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Abstract. After surveying analyses of the 3D Euler equations using the Clebsch

potentials scattered over the literature, we report some preliminary new results.

1. Assuming that flow fields are free from nulls of the impulse and the vorticity

fields, we study how constraints imposed by the Clebsch potentials lead to a degenerate

geometrical structure, typically in the form of depletion of nonlinearity. We consider a

vorticity surface spanned by ω and another material vector W such that γ = ω×W ,

where γ is the impulse variable in geometric gauge. We identify dual mechanism

for geometric depletion and show that at least of one them is acting if W does not

develop a null. This suggests that formation of singularity in flows endowed with

Clebsch potentials is less likely to happen than in more general flows. Some arguments

are given towards exclusion of “type I” blowup. A mathematical challenge remains to

rule out singularity formation for flows which have Clebsch potentials everywhere.

2. We exploit classical differential geometry kinematically to write down the Gauss-

Weingarten equations for the vorticity surface of the Clebsch potential in terms of fluid

dynamical variables, as are the first, second and third fundamental forms. In particular,

we derive a constraint on the size of the Gaussian curvature near the point of a possible

singularity. On the other hand, an application of the Gauss-Bonnet theorem reveals

that the tangential curvature of the surface becomes large in the neighborhood of

near-singularity.

3. Using spatially-periodic flows with highly-symmetry, i.e. initial conditions of

the Taylor-Green vortex and the Kida-Pelz flow, we present explicit formulas of the

Clebsch potentials with exceptional singular surfaces where the Clebsch potentials are

undefined. This is done by connecting the known expressions with the solenoidal

impulse variable (i.e. the incompressible velocity) using suitable canonical transforms.

By a simple argument we show that they keep forming material separatrices under the

time evolution of the 3D Euler equations. We argue on this basis that a singularity, if

developed, will be associated with these exceptional material surfaces. The difficulty

of having Clebsch potentials globally on all of space have been with us for a long

time. The proposal rather seeks to turn the difficulty into an advantage by using their

absence to identify and locate possible singularities.

Keywords: 3D Euler equations, Clebsch potentials, geometric depletion, blowup,

differential geometry, curvatures



1. Introduction

The vortex stretching mechanism in inviscid fluids associated with the incompressible

3D Euler equations is not well understood. It poses serious difficulty in mathematical

handling of regularity issues. A possible formation of singularity leaves room for an

interesting physical interpretation in connection with the onset of turbulence. At the

moment, it seems a satisfactory mathematical treatment of the general incompressible

fluids seems very difficult. One way to alleviate the difficulty is to go for geometrically

simple flows and to try characterising them in some detail.

It is well-known that the vorticity plays a key role in the dynamics of the 3D

Euler equations [5]. In particular, the curvature of vortex lines play an important role

in controlling the regularity of the 3D Euler equations, see e.g. [18, 23]. Perhaps,

geometrically the simplest example of flows of non-zero vorticity is given by a class

of flows endowed with Clebsch potentials. In this class of flows, the vortex line is

represented by the intersections of two material surfaces, that is, the vortex line is

integrable. We may then ask how this stringent condition of integrability affects and

possibly constrains development of intense vortex stretching.

After reviewing known results on a class of flows with Clebsch potentials obtained

by many authors so far, we study how the vortex stretching process in 3D Euler flows

is constrained in this class of flows. In particular, we identify the dual mechanisms for

geometric depletion and classify scenarios based on alignment properties. Under certain

conditions we argue that it is unlikely for a type I blowup to develop.

Classical differential geometry of surfaces is exploited for the characterisation of the

vorticity surface. We derive a constraint on the size of Gaussian curvature of the vorticity

surface, while showing that the tangential curvature becomes large, if a singularity is to

develop.

We present specific examples of Clebsch potentials, in particular, for the Taylor-

Green and the Kida-Pelz flow. It is known that Clebsch potentials are unlikely to

be available near nulls of the impulse [28] and unavailable near generic vorticity nulls

[35]. Examples given here clarify that Clebsch potentials can have singularities at points

which are not even nulls of the impulse or the vorticity. Combining this recognition with

the above result, we propose to use the exceptional set of points to identify candidates

of (near-)singularities.

The rest of the paper is organised as follows. In Section 2, we survey known results

regarding Clebsch potentials. In Section 3, kinematics of Clebsch potentials is developed

and used to reveal two mechanisms of nonlinearity depletion. In Section 4, we derive a

set of equations for the vorticity surface and study its curvatures on the basis of classical

differential geometry. Finally, Section 5 is devoted to summary and outlook.



2. Basics elements of Clebsch potentials

We consider the incompressible 3D Euler equations with standard notations

Du

Dt
= −∇p, (1)

∇ · u = 0,

or equivalently the vorticity equations

Dω

Dt
= (ω · ∇)u, (2)

where u, p and ω denote the velocity, the pressure and the vorticity.

Yet another formulation of incompressible fluids is given by the impulse variable,

see e.g. [61]. In geometric gauge, it satisfies

Dγ

Dt
= −γ · (∇u)T , (3)

where T denotes matrix transpose. It is noted that equations (1), (2) and (3) are all

equivalent.

2.1. Fundamentals

In this and subsequent subsections, we summarise known facts about Clebsch potentials.

When we can write

u = f∇g −∇φ (4)

in a domain under consideration, we say that the flow has Clebsch potentials f and

g ‡ [16, 17]. This is possible at least locally, see [2, 64] or Appendix A. If Clebsch

potentials are available, we can take the impulse variable γ as

γ = f∇g. (5)

The vector field of this form was introduced and called “complex-lamellar” in connection

with the problem of magnetism [71]. See also [57, 31, 74].

It is possible to have (4) locally, but to have them in a domain, the Frobenius

condition of integrability should be satisfied. For a lucid exposition of the integrability

condition, see an appendix of [10]. Actually, care should be taken if nulls of the impulse

or the vorticity are present in the flow (see Subsection 2.3 below). In terms of γ, the

Frobenius condition is given by vanishing of ’helicity’ of γ in the flow [28]

γ · ∇ × γ = 0. (6)

‡ The potentials f, g,−φ are also called Monge potentials. Clebsch potentials are sometimes referred

to under the names of Euler, Darboux and Pfaff. [73]



See also [41] for an application of zero-helicity flows. The condition (6) is necessary, but

(only) nearly sufficient for (5) to hold. In other words,

γ = f∇g =⇒ γ · ∇ × γ = 0

holds true everywhere, but its converse

γ = f∇g ⇐= γ · ∇ × γ = 0

does not hold everywhere. Actually, there is an exceptional set of points, which is ’thin,’

i.e. of measure zero in all the examples considered in this paper. Nulls of γ or ω are

the candidates for such an exceptional set of points. It is expected that the converse

holds almost everywhere, but the author is unaware of its proof.

