Pd/Pµ = {1, 2, 3, 4} × 10−2.

drones we increase the network throughput. Moreover, the
trend of the energy efficiency is to increase as we increase
the transmit power ratio.

VII. CONCLUSION

In this paper, we introduced a statistical and analytical
framework for evaluating the coverage probability and energy
efficiency performance metrics for cluster based drones en-
abled recovery networks. Results show that there are a number
of parameters which influence optimal deployment of the
recovery network: (i) number of drones in a cluster, (ii) drone
altitudes, (iii) transmission power ratio between drone base
stations and traditional base station and (iv) the recovery area
radius. Furthermore, it is also shown that by optimizing these
parameters the coverage probability and the energy efficiency
of a ground user can be significantly enhanced in a post-
disaster situation.

APPENDIX A
PROOF OF LEMMA 1

The Laplace transform of the interference from in-cluster
DBSs at a typical DMU can be evaluated as

LIΦCin
(s) = E

[

exp
(

− s
∑

y∈ΦCin

Pd |g|
2

(

h2 +∥x0 + y∥2
)−1

κ̄
(
∥x0 + y∥

)

)]

= E

[ ∏

y∈ΦCin

1

1 + sPd
1

κ̄(∥x0+y∥)(h2+∥x0+y∥2)

]

=

Nd∑

i=1





∫ ∞

0

1

1 + sPd

κ̄(∥x0+y∥)(h2+∥x0+y∥2)

f
M (y) dy





i−1

×
N̄ i

d exp(−N̄d)

i!Σ
Nd
k=1

N̄k
d

exp(−N̄d)

k!
︸ ︷︷ ︸

ξ(i,Nd)

=

Nd∑

i=1





∫ ∞

0

1

1 + sPd

κ̄(rx)(h2+r2x)

f
M
Rx

(rx|vo, r1) drx





i−1

×ξ(i, Nd). (28)

APPENDIX B
PROOF OF LEMMA 2

The Laplace transform of the interference from out-of-
cluster DBSs at a typical DMU can be evaluated as

LIΦCout
(s) =

E

[

exp
(

− s
∑

x∈ΦS\x0

∑

y∈ΦCx

PdG

(

h2 +∥x+ y∥2
)−1

κ̄
(
∥x+ y∥

)

)]

= EΦS

[ ∏

x∈ΦS\x0

EΦCx

[ ∏
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1

1 + sPd
(h2+∥x+y∥2)−1

κ̄(∥x+y∥)

]]

= exp
(

− 2πλS

∫ ∞

0

(

1− exp
(

−
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∫ ∞

0

×
(

1−
1

1 + sPd
1
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)

f
M
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(ro|u, σM ) dro
))

u du
)

.(29)
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