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Abstract
As a natural extension of the SAT problem, an array of proof systems for quantified Boolean
formulas (QBF) have been proposed, many of which extend a propositional proof system to handle
universal quantification. By formalising the construction of the QBF proof system obtained from
a propositional proof system by adding universal reduction (Beyersdorff, Bonacina & Chew,
ITCS ‘16), we present a new technique for proving proof-size lower bounds in these systems.
The technique relies only on two semantic measures: the cost of a QBF, and the capacity of
a proof. By examining the capacity of proofs in several QBF systems, we are able to use the
technique to obtain lower bounds based on cost alone. As applications of the technique, we first
prove exponential lower bounds for a new family of simple QBFs representing equality. The main
application is in proving exponential lower bounds with high probability for a class of randomly
generated QBFs, the first ‘genuine’ lower bounds of this kind, which apply to the QBF analogues
of resolution, Cutting Planes, and Polynomial Calculus. Finally, we employ the technique to give
a simple proof of hardness for the prominent formulas of Kleine Büning, Karpinski and Flögel.
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1 Introduction

The central question in proof complexity can be stated as follows: Given a logical theory
and a provable theorem, what is the size of the shortest proof? This question bears tight
connections to central problems in computational complexity [19, 25] and bounded arithmetic
[42, 24].

Proof complexity is intrinsically linked to recent noteworthy innovations in solving, owing
to the fact that any decision procedure implicitly defines a proof system for the underlying
language. Relating the two fields in this way is illuminating for the practitioner; proof-size
and proof-space lower bounds correspond directly to best-case running time and memory
consumption for the corresponding solver. Indeed, proof complexity theory has become
the main driver for the asymptotic comparison of solving implementations. However, in
line with neighbouring fields (such as computational complexity), it is the central task of
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demonstrating lower bounds, and of developing general methods for showing such results,
that proves most challenging for theoreticians.

The desire for general techniques derives from the exceptional strength of modern im-
plementations. Cutting-edge advances in solving, spearheaded by unparalleled progress in
Boolean satisfiability (SAT), appear to provide a means for the efficient solution of com-
putationally hard problems [54]. Contemporary SAT solvers routinely dispatch instances
in millions of clauses [43], and are effectively employed as NP-oracles in more complex
settings [44]. The state-of-the-art procedure is based on a propositional proof system called
resolution, operating on conjunctive normal form (CNF) instances using a technique known
as conflict-driven clause learning (CDCL) [50]. Besides furthering the intense study of
resolution and its fragments [19], the evident success has inevitably pushed research frontiers
beyond the NP-completeness of Boolean satisfiability.

1.1 Beyond propositional satisfiability
A case in point is the logic of quantified Boolean formulas (QBF), a theoretically important
class that forms the prototypical PSPACE-complete language [53]. QBF extends proposi-
tional logic with existential and universal quantification, and consequently offers succinct
encodings of concrete problems from conformant planning [48, 30, 20], ontological reasoning
[40], and formal verification [6], amongst other areas [28, 17, 52]. There is a large body of
work on practical QBF solving, and the relative complexities of the associated resolution-type
proof systems are well understood [2, 10, 37].

The semantics of QBF has a neat interpretation as a two-player evaluation game. Given a
QBF Q ·φ, the ∃- and ∀-players take turns to assign the existential and universal variables of
the formula following the order of the quantifier prefix Q. When all variables are assigned, the
∃-player wins if the propositional formula φ is satisfied; otherwise, the ∀-player takes the win.
A folklore result states that a QBF is false if and only if the ∀-player can win the evaluation
game by force; that is, if and only if there exists a winning strategy for the universal player.
The concept of strategy extraction originates from QBF solving [35], whereby a winning
strategy ‘extracted’ from the proof certifies the truth or falsity of the instance. In practice
it is not merely the truth value of the QBF that is required – for real-world applications,
certificates provide further useful information [52].

A major paradigm in QBF practice is quantified conflict-driven clause learning (QCDCL)
[34], a natural extension of CDCL. The vast majority of QBF solvers build upon existing SAT
techniques in a similar fashion. Such a notion can hardly be surprising when one considers
that an existentially quantified QBF is merely a propositional formula. The novel challenge
for the QBF practitioner, therefore, and the real test of a solver’s strength, is in the handling
of universal quantification.

Proof-theoretic analysis of associated QBF proof systems makes this notion abundantly
clear. Consider QU-Resolution (QU-Res) [39, 33], a well-studied QBF proof system closely
related to QCDCL solving.1 That calculus simply extends propositional resolution with a
universal reduction rule, which allows universal literals to be deleted from clauses under
certain conditions. On existentially quantified QBFs, therefore, QU-Res is identical to
resolution, and proof-size lower bounds for the latter lift immediately to the former. From
the viewpoint of quantified logic, lower bounds obtained in this way are rightly considered

1 The calculus QU-Res, proposed by Van Gelder in [33], generalises Q-Res, introduced by Kleine Büning
et al. in [39], by allowing resolution over universally quantified pivots.
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Figure 1 The simulation order of the four QBF proof systems featured in this paper. A proof
system A p-simulates the system B if each B-proof of a formula Φ can be translated in polynomial
time into an A-proof of Φ [25]. If neither A nor B p-simulates the other, then they are incomparable.

non-genuine; they belong in the realm of propositional proof complexity, and tell us nothing
about the relative strengths of resolution-based QBF solvers.