It is well known that
D

Dt
(γ · ∇ × γ) = 0,

hence the zero-helicity condition of γ persists under time evolution if it is so initially.

The vorticity can be written

ω = ∇× (f∇g) = ∇f ×∇g, (7)

and the helicity density

u · ω = −ω · ∇φ = −∂φ

∂u
,

where u is the arc-length parameter along the vortex line. It follows that

φ = −
∫

u · ωdu = −
∫

u · ω
ω · ∇θ

dθ,

where θ = F (u) is a parameter such that dx
du

= ω(x(u)), [16].

We recall that the choice of f, g are far from being unique, as they are determined

only up to canonical transformations, e.g. [43, 44, 25, 69]. More precisely, any pair of

functions F,G which satisfies
∂(F,G)

∂(f, g)
= 1

can equally play the same role. In fact, we can equivalently write

u = F∇G−∇Φ,

where

f =
∂S

∂g
, F = − ∂S

∂G
with Φ = φ− S(g,G).

Here S(g,G) is an arbitrary generating function associated with gauge freedom.

Finally, consider the contraposition f ↔ g in (7), which corresponds to ω → −ω.

By time-reversal, the Euler equations remain invariant under these changes.

The references on Clebsch potentials seem to be scattered over a range of

literature. Older references include [38, 24, 1, 4, 36, 66, 72, 60]. More recent ones

are [6, 40, 47, 76, 27, 62, 14, 42, 45, 54, 21, 75, 33]. Clebsch potentials appear in a

variational formulation of fluid dynamics. See e.g. [22, 9, 48, 65, 46, 63, 7] in this

context.



2.2. Truesdell’s formula

If ω(x, t) and one of the Clebsch potentials, say g(x, t), are given, it is possible to

construct the other one in a sufficiently small neighborhood as

f =

∫

C

c× ω · dx
c · ∇g

,

where C is a path lying entirely on the surface g = const and c is a constant vector such

that c · ∇g 6= 0 [73, 72]. (A minus sign in [73] should be removed.)

The derivation is straightforward, but is reproduced here for completeness. We

compute that

ω × c = (∇f ×∇g)× c = (c · ∇f)∇g − (c · ∇g)∇f,

and because dx lies on a surface g = const,

dx · (ω × c) = −(c · ∇g)dx · ∇f = −(c · ∇g)df.

When g is given by a material surface g(x, t) = G(a(x, t)), we can construct a

corresponding function F by

F =

∫

C′

c̃× ω(0) · da
c̃ · ∇aG

.

We have the identity
c× ω · dx
c · ∇g

=
(c · ∇a)× ω(0) · da

(c · ∇a) · ∇aG
,

whose numerator follows from the definition of Jacobian determinant and Cauchy

formula. By taking c̃ = c · ∇a, we find f(x, t) = F (a(x, t)), which shows that f

is also material.

2.3. No-go theorems

It is known when a null (that is, a zero) of the impulse variables is present, we do

not expect that Clebsch potentials are available in that neighborhood. An elementary

counter-example is reproduced here from p.96 of [28], after converting the differential

form notations to our current vectorial ones. We recall that if γ = f∇g with |γ| 6= 0,

∇×γ = ∇f ×∇g = ∇f × (f−1γ) = θ×γ, where θ ≡ ∇ ln |f |, because f 6= 0. Clearly,

γ · (∇× γ) = 0.

Consider γ = (−y, x, 0)T , which has a zero at the origin. The corresponding

form γ1dx + γ2dy = 0 has integral curves ax + by = 0, with constants a, b. It

is, however, impossible to choose θ in such a way that ∇ × γ = θ × γ. To see

this, note ∇ × γ = (0, 0, 2)T on one hand. We compute on the other hand that

θ × γ = (0, 0, Ax + By) for θ = (A,B, 0)T . Hence we deduce Ax + By = 2, which

fails at the origin. This is an example where Clebsch potentials are unavailable in the

neighborhood of a null of γ even in two dimensions.



It is also known that Clebsch potentials do not exist near generic null points of ω,

where generic means ’structurally stable’, that is, persistence under small perturbations

[35]. More precisely, by writing

ω = Mr +O(r2)

they have shown two things:

(1) If there are Clebsch potentials at a point, then det(M ) = 0,

(2) The vorticity generically vanishes at a point if and only if det(M ) 6= 0 there.

Combining these, they have proved Clebsch potentials do not exist near generic nulls of

vorticity. See also [34].

These facts are often interpreted as obstacles in utilising Clebsch potentials in fluid

mechanics. Here we will take an alternative view showing how we may possibly take

advantage of the absence of Clebsch potentials, by finding out the implications that it

entails.

3. Kinematics of Clebsch potentials

3.1. Preliminaries

We consider a point in space where γ and ω 6= 0. Given that

γ · ω ≡ 0,

we can choose a vector W such that

γ = ω ×W (8)

holds. Because γ represents a normal vector to a material surface (an infinitesimal area

element), W can be taken as a material vector (an infinitesimal line element) just as ω.

Note that W is a passive vector, whose evolution is affected by the velocity, but which

does not affect that of the velocity. In contrast, ω and γ are active vectors, because

they affect the evolution of velocity, e.g. through the Biot-Savart relationship.

Now consider a vorticity surface which is given by g = const. specified by two

parameters u and v (Figure 1). Let us parametrise ω and W on the vorticity surface as

∂x

∂u
= ω(x(u, v), t),

∂x

∂v
= W (x(u, v), t), (9)

where a pair of parameters (u, v) represents the vorticity surface in question. Note that
∂
∂u

= ω · ∇ and ∂
∂v

= W · ∇.

The vector W satisfies the equations for a passive vector defined by

DW

Dt
= (W · ∇)u, (10)

or
∂W

∂t
= (W · ∇)u− (u · ∇)W



= ∇× (u×W )− u(∇ ·W ),

where use has been made of an identity

∇× (u×W ) = (W · ∇)u− (u · ∇)W + u(∇ ·W )−W (∇ · u).

It follows that
∂

∂t
(∇ ·W ) + u · ∇(∇ ·W ) = 0,

that is,
D

Dt
∇ ·W = 0.

Hence we have ∇ · W = C(a) independent of time, where a is a Lagrangian marker

variable.

We check consistency of the above argument with ω = ∇× γ by computing that

ω = ∇× (ω ×W )

= (W · ∇)ω − (ω · ∇)W + ω(∇ ·W )−W (∇ · ω)

=
∂ω

∂v
− ∂W

∂u
+ ω(∇ ·W )

= C(a)ω.

