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The groundbreaking paper ‘Short proofs are narrow – resolution made simple’ by Ben-Sasson and Wigderson
(J. ACM 2001) introduces what is today arguably the main technique to obtain resolution lower bounds: to
show a lower bound for the width of proofs. Another important measure for resolution is space, and in their
fundamental work, Atserias and Dalmau (J. Comput. Syst. Sci. 2008) show that lower bounds for space
again can be obtained via lower bounds for width.

In this paper we assess whether similar techniques are effective for resolution calculi for quantified
Boolean formulas (QBF). There are a number of different QBF resolution calculi like Q-resolution (the clas-
sical extension of propositional resolution to QBF) and the more recent calculi

A
Exp+Res and IR-calc. For

these systems a mixed picture emerges. Our main results show that both the relations between size and
width as well as between space and width drastically fail in Q-resolution, even in its weaker tree-like ver-
sion. On the other hand, we obtain positive results for the expansion-based resolution systems

A
Exp+Res

and IR-calc, however only in the weak tree-like models.
Technically, our negative results rely on showing width lower bounds together with simultaneous up-

per bounds for size and space. For our positive results we exhibit space and width-preserving simulations
between QBF resolution calculi.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems—Complexity of proof procedures

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Proof complexity, QBF, resolution, lower bound techniques, simulations

ACM Reference Format:

Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla, 2016. Are short proofs narrow? QBF reso-
lution is not simple. ACM Trans. Comput. Logic V, N, Article A (January YYYY), 27 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

The main objective in proof complexity is to obtain precise bounds on the size of proofs
in various formal systems; and this objective is closely linked to and motivated by
foundational questions in computational complexity (Cook’s program), first-order logic
(separating theories of bounded arithmetic), and SAT solving. In particular, proposi-
tional resolution is one of the best studied and most important propositional proof sys-
tems, as it forms the backbone of modern SAT solvers based on conflict-driven clause
learning (CDCL) [Marques-Silva et al. 2009]. Complexity lower bounds for resolution
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A:2 O. Beyersdorff et al.

proofs directly translate into lower bounds on the performance of SAT solvers [Sabhar-
wal 2005; Buss 2012].

What is arguably even more important than showing these actual bounds is to de-
velop general techniques that can be applied to obtain lower bounds for important
proof systems. A number of ingenious techniques have been designed to show lower
bounds for the size of resolution proofs, among them feasible interpolation [Krajı́ček
1997], which applies to many further systems. In their pioneering paper Ben-Sasson
and Wigderson [2001] showed that resolution size lower bounds can be elegantly ob-
tained by showing lower bounds to the width of resolution proofs. Here, the size of a
proof denotes the number of its clauses, and the width of a proof is the length of the
biggest clause in it. Indeed, the discovery of this relation between width and size of
resolution proofs was a milestone in our understanding of resolution, and today many
if not most lower bounds for resolution are obtained via the size-width technique.

Another important measure for resolution is space [Esteban and Torán 2001], as it
corresponds to memory requirements of solvers in the same way as resolution size re-
lates to their running time. Informally, the space complexity for refuting a formula in
resolution is the minimum number of clauses that must be kept in memory simulta-
neously to refute the formula. In their fundamental work Atserias and Dalmau [2008]
demonstrated that also space is tightly related to width. Indeed, showing lower bounds
for width serves again as the primary method to obtain space lower bounds. Since these
discoveries the relations between resolution size, width, and space have been subject
to intense research (cf. [Beyersdorff and Kullmann 2014]), and in particular sharp
trade-off results between the measures have been obtained (cf. e.g. [Beame et al. 2012;
Ben-Sasson and Nordström 2011; Nordström 2013]).

In this paper we initiate the study of width and space in resolution calculi for quan-
tified Boolean formulas (QBF) and address the question whether similar relations be-
tween size, width and space as for classical resolution hold for QBF calculi. Quantified
Boolean formulas are propositional formulas where each variable is quantified with
either an existential or a universal quantifier. Before explaining our results we sketch
recent developments in QBF proof complexity.

QBF proof complexity is a relatively young field studying proof systems for quan-
tified Boolean logic. As in the propositional case, one of the main motivations for the
field comes via its intimate connection to solving. Although QBF solving is at an earlier
state than SAT solving, it offers great potential. Due to its PSPACE completeness, QBF
allows for more succinct encodings and therefore QBF solving applies to further fields
such as formal verification or planning [Rintanen 2007; Benedetti and Mangassarian
2008; Egly et al. 2017]. Each successful run of a solver on an unsatisfiable instance
can be interpreted as a proof of unsatisfiability; and this connection turns proof com-
plexity into the main theoretical tool to understand the performance of solving. As in
SAT, many QBF solvers implement decision procedures that have resolution (and its
variants) as their underlying proof system.