Universal reduction is applicable to many suitable propositional proof systems P, giving
rise to a general model for QBF systems in the shape of P+∀red [8], which adds to the
propositional rules of P the universal reduction rule ‘∀red’. As a consequence, the phenomenon
of genuineness extends well beyond resolution. In this paper, in addition to resolution we
consider three stronger systems: Cutting Planes (CP), a well-studied calculus that works
with linear inequalities; the algebraic system Polynomial Calculus (with Resolution, PCR);
and Frege’s eponymous ‘textbook’ system for propositional logic. Their simulation order is
depicted in Figure 1.

What is generally desired (and seemingly elusive) in the QBF community is the develop-
ment of general techniques for genuine lower bounds. The current work embraces maximal
generality, and contributes a new technique for genuine QBF lower bounds in the general
setting of P+∀red.

1.2 When is a lower bound genuine?
Naturally, the aforementioned objections to non-genuine QBF lower bounds may be raised in
the abstract setting of P+∀red, as that system encompasses the propositional proof system
P. Indeed, given any unsatisfiable propositional formulas that require large proofs in P, one
can easily construct any number of contrived QBF families – even with arbitrarily many
quantifier alternations – each of which require large proofs in P+∀red, but whose hardness
stems from the original propositional formulas. That such lower bounds ought to be identified
as non-genuine was highlighted in [21] (cf. also [15]).

The essential point in such cases is that the proofs are large simply because they require
many propositional inferences, i.e. many applications of rules of P. Large proofs that do not
harbour propositional hardness of this type must therefore contain many universal reductions.
Thus, we are brought naturally to a pleasant characterisation of genuine hardness in P+∀red:
Genuinely hard QBFs require superpolynomially-many universal reduction steps; all other
lower bounds are non-genuine.2

2 This notion can be made formal, as in the oracle model of [15].
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In summary, a lower bound on the number of universal reduction steps is always genuine.
The technique we introduce in this paper works by counting universal reduction steps, and
we therefore deal exclusively in genuine results.

1.3 Random formulas
In the design and testing of solvers, large sets of formulas are needed to make effective
comparisons between implementations. While many formulas have been constructed by hand,
often representing some combinatorial principle, it is of clear benefit to have a procedure
to randomly generate such formulas. The search for a better understanding of when such
formulas are likely to be true or false, and their likely hardness for solvers, brings us to the
study of the proof complexity of random CNFs and QBFs.

In propositional proof complexity, random 3-SAT instances, the most commonly studied
random CNFs, are relatively well understood. There is a constant r such that if a random
CNF on n variables contains more than rn clauses, then the CNF is unsatisfiable with
probability approaching 1 [32]; the upper bound for r has regularly been improved (see [29],
and references therein for previous upper bounds). Further, if the number of clauses is below
n6/5−ε, the CNF requires exponential-size resolution refutations with high probability [3].
Hardness results for random CNFs are also known for Polynomial Calculus [1, 4] and for
Cutting Planes [36, 31].

In contrast, comparatively little is known about randomly generated QBFs. The addition
of universally quantified variables raises questions as to what model should be used to
generate such QBFs – care is needed to ensure a suitable balance between universal and
existential variables.3 The best-studied model is that of (1,2)-QCNFs [22], for which bounds
on the threshold number of clauses needed for a false QBF were shown in [26]. However, to
the best of our knowledge, nothing has yet been shown on the proof complexity of randomly
generated QBFs. Proving such lower bounds constitutes the major application of our new
technique.

1.4 Our contributions
The primary contribution of this work is the proposal of a novel and semantically-grounded
technique for proving genuine QBF lower bounds in P+∀red, representing a significant forward
step in the understanding of reasons for hardness in the proof complexity of quantified Boolean
formulas. Our central result, the Size-Cost-Capacity Theorem, provides an absolute lower
bound on the number of universal reductions for a QBF refutation – in any P+∀red proof
system – stated as the ratio of two natural measures: the cost of a QBF and the capacity of
a proof. As such, we obtain superpolynomial proof-size lower bounds whenever cost is high
and capacity is small.

To that end, we demonstrate that P+∀red proofs have unit capacity when P is resolution
or Cutting Planes, and that capacity is at most proof size when P is Polynomial Calculus
with Resolution. We therefore obtain lower bounds in these three proof systems based
solely on cost. This is a rather pleasant state of affairs, since we are able to apply our
technique in three interesting cases simply by demonstating the exponential cost of a family
of QBFs. Moerover, in doing so we obtain exponential lower bounds for QU-Res, CP+∀red
and PCR+∀red simultaneously.