The first two terms cancel because of (9) on the vorticity surface and∇·ω = 0. Therefore

C(a) = 1, or ∇ ·W = 1. Thus W is not incompressible, unlike ω.

3.2. Alignment and stretching

Consider the spectrum (λ1, λ2, λ3) of the rate-of-strain tensor S, corresponding to the

eigenvectors e1, e2, e3, whose eigenvalues satisfy λ1 ≥ λ2 ≥ λ3 and λ1+λ2+λ3 = 0. There

are two cases: (+,+,−) where λ1, λ2 ≥ 0, λ3 < 0 and (+,−,−) where λ1 ≥ 0, λ2, λ3 < 0.

We recall the stretching rates for ω and W [56] are defined by

α =
D

Dt
log |ω| = ω̂ · S · ω̂, αW =

D

Dt
log |W | = Ŵ · S · Ŵ ,

where ̂ denotes a unit vector, e.g. ω̂ = ω/|ω|. We also define the similar rates for ∇f

and ∇g by

αf =
D

Dt
log |∇f | = −∇̂f · S · ∇̂f, αg =

D

Dt
log |∇g| = −∇̂g · S · ∇̂g.

Growth of |ω| results from alignment with the eigenvector with a positive eigenvalue and

that of |∇f |, |∇g| results from alignment with the eigenvector with a negative eigenvalue.

Also, shrinkage of |W | results from alignment with the eigenvector with a negative

eigenvalue. For example, if ω tends to align with e2, the intermediate eigenvector of S,

the we have α → λ2.



For simplicity, we restrict our attention to the so-called type I blowup§ where

singularity forms with marginal rates allowed by the Beale-Kato-Majda (hereafter,

BKM) criterion [5].

3.3. Dual representations for geometric depletion

A mechanism of nonlinearity depletion was proposed in [54]. Schematically, it may be

explained as follows. The first one is based on (7).

Representation 1

ω︸︷︷︸
O





1

t∗ − t





= ∇f︸︷︷︸
O





1√
t∗ − t





× ∇g︸︷︷︸
O





1√
t∗ − t





line element = area element× area element

We recall that ω satisfies the same equations for a line element, whereas ∇f and

∇g those for an area element [61]. In the above expression, the minimal rate of blow-up

for the vorticity at t = t∗

‖ω‖L∞ = O

(
1

t∗ − t

)

is given by the BKM criterion [5], whereas those for scalar gradients ∇f and ∇g are

‖∇f‖L∞ , ‖∇g‖L∞ = O

(
1√

t∗ − t

)

given by [20].

It is clear that strength of singularity is balanced on both sides, provided that the

two vectors are not parallel ∇f ∦ ∇g. However, if ∇f and ∇g tend to align themselves

sufficiently fast, the possibility of a marginal blow-up leads to a contradiction and hence

can be ruled out. This is regarded as a possible mechanism of nonlinearity depletion.

[54]

We introduce yet another mechanism of geometric degeneracy,based on (8), which

is closely related to the above depletion.

Representation 2

γ︸︷︷︸
O





1√
t∗ − t





= ω︸︷︷︸
O





1

t∗ − t





× W︸︷︷︸
O(undetermined)

area element = line element× line element

This may be regarded as a dual to the above scheme in the sense that γ satisfies the

same equations for an area element, whereas ω and W those for a line element. Because

§ Strictly speaking, this is a slight abuse of terminology, because no differential inequality is available

for ‖ω‖L∞ , which is a critical norm.



W is a passive material vector, its minimal rate of blowup cannot be determined, unlike

the BKM criterion for the vorticity. The symbol O(undetermined) in the above diagram

stems from its passive nature.‖ We can only fix it, say, when it aligns with one of the

eigenvectors of S.

This alternative form of depletion is complementary to the Representation 1 above.

There are two kinds of possible depletion; one is the case where ∇f becomes parallel to

∇g, and the other case where ω becomes parallel to W . We will see below how they

are related to each other.

3.4. Analysis of dual mechanisms

By (7) we may derive a simple, but nevertheless useful identities as follows. We have

γ = ω ×W = (∇f ×∇g)×W

= (W · ∇f)∇g − (W · ∇g)∇f.

On the other hand, because of γ = f∇g, we find

W · ∇f = f, (11)

W · ∇g = 0, (12)

provided that ∇f ∦ ∇g and |∇f |, |∇g| 6= 0. Note that (11) is consistent with the fact

that f is material:
D

Dt
W · ∇f = W · ∇ D

Dt
f = 0,

which is an alternative form of commutation of W ·∇ and D/Dt, that is,
[
D
Dt
,W · ∇

]
=

0.

Let us denote the angle between ∇f and ∇g by θ1 and the angle between ω and

W by θ2, see Figure 1. We then have

| sin θ1| =
|ω|

|∇f ||∇g| =
|f ||ω|
|∇f ||γ|

by (7) and

| sin θ2| =
|γ|

|ω||W | .

by (8). Looking at these expressions separately, we cannot tell how θ1 or θ2 behaves

when |ω|, |γ|, |W | and |∇f | become large. However, it follows from their product that

| sin θ1 sin θ2| =
|f |

|W ||∇f | . (13)

‖ There is no way to show that e.g. the integral
∫ T

0
‖W ‖L∞dt bounds the Sobolev norms of the velocity

because of lack of the Biot-Savart formula, which is available for ω.



ω

u

g=const.

vW

f=const.

e

2

3
θ

θ

grad  fgrad  fgrad  f

1θ

=f grad gγ

Figure 1. The vorticity surface

g =constant, whose normal is γ is

parameterised by (u, v).

Now let θ3 be the angle between W and ∇f (Figure 1), we have by (11)

|f | = |W ||∇f || cos θ3|, (14)

and we thus conclude

|sin θ1 sin θ2| = | cos θ3|. (15)

The simple expressions (11, 12, 15) are the key results of this section. We will

discuss their implications below.

3.5. Classification and heuristic exclusion of type I blowup

Type I singularity, which may be the simplest possible scenario of blowup, has not

been excluded for the Euler equations. It has not been excluded for the Navier-Stokes

equations, except for the axisymmetric case.

We are in a position to constrain type I blowup on the basis of (15). The main idea

is to show that under this condition |∇f | → ∞, if |W | does not develop a null, then

θ3 → π/2 by (11). Therefore under the condition we deduce by (15) that either θ1 → 0

or θ2 → 0. More detailed classifications will go as follows.

(i) The case (+,+,−). We consider Representation 1, together with the alignment

property and the minimal rates of blowup.

ω = ∇f × ∇g

e1 or 2 e3 e3

O
(

1
t∗−t

)
O
(

1√
t∗−t

)
O
(

1√
t∗−t

)



Assuming that ∇f tends to align with ∇g sufficiently fast, that is, the angle θ1
between them approaching zero as (t∗ − t)p for some p > 0, we can rule out this

case. This can be done by contradiction because both sides are unbalanced.

(ii) The case (+,−,−). If we accept the numerical result that the vorticity aligns with

the intermediate rate-of-strain e.g. [3], this possibility can be discarded straight

away. Otherwise we can still argue as follows.

(a) If W does not develop a null |W | 9 0, then we have θ3 → π/2. There are two

possibilities.

1. θ1 → 0, that is, ∇f ‖ ∇g. We can rule this case out, if ∇f ‖ ∇g sufficiently

fast, as in (i).

2. θ2 → 0, that is, ω ‖ W . (See Subsection 3.7 on this possibility.) In this

case Representation 2 look like as follows. This case is not completely

γ = ω × W

e2 or 3 e1 e1

O
(

1√
t∗−t

)
O
(

1
t∗−t

)
O
(

1
t∗−t

)

ruled out, but it is possible only under very special circumstances where

the angle θ2 is closing as (t∗ − t)3/2. However, this seems to be a slim

possibility, as such a condition is too stringent.

(b) If W develops a null |W | → 0. In this case, the two Representations look

as follows. Note that we have inevitably W ‖ ∇f because γ and ∇g

γ = ω × W

e2 or 3 e1 e3 or 2

O
(

1√
t∗−t

)
O
(

1
t∗−t

)
O
(√

t∗ − t
)

ω = ∇f × ∇g

e1 e3 or 2 e2 or 3

O
(

1
t∗−t

)
O
(

1√
t∗−t

)
O
(

1√
t∗−t

)

are co-linear γ = f∇g. We can rule out this configuration in the sense

that it is not sustainable, i.e. inconsistent with the time evolution of the

Euler equations. (See the next Subsection 3.6.) Overall, this semi-empirical

arguments based on the alignment properties shows that type I blowup is less

likely to happen in flows with Clebsch potentials than in more general flows.

A mathematical challenge remains here to justify the heuristic arguments.

Differential geometric approach in the next section is a possible option.

3.6. Non-persistence of the state of maximal helicity

This subsection explains the reason why the option (ii)(b) is excluded.

Consider a passive material vector W and an area element A. We study whether

the state of maximal helicity W ‖ A persists under time evolution or not, on the basis

of alignment of dependent variable vectors. We have generally

D

Dt
W ×A = (V ·W )×A−W × (V T ·A),



where T denotes a matrix transpose. Assuming A = cW with a constant c, it can be

readily checked using standard calculations e.g.[53, 52, 32] that

D

Dt
W ×A = 2c(S ·W )×W .

This expression indeed vanishes when S ·W = λW for some λ to the leading-order and

the configuration is maintained. However, to the next-order it is easily verified that

D2

Dt2
(W ×A) = −2c(P ·W )×W −2c(Ω−S) ·Ω ·W ×W +2c(S ·W )×V ·W , (16)

whereΩ = 1
2

(
∇u− (∇u)T

)
denotes the vorticity tensor and P = (∇⊗∇)p the pressure

Hessian. The right-hand side of (16) does not vanish in general, even if we assume that

S · W = λW . This means that this configuration does not persist under the time

evolution of the 3D Euler equations.

3.7. A perfect alignment of two material vectors implies blowup

This is an additional remark on the alignment. It seems to be trivial, but apparently

its proof has not been given before. It can be proven by contradiction.

Consider two material vectors ω and W subject to a flow governed by the Euler

equations:
Dω

Dt
= (ω · ∇)u,

DW

Dt
= (W · ∇)u.

Assume that they are related by a linear transformation A at t = 0 such that

W (0) = A(0)ω(0).

Then, for

W (t) = A(t)ω(t) (17)

to hold at any t ≥ 0, it is necessary and sufficient that A satisfies

DA

Dt
= V A−AV , (18)

where V = ∇u is the velocity gradient. (This is a variant, i.e. a 3D generalisation of

an exercise given in [55].) The equation (18) can be solved as

A(t) = J(t)A(0)J(t)−1,

using the Jacobian matrix Jij(t) =
∂xi

∂aj
; i, j = 1, 2, 3, which obeys

DJ

Dt
= V J .



Now, assume that a perfect alignment ω ‖ W is established between ω and W at time

t = T . Then by (17), the matrix A is singular at that time, det(A(T )) = 0. However,

det(A(t)) = det(J(t)A(0)J(t)−1)

= det(J(t)) det(A(0)) det(J(t)−1)

= det(A(0)) 6= 0,

so long as the flow remains smooth. We conclude by contradiction that the flow is not

smooth at t = T .

It is clear that the same statement holds for two area element vectors, e.g. the

impulse γ and a passive area element A.

4. Differential geometric results

4.1. Fundamental equations

We consider the kinematics of vorticity surfaces in some detail. Using classical

differential geometry, we describe the vorticity surface spanned by xu = ω and xv = W ,

whose unit normal vector is given by e, e ≡ γ/|γ|, see e.g. [68, 59]. Note that this can

be written

e =
xu × xv

|xu × xv|
=

xu × xv√
EG− F 2

=
ω ×W

|ω ×W | ,

where E,F and G denote the coefficients of first fundamental forms, respectively.

We recall that first, second and third fundamental forms are defined by

I ≡ dx · dx = Edu2 + 2Fdudv +Gdv2,

II ≡ −dx · de = Ldu2 + 2Mdudv +Ndv2

and

III ≡ de · de = Ẽdu2 + 2F̃ dudv + G̃dv2,

where

E = xu · xu = |ω|2, F = xu · xv = ω ·W , G = xv · xv = |W |2,
L = xuu · e = ωu · e, M = xuv · e = ωv · e(= W u · e), N = xvv · e = W v · e,

and

Ẽ = e2
u, F̃ = eu · ev, G̃ = e2

v.

Note that Ẽ, F̃ and G̃ represent the first fundamental form on the unit sphere.

For the surface g = const., a set of equations for the surface called the Gauss-

Weingarten equations, which corresponds to Frenet-Serre formulas for space curves,

read ¶
∂ω

∂u
= Γu

uuω + Γv
uuW + Le, (19)

¶ Note that (ω,W , e) does not form an orthogonal basis, as opposed to yet another representation of

a surface by the so-called Darboux-Cartan moving frame. Here we use non-orthonormal basis as we

need to handle the material vector W , which is in general not orthogonal to ω.