3 If any clause contains only universal variables, then there is a constant-size refutation using only this
clause.
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For our first application, we exemplify our technique with a new family of hard QBFs
called the equality formulas. We strongly suggest that these formulas, notable for their
simplicity and conspicuous exponential cost, will henceforth occupy a prominent place in
QBF proof complexity. As our principal application, we prove exponential lower bounds for a
large class of randomly generated QBFs by demonstrating that they have high cost with high
probability. This is the first time that genuine lower bounds have been shown en masse for
randomly generated QBFs. As a third example, we show how our technique can be applied
to give a simple proof of hardness for the well-known family of QBFs from [39] (cf.[9]).

In addition, we also determine exact conditions on P by which P+∀red is properly defined
and receptive to our method, by introducing the notion of a propositional base system – a
line-based propositional proof system satisfying three natural conditions.

1.5 Organisation of the paper
We continue with the necessary background in Section 2, and provide the details of our P+∀red
framework in Section 3. Section 4 presents our lower bound technique, including definitions
of cost and capacity, and the statement of our central result, the Size-Cost-Capacity Theorem.
Applications of Size-Cost-Capacity, including the details on random formulas, are the subject
of Section 5. This is followed in Section 6 by some discussion on the relation of our work
to existing QBF techniques, and the merits and future perspectives of our contribution’s
conceptual innovations. We close the paper in Section 7 with some conclusions and open
problems.

2 Preliminaries

2.1 Quantified Boolean formulas
A conjunctive normal form (CNF) formula is a conjunction of clauses, each of which is a
disjunction of literals. We represent a CNF as a set of clauses, and a clause as a set of literals.

A quantified Boolean formula (QBF) in closed prenex form is typically denoted Φ := Q·φ.
In the quantifier prefix Q := Q1X1 · · · QnXn, the Xi are pairwise-disjoint sets of Boolean
variables (or blocks)4 each of which is quantified either existentially or universally by the
associated quantifier Qi ∈ {∃,∀}, and consecutive blocks are oppositely quantified. The
propositional part φ is a propositional formula all of whose variables vars(φ) are quantified
in Q.

By the variables of Φ we mean the set vars(Φ) :=
⋃n
i=1Xi. The set of existential variables

of Φ, denoted vars∃(Φ), is the union of those Xi whose associated quantifier Qi is ∃, and we
define the universal variables of Φ similarly. The prefix Q imposes a linear order <Q on the
variables of Φ, such that xi <Q xj holds whenever xi ∈ Xi, xj ∈ Xj and i < j, in which case
we say that xi is left of xj (xj is right of xi) with respect to Q. We extend the linear order
<Q to sets of variables in the natural way.

A literal l is a Boolean variable x or its negation ¬x, and we write var(l) := x. A total
assignment τ to a set vars(τ) = X of Boolean variables is a function τ : X → {0, 1}, typically
represented as a set of literals in which the literal ¬x (resp. x) represents the assignment
x 7→ 0 (resp. x 7→ 1). The set of all total assignments to X is denoted 〈X〉. A partial

4 Whereas a block X = {x1, . . . , xm} is a set, it is written explicitly in a prefix as a string of variables
x1 · · ·xm.
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assignment to X is a total assignment to a subset of X. The projection of τ to a set X ′ of
Boolean variables is the assignment {l ∈ τ : var(l) ∈ X ′}.

The restriction of Φ by an assignment τ is Φ[τ ] := Q[τ ] · φ[τ ], where Q[τ ] is obtained
from Q by removing each variable in vars(τ) (and any redundant quantifiers), and φ[τ ] is
the restriction of φ by τ . Restriction of propositional formulas is defined by the conventional
inductive semantics of propositional logic; that is, φ[τ ] is obtained from φ by substituting
each occurrence of a variable in vars(τ) by its associated truth value, and simplifying the
resulting formula in the usual way.

2.2 QBF semantics
Semantics are neatly described in terms of strategies in the two-player evaluation game. The
game takes place over n rounds, during which the variables of a QBF Φ := Q · φ are assigned
strictly in the linear order of the prefix Q := ∃E1∀U1 · · · ∃En∀Un.5 In the ith round, the
existential player selects an assignment αi to Ei and the universal player responds with
an assignment βi to Ui. At the conclusion the players have constructed a total assignment
τ :=

⋃n
i=1(αi ∪ βi) ∈ 〈vars(Φ)〉. The existential player wins iff φ[τ ] = >; the universal player

wins iff φ[τ ] = ⊥.
A strategy for the universal player details exactly how she should respond to all possible

moves of the existential player. Formally, a ∀-strategy for Φ is a function S : 〈vars∃(Φ)〉 →
〈vars∀(Φ)〉 that satisfies the following for each α, α′ ∈ dom(S) and each i ∈ [n]: if α and
α′ agree on E1 ∪ · · · ∪ Ei, then S(α) and S(α′) agree on U1 ∪ · · · ∪ Ui.6 We say that S is
winning iff φ[α ∪ S(α)] = ⊥ for each α ∈ dom(S).

I Proposition 2.1 (folklore). A QBF is false if and only if it has a winning ∀-strategy.