∂ω

∂v
= Γu

uvω + Γv
uvW +Me, (20)

∂W

∂u
= Γu

vuω + Γv
vuW +Me, (21)

∂W

∂v
= Γu

vvω + Γv
vvW +Ne, (22)

∂e

∂u
=

FM −GL

EG− F 2
ω +

FL− EM

EG− F 2
W (23)

and
∂e

∂v
=

FN −GM

EG− F 2
ω +

FM − EN

EG− F 2
W . (24)

Note that equations (21) and (22) are equivalent. Here, Christoffel symbols are defined

by

Γu
uu =

GEu − 2FFu + FEv

2(EG− F 2)
, Γu

uv =
GEv − FGu

2(EG− F 2)
, Γu

vv =
2GFv −GGu − FGv

2(EG− F 2)
,

and

Γv
uu =

2EFu − EEv − FEu

2(EG− F 2)
, Γv

uv =
EGu − FEv

2(EG− F 2)
, Γv

vv =
EGv − 2FFv + FGu

2(EG− F 2)
.

In matrix notation, we can write

∂

∂u




ω

W

e


 =




Γu
uu Γv

uu L

Γu
vu Γv

vu M

FM −GL

EG− F 2

FL− EM

EG− F 2
0







ω

W

e


 (25)

and

∂

∂v




ω

W

e


 =




Γu
uv Γv

uv M

Γu
vv Γv

vv N

FN −GM

EG− F 2

FM − EN

EG− F 2
0







ω

W

e


 . (26)

This system of the Gauss-Weingarten equations are known to be over-complete; there are

15 scalar equations for 9 variables. Compatibility conditions yield the Coddazi-Mainardi

equations and the Gauss equation (Theorema Egregium for the Gaussian curvature,

Appendix C). The first 2 of the 6 compatibility conditions of Coddazi-Mainardi are

∂L

∂v
− ∂M

∂u
= LΓu

uv +M(Γv
uv − Γu

uu)−NΓv
uu (27)

and
∂M

∂v
− ∂N

∂u
= LΓu

vv +M(Γv
vv − Γu

uv)−NΓv
uv. (28)



4.2. Curvatures

We consider curvatures of the vorticity surface, see [68] for general descriptions. By the

Weingarten equations (23,24), we have

eu × ev =
(FM −GL)(FM − EN)− (FL− EM)(FN −GM)

(EG− F 2)2
xu × xv

=
LN −M2

EG− F 2
xu × xv

= Kxu × xv.

The normal curvature κn of the surface is defined by

κn = −dx · de
dx · dx =

II

I
,

Associated with it, we have the Gaussian curvature K defined by

K = κ1κ2 =
LN −M2

EG− F 2
=

e · (eu × ev)

|γ| =
1

|γ|4
[
(ωu · γ)(W v · γ)− (ωv · γ)2

]
, (29)

where κ1 and κ2 are principal curvatures. Note that ωv = W u by definition. Note also

that the behaviour of K is subject to geometric depletion; that is, even if |γ| → ∞ it is

ambiguous to see how K behaves from the expression (29). We will discuss its behaviour

below. The mean curvature m is defined by

m =
κ1 + κ2

2
=

EN +GL− 2FM

2(EG− F 2)
.

There is an identity between the Gaussian curvature K, the mean curvature m and

fundamental forms:

KI − 2mII + III = 0.

On the other hand, geodesic (that is, tangential) curvature is defined by [68]

κg = x′(s) · (x′′(s)× e)

=
[
Γv
uuu

′(s)3 + (2Γv
uv − Γu

uu)u
′(s)2v′(s) + (Γv

vv − 2Γu
uv)u

′(s)v′(s)2

−Γu
vvv

′(s)3 + u′(s)v′′(s)− u′′(s)v′(s)
]√

EG− F 2,

where s denotes the arc length along the curve on the surface. It is a bending invariant,

that is, determined solely in terms of the first fundamental form and its derivatives. We

also recall that the vortex line is a geodesic on the surface if and only if e (the normal

vector to the surface) and n (the normal vector of the vortex line) coincide. In that

special case we have κg = 0 along the vortex line. In fact, we will see that something

completely opposite happens if a singularity is to take place. To see this, we will derive

a constraint showing the magnitude of K cannot become very large.



Recall the definition of the Gaussian curvature by spherical image, which states

that

∆As =

√
ẼG̃− F̃ 2dudv,

‖
|K|∆A = |K|

√
EG− F 2dudv,

where ∆A and ∆As denote an area element on the surface and its spherical image,

respectively. It follows that

K = lim
∆A→0

∆As

∆A
=

√
ẼG̃− F̃ 2

√
EG− F 2

with the appropriate sign. Actually, it is known that

|K|
√
EG− F 2 =

√
ẼG̃− F̃ 2

holds generally [26, 29]. Because |γ| =
√
EG− F 2, we have

|K||γ| =
√

ẼG̃− F̃ 2.

Assume that we have a point-wise singularity in |γ| at t = t∗. Just before the

breakdown t = t∗ − ǫ (ǫ > 0), we deduce a constraint on the Gaussian curvature
∫

D

|K||γ|dudv ≤ 4π,

where D encloses the near-singular point. The integral can be made small by choosing

D sufficiently small. In particular, the Gaussian curvature tends to vanish K → 0 if the

Jacobian associated with the Gauss’s spherical image is bounded; 0 <
√

ẼG̃− F̃ 2 < ∞
at t = t∗ when |γ| → ∞.+ In this case the singular point is a parabolic point. Hence

if a singularity forms the vorticity surface locally looks like a plane L = M = N = 0,

or a parabolic cylinder with LN − M2 = 0 and L2 + M2 + N2 6= 0. If the Jacobian

associated with the Gauss’s spherical image becomes unbounded, we do not know how

K behaves point-wise. For a number of expressions for |K|, see Appendix D.

4.3. Application of Gauss-Bonnet theorem

We have derived a constraint on the size of the Gaussian curvature K, which is related

to the normal curvature. Here we ask what happens to the tangential curvature. By

applying the Gauss-Bonnet theorem just before t = t∗ using a small closed circuit C

around the singular point lying on the surface g =const, we find
∮

C

κgds+

∫∫

D

KdA = 2π.

+ With the standard parametrisation (θ, φ) of the unit sphere we can write
√

ẼG̃− F̃ 2dudv =

sin θdθdφ, Hence
√

ẼG̃− F̃ 2 = | sin θ|
∣∣∣∂(θ,φ)∂(u,v)

∣∣∣ ≤
∣∣∣∂(θ,φ)∂(u,v)

∣∣∣ , which is bounded if ∂(u,v)
∂(θ,φ) 6= 0.



g=const.

C

*

ω

Figure 2. Application of the

Gauss-Bonnet theorem to the vor-

ticity surface. A closed circuit C

encloses a near-singularity denoted

by a star.