2.3 QBF resolution
Resolution is a well-studied refutational proof system for propositional CNF formulas with
a single inference rule: the resolvent C1 ∪ C2 may be derived from clauses C1 ∪ {x} and
C2 ∪{¬x}. Resolution is refutationally sound and complete: that is, the empty clause can be
derived from a CNF iff it is unsatisfiable. Resolution becomes implicationally complete with
the addition of the weakening rule, which allows literals to be added to clauses arbitrarily.

QU-Resolution (QU-Res) [39, 33] is a resolution-based proof system for QBFs of the form
Q · φ, where φ is a CNF. The calculus supplements resolution with a universal reduction rule
which allows (literals in) universal variables to be removed from a clause C provided that
they are right of all existentials in C with respect to Q. Tautological clauses are explicitly
forbidden; for any variable x, one may not derive a clause containing both x and ¬x. The
rules of QU-Res are given in Figure 2. Note that we choose to include weakening of clauses
as a valid inference rule, to emphasize the implicational completeness of the underlying
propositional system.

A QU-Res derivation of a clause C from Φ is a sequence C1, . . . , Cm of clauses in which
(a) each Ci is either introduced as an axiom (i.e. Ci ∈ φ) or is derived from previous clauses
in the sequence using resolution or universal reduction, and (b) the conclusion C = Cm is
the unique clause that is not an antecedent in the application of one of these inference rules.
A refutation of Φ is a derivation of the empty clause from Φ.

5 An arbitrary QBF can be written in this form by allowing E1 and Un to be empty.
6 Two assignments agree on a set if and only if their projections to that set are identical.
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Axiom: C C is a clause in the matrix φ.

Weakening: C
C ∪W

Each variable appearing in W is in
vars(Φ).
The consequent C ∪ W is non-
tautologous.

Resolution: C1 ∪ {x} C2 ∪ {¬x}
C1 ∪ C2

The resolvent C1 ∪ C2 is non-
tautologous.

Universal reduc-
tion:

C ∪ U
C

U contains only universal literals.
Each variable in U is right of all ex-
istential variables in C, with respect
to Q.

Figure 2 The rules of QU-Resolution. The input QBF is Φ = Q · φ, where φ is a propositional
CNF containing no tautologous clauses.

3 Our framework

3.1 A formal definition of P+∀red
We associate the basic concept of a line-based propositional proof system P with the following
four features:
(a) A set of lines LP, containing at least the two lines > and ⊥ that represent trivial truth

and trivial falsity, respectively.
(b) A set of inference rules IP and an axiom function that maps each propositional formula

φ to a set of axioms AP(φ) ⊆ LP. The axiom function should be polynomial-time
computable, and the validity of inferences should be polynomial-time checkable.

(c) A variables function that maps each line L ∈ LP to a finite set of Boolean variables
vars(L), satisfying vars(>) = vars(⊥) = ∅. Additionally, vars(L) ⊆ vars(φ) for each line
L in a P-derivation from φ.7

(d) A restriction operator (denoted by square brackets) that takes each line L ∈ LP, under
restriction by any partial assignment τ to vars(L), to a line L[τ ] ∈ LP. If τ is a total
assignment, then L[τ ] is either > or ⊥.
Universal reduction is a widely used rule of inference in QBF proof systems, by which

universal variables may be assigned under certain conditions. More precisely, a line L may
be restricted by an assignment to a set of universal variables U provided each u ∈ U is right
of each existential in vars(L), with respect to the prefix of the input QBF. We state the rule
formally in Figure 3.

The primary purpose of universal reduction is to lift a line-based propositional proof
system P to QBF, as in the following definition.

I Definition 3.1 (P+∀red [8]). Let P be a line-based propositional proof system. Then
P+∀red is the system consisting of the inference rules of P in addition to universal reduction,
in which references to the input formula φ in the rules of P are interpreted as references to
the propositional part of the input QBF Q · φ.

7 Note that this does not exclude extended Frege systems (EF), whose lines can be represented as Boolean
circuits as in [38, p. 71].
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L
L[β]

β is a partial assignment to the universal vari-
ables of Φ.
each universal in vars(β) is right of each exist-
ential in vars(L), with respect to Q.

Figure 3 The universal reduction rule, where Φ = Q · φ is the input QBF.

The above definition, however, does not gaurantee that P+∀red is sound and complete. To
do that, we must work a little harder, and identify some further properties required of P.

Before proceeding, we extend our notation from P to P+∀red in the natural way, denoting
the lines available in P+∀red (syntactically equivalent to the lines available in P) by LP+∀red,
and writing vars∃(L) and vars∀(L) for the subsets of vars(L) consisting of the variables
quantified existentially and universally, with respect to the prefix of the input QBF. Also,
we observe that Res + ∀red and QU-Res are (virtually) identical proof systems,8 and we will
henceforth use the latter term.

The size of a P+∀red refutation π, denoted |π|, is defined similarly as for the propositional
system P. (For example, the size of a QU-Res refutation is the number of clauses appearing
in it.) For formal definitions of the other propositional systems and their proof sizes, we refer
the reader to the full paper.

3.2 Propositional base systems
We first introduce a useful object in our framework: for any line L ∈ LP, an associated
Boolean function BL. Observe that the purpose of the restriction operator is to encompass
the natural semantics of P – for that reason, we made the natural stipulation that restriction
by a total assignment to the variables of a line yields either trivial truth or trivial falsity. We
may therefore associate with any line L ∈ LP the Boolean function on vars(L) that computes
the propositional models of L, with respect to the semantics of the restriction operator for P.

I Definition 3.2 (associated Boolean function). Let P be a line-based propositional proof
system and let L ∈ LP. The associated Boolean function for L is BL : 〈vars(L)〉 → {0, 1},
defined by BL(τ) = 1 if L[τ ] = >, and BL(τ) = 0 otherwise.

Beyond the established notion of ‘line-based’, we identify three natural conditions on P
by which P+∀red is a bona fide, sound and complete QBF proof system. The first of these
guarantees that the propositional models of the axioms are exactly those of the input formula,
and the second guarantees soundness and completeness in the classical sense of propositional
logic.9 The third property ensures that the restriction operator behaves sensibly; that is, the
propositional models of the restricted line are computed by the restriction of the associated
Boolean function. We introduce the term base system for those possessing all three.

I Definition 3.3 (base system). A base system P is a line-based propositional proof system
satisfying the following three properties:

8 The only difference between them is that it is allowable to derive universal tautologies and trivial truth
in Res + ∀red. Such inferences, however, are never useful.

9 The (proof-complexity-theoretic) concepts of soundness and completeness for arbitrary proof systems in
the sense of Cook and Reckhow are weaker than their counterparts in propositional logic.
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Axiomatic equivalence. For each propositional formula φ and each τ ∈ 〈vars(φ)〉, φ[τ ] = >
iff each A ∈ AP(φ) satisfies A[τ ] = >;
Inferential equivalence. For each set of lines L ⊆ LP and each line L ∈ LP, L can be
derived from L iff L semantically entails L;
Restrictive closure. For each L ∈ LP and each partial assignment τ to vars(L), the
Boolean functions BL[τ ] and BL|τ are identical.

On account of the low-level generality, the following theorem requires a non-trivial proof.

I Theorem 3.4. If P is a base system, then P+∀red is a sound and complete QBF proof
system.

Formalising the framework of base systems renders our technique applicable to the
complete spectrum of P+∀red proof systems. All the concrete propositional calculi considered
in this work (i.e. those appearing in Figure 1) are demonstrably base systems.

4 Genuine QBF lower bounds with Size-Cost-Capacity

Using an established approach (e.g. [8]), the soundness of P+∀red is proved by demonstrating
that a winning strategy for the ∀-player can be extracted from a refutation. However, with
careful construction and analysis of the strategy extraction algorithm, we are able to obtain a
much more valuable result – an absolute lower bound on the number of universal reductions
steps.

Given a P+∀red refutation π of a QBF Φ, round-based strategy extraction works by first
restricting π according to the ∃-player’s move, then collecting the response for the ∀-player
from some line in π, and iterating until the evaluation game concludes. We therefore reason
as follows: A lower bound on the total number of responses contributed by π, coupled with
an upper bound on the number of responses contributed per line, yields a lower bound on
the number of lines in the refutation. In light of this observation, we define the two measures
called cost and capacity.

4.1 Defining cost

Given a countermodel S for a false QBF Φ, it is natural to ask how many responses are used
for each universal block, since the breadth of responses seems to capture, in some sense at
least, the ‘size’ or ‘complexity’ of the winning strategy. Let us denote the maximum number
(over all universal blocks) of responses in a single block by µ(S). We contend that µ(S) is
useful measure of a countermodel, with respect to strategy extraction in particular, and so
we define the cost of Φ as the minimum µ(S) over all countermodels.

I Definition 4.1 (cost). Let Φ := ∀U1∃E1 · · · ∀Un∃En · φ be a false QBF. Further, for
each winning ∀-strategy S for Φ and each i ∈ [n], let Si be the function that maps each
α ∈ 〈vars∃(Φ)〉 to the projection of S(α) to Ui, and let µ(S) := max{|rng(Si)| : i ∈ [n]}. The
cost of Φ is cost(Φ) := min{µ(S) : S is a winning ∀-strategy for Φ}.

It should be clear that any winning strategy contains at least cost(Φ) responses to
some universal block. With respect to strategy extraction, therefore, cost is a natural
semantically-grounded measure that provides a lower bound on the total number of extracted
responses.

ITCS 2018
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4.2 Defining capacity
In order to define capacity, we first introduce the concept of a response map. Strictly speaking,
given a line L ∈ LP+∀red and a total assignment α to the existential variables of L, a response
map returns a total assignment to the universal variables that is guaranteed to falsify L[α],
as long as such an assignment exists.

I Definition 4.2 (response map). Let P be a base system. A response map R for P+∀red is
any function with domain {(L,α) : L ∈ LP+∀red, α ∈ 〈vars∃(L)〉} that maps each (L,α) to
some β ∈ 〈vars∀(L)〉 such that the following holds: If BL|α is zero anywhere, then it is zero
at β.