The second term
∫∫

D
KdA =

∫∫
D′

dAs on the left-hand side can be made 6= 2π, where

D′ is the spherical image of D. This term can be made as small as wish by choosing D

sufficiently small and we have ∮

C

κgds ≈ 2π.

Because the arc length around C is also short, |κg| must be very large in the

neighborhood of the near-singularity. Recall that the geodesic curvature κg measures the

curvature of a vortex line lying on the surface. This is consistent with previous works,

which state that the curvature of a vortex line must behave wildly for a singularity to

develop [19, 18].

5. Specific examples

5.1. Expressions for Clebsch potentials

So far we have been considering flows which have Clebsch potentials defined everywhere.

This may be possible for flows in whole space, but not those under periodic boundary

conditions. Indeed, some flows under periodic boundaries have Clebsch potentials

with singularities; e.g. the Kida-Pelz flow and the Taylor-Green vortex. We will

explore explicit formulas for them to identify an exceptional set of points where Clebsch

potentials are absent.

It should be noted that the Taylor-Green vortex and the Kida-Pelz flow belong to

the class of high-symmetric flows. Apparently, demanding even higher symmetry would

trivialise the dynamics resulting in Beltrami types of steady flows, e.g. [8]. For general

investigations on the Kida-Pelz flow, see[11, 12, 15].

The Taylor-Green vortex



The initial velocity field [70, 13] reads

u =




sin x cos y cos z

cos x sin y cos z

0




and the following form of potentials have been found in [51]

{
f =

√
2 cosx

√
cos z,

g =
√
2 cos y

√
cos z.

They have mild singularities at the boundary z = π/2, that is, they are continuous but

not differentiable. See Appendix B.

The Kida-Pelz flow

The initial velocity and the vorticity fields in a box of 0 ≤ x, y, z ≤ π/2 read

u =




sin x(cos 3y cos z − cos y cos 3z)

sin y(cos 3z cos x− cos z cos 3x)

sin z(cos 3x cos y − cos x cos 3y)




and

ω =




−2 cos 3x sin y sin z + 3 cosx(sin 3y sin z + sin y sin 3z)

−2 cos 3y sin z sin x+ 3 cos y(sin 3z sin x+ sin z sin 3x)

−2 cos 3z sin x sin y + 3 cos z(sin 3x sin y + sin x sin 3y)


 .

It can be checked, with the help of computer algebra, that the Frobenius condition holds

u · ω ≡ 0

and the Kida-Pelz flow has Clebsch potentials in some domain. Here we show two

examples of the impulse variable γ which is not solenoidal. Their derivations and those

of the solenoidal counterparts are given in Appendices B and C.

The first example of Clebsch potentials reads∗




f = 2
(cos x)3/2(cos2 y − cos2 z)

(cos y cos z)1/2
,

g = 2
(cos y)3/2(cos2 z − cos2 x)

(cos z cos x)1/2
,

h = 2
(cos z)3/2(cos2 x− cos2 y)

(cos x cos y)1/2
,

where only two of them are independent. See Appendix A for the derivations. We can

confirm that

ω = ∇f ×∇g

∗ The denominator of f , (cos y cosx)1/2 in [54], should read (cos y cos z)1/2 as presented here.



holds. For this choice, the components of γ = f∇g are





γ1 =
2 sin x cos y(3 cos2 x+ cos2 z)(cos2 y − cos2 z)

cos z
,

γ2 =
6 cosx sin y(cos2 x− cos2 z)(cos2 y − cos2 z)

cos z
,

γ3 =
−2 cosx cos y sin z(3 cos2 z + cos2 x)(cos2 y − cos2 z)

cos2 z
.

Note that ∇ · γ 6= 0. In fact, we need

φ = 2 cos x cos y cos z(cos2 x+ cos2 y − cos2 z)− 2 cos3 x cos3 y

cos z

for a solenoidal projection u = γ −∇φ.

The second example is





f̃ =
cos2 y(cos2 z − cos2 x)

cos2 z(cos2 y − cos2 x)
,

g̃ =
cos2 z(cos2 x− cos2 y)

cos2 x(cos2 z − cos2 y)
,

h̃ =
cos2 x(cos2 y − cos2 z)

cos2 y(cos2 x− cos2 z)
.

If we define by using the first example

h′ = −2
(cos z)3(cos2 x− cos2 y)2

cosx cos y
,

then we have γ = f̃∇h′ = u+∇φ. The components of γ are





γ1 =
2 sin x cos y cos z(3 cos2 x+ cos2 y)(cos2 x− cos2 z)

cos2 x
,

γ2 = −2 sin y cos z(3 cos2 y + cos2 x)(cos2 x− cos2 z)

cosx
,

γ3 = −6 cos y sin z(cos2 x− cos2 z)(cos2 y − cos2 x)

cos x
,

with

φ = 2 cos x cos y cos z(cos2 y + cos2 z − cos2 x)− 2 cos3 y cos3 z

cos x
.

A comment may be in order. As already mentioned, the result of [35] states that

near generic vorticity nulls, there are singularities in Clebsch potentials. It should be

noted that its converse does not hold, that is, Clebsch potentials can have singularities

near a point which is not a generic vorticity null. In fact, there are singular points which

are not even vorticity nulls.



For example, consider the expression of the first kind. At z = π/2, clearly f does

not exist. There we compute that




ω1 = 4 cos x sin y(−2 cos2 x+ 3 cos2 y),

ω2 = 4 cos y sin x(−2 cos2 y + 3 cos2 x),

ω3 = 0.

It is readily seen that on the plane z = π/2, ω 6= 0 except at (x, y, z) =

(0, 0, π/2), (π/2, π/2, π/2). This shows that the set of points where Clebsch potentials

is unavailable are not restricted to vorticity nulls.

On the plane z = π/2, the velocity is




u1 = 0,

u2 = 0,

u3 = cos 3x cos y − cos x cos 3y,

and not all the points on the plane are stagnation points. The fluid particles initially

on the plane start moving under the evolution of 3D Euler equations. Also, these

singularities cannot be eliminated by canonical transformations; see the examples in

Appendix C.

5.2. Exceptional set as separatrices

In the above examples, we have seen that the Clebsch potentials are not defined

everywhere, but there are exceptional points at which they have singularities. It seems

that the difficulty of having Clebsch potentials everywhere is regarded as a serious

obstacle in their practical applications. Here, after characterising the nature of the

singular sets, we propose to take advantage of their singularities to identify fluid particles

associated with potential blowup.

Let us define a singular set of points Σ by

Σ = {x|f(x, y, z) or g(x, y, z) is undefined or zero}

and consider the following decomposition of the whole space as follows

R3 = Σ ∪ (R3 \ Σ).