Response maps play a vital role in the machinery of strategy extraction in the general
setting of P+∀red; indeed, for our framework to take effect, it is crucial that strategy
extraction can be defined with respect to an arbitrary response map.10 The purpose of
capacity, however, is only to provide an upper bound on the number of responses per line.
To that end, we define the concept of a response set for a line L ∈ LP+∀red, which is simply a
valid set of responses for L according to some response map.

I Definition 4.3 (response set). Let P be a base system, let R be a response map for P+∀red,
and let L ∈ LP+∀red. The set {R(L,α) : α ∈ 〈vars∃(L)〉} is a response set for L.

Now, we observe that one may choose to select a response map minimising the size of the
response sets for the lines of LP+∀red; moreover, round-based strategy extraction returns a
winning ∀-strategy regardless of the choice of response map. By selecting such a minimal
response map R, we will therefore limit the capacity for any line to contribute multiple
responses to the extracted strategy. Thus we associate with each P derivation the maximum
number of responses that can be extracted from a single line in that derivation, with respect
to a minimal response map. This is the intuition behind capacity; it captures the best-case
upper bound we can place on the number of responses contributed per line.

I Definition 4.4 (capacity). Let P be a base system, let π = L1, . . . , Lm be a P+∀red
derivation, and let µ(Li) := min{|R| : R is a response set for Li}, for each i ∈ [m]. The
capacity of π is capacity(π) := max{µ(Li) : i ∈ [m]}.

4.3 The Size-Cost-Capacity Theorem
Putting the two measures together, we obtain our main result, the Size-Cost-Capacity
Theorem.

I Theorem 4.5 (Size-Cost-Capacity Theorem). Let P be a base system, and let π be a P+∀red
refutation of a QBF Φ. Then

|π| ≥ cost(Φ)
capacity(π) .

We emphasize that Size-Cost-Capacity works by counting universal reduction steps, which
illustrates that all results obtained by application of our technique are genuine QBF lower
bounds in the aforementioned sense.

For the specific applications in this paper, our technique comprises three very useful
corollaries of the Size-Cost-Capacity Theorem, obtained in combination with capacity upper

10For the details, we kindly refer the reader to the full paper [7].
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bounds for specific systems. For example, we prove that all QU-Res and CP+∀red refutations
have capacity equal to 1, and hence deduce that cost alone gives an absolute proof-size lower
bound there.

I Corollary 4.6. Let π be a QU-Res or CP+∀red refutation of a QBF Φ. Then |π| ≥ cost(Φ).

The case for the QBF version of Polynomial Calculus with Resolution (PCR+∀red) is
much more challenging, and requires some linear algebra, owing to the underlying algebraic
composition of Polynomial Calculus. Interestingly, it turns out that the capacity of a
refutation there is no greater than its size, thus proof size is at least the square root of cost.

I Corollary 4.7. Let π be a PCR+∀red refutation of a QBF Φ. Then |π| ≥
√

cost(Φ).

Equipped with these results, showing that the cost of a QBF is superpolynomial yields
immediate proof-size lower bounds for all three systems simultaneously.

5 Applications of Size-Cost-Capacity

5.1 The equality formulas: a new family of hard QBFs
As a first application of our lower-bound technique, we introduce an interesting new family
of hard QBFs.

I Definition 5.1 (equality formulas). For n ∈ N, the nth equality formula is

EQ(n) := ∃x1 · · ·xn∀u1 · · ·un∃t1 · · · tn ·

(
n∧

i=1

(xi ∨ ui ∨ ¬ti) ∧ (¬xi ∨ ¬ui ∨ ¬ti)

)
∧

(
n∨

i=1

ti

)
.

The equality formulas are so called because the only winning strategy for the ∀-player in
the evaluation game is as follows: play ui = xi for each i ∈ [n]. Consequently the winning
strategy is not only unique, it contains all 2n assignments to the universal variables. These
two properties in tandem imply that the equality formulas have exponential cost.

I Proposition 5.2. For each n ∈ N, cost(EQ(n)) = 2n.

Applying Size-Cost-Capacity via Corollaries 4.6 and 4.7, we obtain exponential proof-size
lower bounds in all three systems QU-Res, CP+∀red and PCR+∀red.

I Theorem 5.3. The equality formulas require refutations of size 2Ω(n) in each of the systems
QU-Res, CP+∀red and PCR+∀red.

Whereas it is plausible that the equality formulas are the simplest to which our technique
applies, they are without doubt the simplest known hard QBFs. When considering QBF
proof complexity lower bounds, particularly in P+∀red systems, we must concern ourselves
with formulas with at least a Σ3 prefix, of which the equality formulas are one of the simplest
examples. If a QBF has a Σ2 prefix, then it is true if and only if the existential parts of the
clauses can all be satisfied, i.e. it is equivalent to a SAT problem. Similarly, a refutation
of a QBF with a Π2 prefix consists of a refutation of a subset of the existential clauses
corresponding to a particular assignment to the universal variables. A Π3 formula can also
be regarded as essentially a SAT problem using similar reductions as for both Σ2 and Π2, so
Σ3 is the smallest prefix where we can expect to find genuine QBF lower bounds.