In all the examples we came across, Σ is “thin” and they take the form of vorticity

surfaces (sets of measure zero).

First, consider a snapshot of a smooth vorticity field at an instant of time. By

definition, vortex lines starting from x ∈ Σ will remain there. Then vortex lines starting

from x ∈ R3\Σ cannot enter Σ. Therefore the singular set Σ defines a set of separatrices.

Second, consider the dynamics of the 3D Euler equations. Under their time

evolution, the Helmholtz theorem [37] state that vortex lines are material and they

maintain their identity as such; fluid particles associated with vortex lines in Σ may

move in physical x-space, but they stay put in material a-space.



Alternatively we may argue as follows. Because Clebsch potentials are material at

points where they are defined
Df

Dt
=

Dg

Dt
= 0

and the exceptional set of points of measure zero are also material, as a complement

of sets of regular points. (Actually they are vorticity surfaces and hence inevitably

material.) The separatrices are material; they keep comprising the same set of fluid

particles.

We have seen in previous sections that flows with Clebsch potentials are subject to

severe geometric constraints and given some arguments toward excluding type I blowup.

Because such an argument cannot be applied to the exceptional set Σ, we are led to

infer that if a singularity develops, it is most likely to be associated with Σ.

For the Kida-Pelz flow, the separatrices include at least

Σ =
{
x ∈ [0, π/2]3 |x = π/2, y = π/2, z = π/2, x = y, y = z, z = x

}

whereas for the Taylor-Green vortex

Σ =
{
x ∈ [0, π/2]3 |x = π/2, y = π/2, z = π/2

}
,

see Appendix C. We propose to use Σ as an indicator to locale possible singularity

formation. It may be of interest to examine how the vorticity surfaces Σ evolve in time

by numerical experiments.

6. Summary and outlook

A basic formulation of the 3D Euler equations based on Clebsch potentials is presented.

We have studied how Clebsch potentials impose severe constraints on the vortex

stretching mechanism in 3D Euler flows.

One result have come from the simple formula

W · ∇f = f,

when when the right-hand side is not a null f 6= 0. This enforces W to be perpendicular

to ∇f, triggering one of the geometric depletions ω = ∇f ×∇g or γ = ω×W coming

into play. Strictly speaking, even for type I singularity blowup has not yet been ruled

out completely, but we have argued that it is unlikely.

A simple analysis based on classical differential geometry of surfaces we have

obtained the expression

|K||γ| =
√

ẼG̃− F̃ 2,

where the right-hand side is the Jacobian associated with the spherical image. An

immediate consequence is that the curvature tends to vanish upon singularity if the

Jacobian is bounded. This also impose a constraint on the size of the Gauss curvature



of the vortex surface. The Gauss-Bonnet theorem in turn shows that it is the tangential

curvature that must go wild upon singularity.

Specific examples of Clebsch potentials are presented using initial conditions of

high-symmetric flows. They show that there are exceptional sets of points (of measure

zero) which can be regarded as separatrices. We have seen above that in some domain

where Clebsch potentials are well-defined singularities are unlikely to show up. We

thus infer if singularities develop they are likely to be located in the neighborhood of

separatrices.

A few remarks may be in order on a related formulation. The equation for the

vortex line parameterised by u is given by

dx

du
= ω(x(u)) = ∇f ×∇g.

For arbitrary function F (x) defined along the vortex line, we have more generally

dF (x)

du
= ω · ∇F = (∇f ×∇g) · ∇F =

∂(F, f, g)

∂(x, y, z)

This is known as Nambu’s generalised Hamiltonian form [49, 50]. In particular, taking

F = φ, we recover
∂φ

∂u
=

∂(φ, f, g)

∂(x, y, z)
= −u · ω.

It may be of interest to combine such a formulation with the differential geometric

approach outlined here.

It is of interest to tracing the Clebsch potentials in time e.g. in the Kida-Pelz flow

by numerical simulations. Of particular interest is to check how the material separatrices

behave in connection with possible singularity or near-singularity.

Appendix A. Elementary theorems in vectorial analysis [2, 64]

Theorem 1 If ∇ · a = 0, then there exists a vector A such that

a = ∇×A,

or, alternatively there exist scalars λ and µ such that

a = ∇× (λ∇µ).

In this case, we can write A = λ∇µ−∇φ with some scalar φ.

For our purpose, we take a = ω.

Theorem 2 If a · (∇× a) ≡ 0, there exist scalars λ and φ such that

a = λ∇φ.

For our purpose, we take a = γ.



It should be noted that standard proofs, e.g. those found in [2, 64], make use of

an expression µa = ∇φ, which assumes tacitly that λ 6= 0. In our context in (5), the

statement can (and does) break down in the neighborhood of a null point of f = 0. This

explains, at least partially, why the singular sets of Clebsch potentials have not been

given proper attention so far.

Appendix B. Derivations of Clebsch potentials for the Kida-Pelz flow

We consider the Kida-Pelz flow in 0 ≤ x, y, z ≤ π/2.

The equations for vortex lines

dx

ω1

=
dy

ω2

=
dz

ω3

take the following form

tan x dx

2 cos2 x− 3 cos2 y − 3 cos2 z
=

tan y dy

2 cos2 y − 3 cos2 z − 3 cos2 x

=
tan z dz

2 cos2 z − 3 cos2 x− 3 cos2 y
.

By introducing new variables

ξ = cos2 x, η = cos2 y, ζ = cos2 z

we may write

dξ

ξ (2ξ − 3(η + ζ))
=

dη

η (2η − 3(ζ + ξ))
=

dζ

ζ (2ζ − 3(ξ + η))
,

or
dη

dξ
=

η (2η − 3(ζ + ξ))

ξ (2ξ − 3(η + ζ))
,
dζ

dξ
=

ζ (2ζ − 3(ξ + η))

ξ (2ξ − 3(η + ζ))
.

By setting Y = η/ξ, Z = ζ/ξ, we have

ξ
dY

dξ
=

5Y (Y − 1)

2− 3(Y + Z)
, (B.1)

ξ
dZ

dξ
=

5Z(Z − 1)

2− 3(Y + Z)
. (B.2)

From these we find
dZ

dY
=

Z(Z − 1)

Y (Y − 1)

which is integrated to give a first integral

Z − 1

Z

Y

Y − 1
= C,



or
cos2 y

cos2 z

cos2 z − cos2 x

cos2 y − cos2 x
= C. (B.3)

Substituting Z =
Y

(1− C)Y + C
into (B.2), we find

dξ

ξ
=

1

5

3(1− C)Y 2 + (1 + 5C)Y + 2C

Y (Y − 1)(C − 1)Y − C
dY.

Integrating, we get

log |ξ| = −2

5
log |Y | − 4

5
log |Y − 1|+ 3

5
log | − Y + Y C − C|+ C ′,

or

ξ = C ′′ |(C − 1)Y − C|3/5
Y 2/5(Y − 1)4/5

= C ′′ |Y
Z
|3/5

Y 2/5(Y − 1)4/5
,

where C ′′ = eC
′

. It follows that

(η − ξ)4ζ3

ξη
= C ′′,

that is,
(cos z)6(cos2 x− cos2 y)4

(cos x cos y)2
= C ′. (B.4)

Similarly, we obtain two other integrals.

We make use of (B.4) for the first example. We set tentatively





f =
(cos x)3(cos2 y − cos2 z)2

cos y cos z
,

g =
(cos y)3(cos2 z − cos2 x)2

cos z cosx
,

h =
(cos z)3(cos2 x− cos2 y)2

cos x cos y

and we consider

∇fn ×∇gn = n2(fg)n−1∇f ×∇g,

because if f is material, so is fn. By demanding that

|ω|
(fg)n−1|∇f ×∇g| = const,

we find n = 1/2 and const = 1. By redefining 2f 1/2 → f and 2g1/2 → g, we obtain the

first example.



Making use of (B.3), we set for the second example





f̃ =
cos2 y(cos2 z − cos2 x)

cos2 z(cos2 y − cos2 x)
,

g̃ =
cos2 z(cos2 x− cos2 y)

cos2 x(cos2 z − cos2 y)
,

h̃ =
cos2 x(cos2 y − cos2 z)

cos2 y(cos2 x− cos2 z)
.

It can be checked that they are not independent, that is, ∇f̃ ×∇g̃ ≡ 0 etc. but if the

first example is used, we have e.g. ∇f̃ ×∇h = −1
2
ω. By defining

h′ = −2
(cos z)3(cos2 x− cos2 y)2

cosx cos y
,

we can write

ω = ∇f̃ ×∇h′.

Appendix C. Canonical transformations

We present solenoidal counterparts of γ, i.e. the incompressible velocity u based on

an application of canonical transformations. We keep writing f, g, φ to denote non-

solenoidal potentials described above and consider

f =
∂S

∂g
, F = − ∂S

∂G
with Φ = φ− S(g,G),

to generate new potentials

u = F∇G−∇Φ = f∇g −∇φ.

As noted in Section 1, all the Clebsch potentials related by canonical

transformations are equivalent. Singular points and nulls observed in a particular choice

of potentials cannot be eliminated by such a transformation. Hence the separatrices Σ

include the union of singularities of f or g, and zeros of f or g.

The Taylor-Green vortex

The original non-solenoidal potentials are




f =
√
2 cosx

√
cos z,

g =
√
2 cos y

√
cos z,

φ = cosx cos y cos z(= fg/2).

The expressions f and g were given by [51], whereas the form of Φ is determined by

∇ · u = 0. By choosing a generating function

S(g,G) =
g2

2G
,



we find 



F = cos2 x cos z,

G =
cos y

cos x
,

Φ = 0.

The exceptional set for the Taylor-Green vortex is obtained as a union of singularities

and zeros of f, g, F and G.

Σ =
{
x
∣∣∣x =

π

2
, y =

π

2
, z =

π

2

}
,

that is, separatrices include those points.

The Kida-Pelz flow: example 1

The original choice is





f = 2
(cos x)3/2(cos2 y − cos2 z)

(cos y cos z)1/2
,

g = 2
(cos y)3/2(cos2 z − cos2 x)

(cos z cos x)1/2
,

φ = 2 cos x cos y cos z(cos2 x+ cos2 y − cos2 z)− 2 cos3 x cos3 y

cos z

(
= 1

2
fg

)

By choosing

S(g,G) = − g2

2G
,

we find 



F = −2
(cosx)3(cos2 y − cos2 z)2

cos y cos z
,

G =
cos2 y(cos2 x− cos2 z)

cos2 x(cos2 y − cos2 z)
,

Φ = 0.

The Kida-Pelz flow: example 2

The original choice is





f =
cos2 y(cos2 z − cos2 x)

cos2 z(cos2 y − cos2 x)
,

g = −2
(cos z)3(cos2 x− cos2 y)2

cos x cos y
,

φ = 2 cos x cos y cos z(cos2 y + cos2 z − cos2 x)− 2 cos3 y cos3 z

cos x
(= fg.)

By choosing

S(g,G) =
g

G
,



we find 



F = −2
(cos y)3(cos2 z − cos2 x)2

cos z cos x
,

G =
cos2 z(cos2 y − cos2 x)

cos2 y(cos2 z − cos2 x)
,

Φ = 0.

The exceptional set for the Kida-Pelz flow is

Σ =
{
x
∣∣∣x =

π

2
, y =

π

2
, z =

π

2
, x = y, y = z, z = x

}
,

that is, separatrices include those points.

Appendix D. Gauss’s Theorema Egregium

The Jacobian associated with Gauss’s spherical image is given by
√

ẼG̃− F̃ 2 = H|K|,
where H ≡

√
EG− F 2. Theorema Egregium allows explicit formulas for K. Gauss’s

original expression is lengthy [30]:

4H4K = E

[
∂E

∂v

∂G

∂v
− 2

∂F

∂u

∂G

∂v
+

(
∂G

∂u

)2
]
+F

[
∂E

∂u

∂G

∂v
− ∂E

∂v

∂G

∂u
− 2

∂E

∂v

∂F

∂v
− 2

∂F

∂u

∂G

∂u
+ 4

∂F

∂u

∂F

∂v

]

+G

[
∂E

∂u

∂G

∂u
− 2

∂E

∂u

∂F

∂v
+

(
∂E

∂v

)2
]
− 2H2

[
∂2E

∂v2
− 2

∂2F

∂u∂v
+

∂2G

∂u2

]
.

There are a number of alternative forms, such as Liouville’s [68]

K =
1

H

[
∂

∂v

(
H

E
Γv
uu

)
− ∂

∂u

(
H

E
Γv
uv

)]
=

1

H

[
∂

∂u

(
H

E
Γu
vv

)
− ∂

∂v

(
H

E
Γu
uv

)]
,

its variant [67]

K =
1

2H

[
∂

∂u

(
FEv − EGu

EH

)
+

∂

∂u

(
2EFu − FEu − EEv

EH

)]
,

and Frobenius’s [68]

K = − 1

H4

∣∣∣∣∣∣∣

E F G

Eu Fu Gu

Ev Fv Gv

∣∣∣∣∣∣∣
− 1

2H

[
∂

∂u

(
Gu − Fv

H

)
− ∂

∂v

(
Fu − Ev

H

)]
.
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