Closer inspection reveals that this lower bound is of a very specific type – it is a genuine
QBF lower bound (the formulas are not harbouring propositional hardness) that does not
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derive from a circuit lower bound (the winning strategy is not hard to compute in an
associated circuit class). In existing QBF literature, the only other example of such a
family comes from the famous formulas of Kleine Büning et al. [39] (cf. Subsection 5.3).
Those formulas are significantly more complex, and exhibit unbounded quantifier alternation
compared to the (bounded) Σ3 prefix of the equality formulas.

5.2 The first hard random QBFs
For the major application of our technique, we define a class of random QBFs and prove that,
with high probability, they are hard in all three systems QU-Res, CP+∀red and PCR+∀red.
We generate instances that combine the overall structure of the equality formulas with the
literature’s existing model of random QBFs [22].

I Definition 5.4. For each 1 ≤ i ≤ n, let C1
i , . . . , C

cn
i be distinct clauses picked uniformly

at random from the set of clauses containing 1 literal from the set Xi := {x1
i , . . . , x

m
i } and 2

literals from Yi := {y1
i , . . . , y

n
i }. Define the randomly generated QBF Q(n,m, c) as:

Q(n,m, c) := ∃Y1 . . . Yn∀X1 . . . Xn∃t1 . . . tn ·
n∧
i=1

cn∧
j=1

(
¬ti ∨ Cji

)
∧

n∨
i=1

ti.

The specification of how many existential and universal variables each clause should
contain is a common and necessary restriction on random QBFs [22, 26]. This prevents the
occurrence of a clause containing only universal variables – if such a clause exists, there
is a constant size refutation of this clause alone in any P+∀red system. The motivation
behind the additional structure in the construction of Q(n,m, c) is that its truth value is
equivalent to the disjunction of its ‘component parts’; that is Q(n,m, c) ≡

∨n
i=1 Ψi, where

Ψi := ∃Yi∀Xi ·
∧cn
j=1 C

j
i for each i ∈ [n].

These Ψi are some of the simplest QBFs one can generate, so Q(n,m, c) is a natural
choice for random QBFs. Indeed, the model used to generate the clauses of Ψi is also used to
generate random formulas for the evaluation of QBF solvers [46, 18].

Drawing on the existing literature [27, 23, 26], we show that suitable choices of the
parameters m and c force each Ψi to be false with high probability. The individual Ψi are
essentially equivalent to a random 2-SAT problem, and this step is just an application of
results on the satisfiability of such instances.

Moreover, we also prove a cost lower bound. Perhaps surprisingly, this cost lower bound
is constructed by applying results on the unsatisfiability of random 2-SAT instances [27]
and the truth of random (1,2)-QCNFs [26]. These results both concern only the truth value
of the corresponding formulas, and taken individually seem unrelated to cost. However, by
carefully choosing the number of clauses so as to allow the application of both results, we
can construct a cost lower bound using the following argument.

The Ψi are false with high probability, but rearranging the quantifiers to ∀Xi∃Yi ·
∧cn
j=1 C

j
i

gives a QBF which is true with probability 1− o(1). In other words, with high probability,
the universal response in Ψi must depend on the existential assignment. That is, it must
change depending on the existential assignment, and so with probability 1− o(1), linearly
many of the Ψi require at least two distinct responses in any winning strategy. By refining
our choice of m slightly, this allows us to conclude that Q(n,m, c), with high probability, is
a false QBF with large cost.

I Proposition 5.5. Let 1 < c < 2 be a constant, and let m ≤ (1 − ε) log2(n) for some
constant ε > 0. With probability 1− o(1), Q(n,m, c) is false and cost(Q(n,m, c)) = 2Ω(nε).
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Invoking Size-Cost-Capacity yields immediate hardness results. The following theorem
constitutes the first proof-size lower bounds for randomly generated formulas in the QBF
proof complexity literature. We emphasize that these are genuine QBF lower bounds in the
aforementioned sense; they are not merely hard random CNFs lifted to QBF. As for any
application of our technique, the refutations are large precisely because they require many
universal reduction steps.

I Theorem 5.6. Let 1 < c < 2 be a constant, and let m ≤ (1− ε) log2(n) for some constant
ε > 0. With probability 1− o(1), Q(n,m, c) is false, and any QU-Res, CP+∀red or PCR+∀red
refutation of Q(n,m, c) requires size 2Ω(nε).

5.3 New proofs of known lower bounds
Our third and final application uses Size-Cost-Capacity to provide a new proof of the hardness
of the prominent QBFs of Kleine Büning, Karpinski and Flögel [39]. We consider a common
modification of the formulas, denoted by λ(n), in which each universal variable is ‘doubled’.
This modification is known to lift lower bounds from Q-Res to QU-Res [2], where we can
apply Size-Cost-Capacity.

By rearranging the quantifier prefix to quantify all the additional universal variables in
the penultimate quantifier block, we obtain a cost lower bound for this weaker formula, and
so prove the following result.

I Corollary 5.7. Any QU-Res, CP+∀red or PCR+∀red proof of λ(n) requires size 2Ω(n).

As QU-Res lower bounds on these modified formulas are shown to be equivalent to Q-Res
lower bounds on the original formulas, our technique even proves the original lower bounds
from [39] (cf. also [10]), and provides some insight as to the source of hardness.

6 Discussion

6.1 Relation to previous work
It is fair to say that there is a scarcity of general methods for showing genuine lower bounds
in systems like P+∀red. In contrast, a number of techniques for propositional calculi have
emerged from the intense study of resolution [19, 49].

Researchers have of course attempted to lift these techniques to quantified logic, but
with mixed success. The seminal size-width relations for resolution [5], which describe proof
size in terms of proof width, are rendered ineffectual by universal quantification [11]. The
prover-delayer techniques of [14, 45] have been successfully lifted to QBF, but only apply to
the weaker tree-like systems [13], whereas solving techniques such as QCDCL are based on
the stronger DAG-like versions. Feasible interpolation [41] is an established propositional
technique that has been successfully adapted [12], but it is applicable only to a small class of
hand-crafted QBFs of a rather specific syntactic form.

Strategy extraction for QBF lower bounds has been explored previously by exploiting
connections to circuit complexity [10, 8, 16]. In particular, [8] established tight relations
between circuit and proof complexity, lifting even strong circuit lower bounds for AC0[p]
circuits [47, 51] to QBF lower bounds for AC0[p]-Frege+∀red [8], unparalleled in the pro-
positional domain. In fact, for strong proof systems such as Frege+∀red, this strategy
extraction technique is sufficient to prove any genuine QBF lower bound, in the sense that
any superpolynomial lower bound for Frege+∀red arises either due to a lower bound for
Frege, or due to a lower bound for Boolean circuits [16]. However, for weaker systems such
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as QU-Res, this does not hold; there exist lower bounds which are neither propositional nor
circuit lower bounds [15]. The underlying reasons for such hardness results are at present
not well understood. A characterisation of such lower bounds, and the proposal of associated
lower-bound techniques, would be an important development for QBF proof complexity.

The major drawback of the existing approach of [10, 8, 16], of course, is the rarity of
superpolynomial lower bounds from circuit complexity [55], especially for larger circuit classes
to which the stronger QBF proof systems connect. With Size-Cost-Capacity we employ a
much different approach to strategy extraction. Our technique is motivated by semantics and
does not interface with circuit complexity whatsoever. Instead, lower bounds are determined
directly from the semantic properties of the instance, and consequently we make advances
out of the reach of previous techniques.

6.2 Innovations and future perspectives
Our main conceptual innovation is the introduction of Size-Cost-Capacity, a semantically-
grounded general technique for proving genuine QBF lower bounds.

In this paper, we focus the technique on the P+∀red family of QBF calculi, and prove
the first known lower bounds for randomly generated QBFs. The primary appeal of the
technique is its semantic nature. We believe that lower bounds based on semantic properties
of instances, as opposed to syntactic properties of proofs, work to further our understanding
of the hardness phenomenon across the wider range of QBF proof systems. We strongly
suggest that Size-Cost-Capacity is applicable beyond P+∀red, and future work will likely
establish the hardness of random QBFs in even stronger QBF systems (for example in the
expansion based calculus IR-calc [9]).

Size-Cost-Capacity also opens new research avenues concerning the reasons for QBF
hardness – a topic that is currently insufficiently understood. Recall that in strong proof
systems such as Frege+∀red, superpolynomial proof size lower bounds can be completely
characterised: they are either a propositional lower bound or a circuit lower bound [16]. All
the QBF families that we consider have no underlying propositional hardness, and winning
∀-strategies can be computed by small circuits, even in very restricted circuit classes. As
such, all these QBFs are easy for Frege+∀red.

However, for weaker proof systems, such as QU-Res, CP+∀red and PCR+∀red, propositional
hardness and circuit lower bounds alone are not the complete picture. In particular, the lower
bounds we show using Size-Cost-Capacity do not fit into either class. That our technique
relies on capacity upper bounds which do not hold for strong proof systems leads us to suggest
that we have identified a new reason for hardness in those proof systems where the above
characterisation does not hold. As such, our work opens the door for a better understanding,
and makes steps towards the complete characterisations of reasons for hardness that are
currently lacking in the literature.

7 Conclusions

By formalising the conditions on P in the construction of P+∀red, we have developed a new
technique for proving QBF lower bounds in P+∀red. The technique depends only on the
two natural concepts of the cost of a QBF and the capacity of a proof. Determining the
capacity of several well-studied proof systems allowed us to present lower bounds based on
cost alone. We have also demonstrated that this technique is not restricted to a few carefully
constructed QBFs, but is in fact applicable to a large class of randomly generated formulas,
providing the first such lower bound for random QBFs.
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