However, compared to SAT, the QBF picture is more complex as there exist two main
solving approaches: (1) utilising ideas from conflict-driven clause learning (CDCL),
e.g. in the QBF solver DepQBF [Lonsing and Biere 2010; Lonsing and Egly 2017], and
(2) using expansion of universal variables, e.g. in the QBF solver RAReQS [Janota et al.
2016]. To model the strength of these QBF solvers, a number of resolution-based QBF
proof systems have been developed. Q-resolution (Q-Res) by Kleine Büning, Karpinski,
and Flögel [1995] forms the core of the CDCL-based systems. To capture further ideas
from CDCL solving, Q-Res has been augmented to long-distance resolution [Zhang
and Malik 2002; Balabanov and Jiang 2012], universal resolution [Van Gelder 2012],
and their combinations [Balabanov et al. 2014]. Powerful proof systems for expansion-
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based solving were recently developed in the form of
A

Exp+Res [Janota and Marques-
Silva 2015], and the stronger IR-calc and IRM-calc [Beyersdorff et al. 2014].

In this paper we concentrate on the three QBF resolution systems Q-Res,
A

Exp+Res,
and IR-calc. This choice is motivated by the fact that Q-Res and

A
Exp+Res form the

base systems for CDCL and expansion-based solving, respectively, and IR-calc unifies
both approaches in a natural way, as it simulates both Q-Res and

A
Exp+Res [Beyers-

dorff et al. 2014]. Recent findings show that CDCL and expansion are indeed orthogo-
nal paradigms as Q-Res and

A
Exp+Res are incomparable with respect to simulations

[Beyersdorff et al. 2015].
Understanding which lower bound techniques are effective in QBF proof complexity

is of paramount importance for progress in the field. By Beyersdorff et al. [2017] it
was shown that the feasible interpolation technique of Krajı́ček [1997], transferring
(monotone) circuit size lower bounds to proof size lower bounds, applies to all QBF
resolution systems. Another successful transfer of a classical technique was obtained
by Beyersdorff et al. [2017] for a game-theoretic characterisation of proof size in tree-
like Q-Res.

Our contributions

The central question we address here is whether lower bound techniques via width,
which have revolutionised classical proof complexity, are also effective for QBF resolu-
tion systems.

Though space and width have not been considered in QBF before, these notions
straightforwardly apply to QBF resolution systems. However, due to the ∀-reduction
rule in Q-Res allowing removal of universal variables from clauses (under certain side
conditions), it is relatively easy to enforce that universal literals accumulate in clauses
of Q-Res proofs, thus always leading to large width, irrespective of size and space
requirements (Lemma 3.6). This prompts us to consider existential width — counting
only existential literals — as an appropriate width measure in QBF. This definition
aligns both with Q-Res, which only resolves on existential variables, as well as withA

Exp+Res and IR-calc, which like all expansion systems only operate on existential
literals.

1. Negative results. Our main results show that the size-width relation of Ben-
Sasson and Wigderson [2001] as well as the space-width relation of Atserias and Dal-
mau [2008] dramatically fail for Q-Res in the sense that there exist formulas requiring
maximal (linear) width, but allowing for proofs of minimal (polynomial) size and min-
imal (constant) space. This even holds when considering the tighter existential width.

We first notice that the proof establishing the size-width result of Ben-Sasson and
Wigderson [2001] almost fully goes through, except for some very inconspicuous step
that fails in QBF (Proposition 4.1). But not only the technique fails: we prove that
Tseitin transformations1 of formulas expressing a natural completion principle2 of
Janota and Marques-Silva [2015] have small size and space, but require large exis-
tential width in tree-like Q-Res (Theorem 4.2), thus refuting the size-width relation
for tree-like Q-Res as well as the space-width relation for general dag-like Q-Res.

As the number of variables in the formulas for the completion principle is quadratic
in their refutation width, these formulas do not rule out size-width relations in general
Q-Res. However, we show that a different set of formulas, hard for tree-like Q-Res
[Janota and Marques-Silva 2015], provide counterexamples for size-width relations in
full Q-Res (Theorem 4.9).

1Tseitin transformations are a standard technique to transform arbitrary propositional formulas into 3-
CNFs by using additional variables. Here we use that fact that they produce constant-width formulas.
2The completion principle expresses a simple game between two players on a matrix, cf. Section 4.
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A:4 O. Beyersdorff et al.

Technically, our main contributions are width lower bounds for the above formulas,
which we show by careful counting arguments. We complement these results by exis-
tential width lower bounds for parity-formulas of Beyersdorff et al. [2015], providing
an optimal width separation between Q-Res and

A
Exp+Res (Theorem 5.6).

2. Positive results and width-space-preserving simulations. Though the neg-
ative picture above prevails, we prove some positive results for size-width-space rela-
tions for tree-like versions of the expansion resolution systems

A
Exp+Res and IR-calc.

Proofs in
A

Exp+Res can be decomposed into two clearly separated parts: an expansion
phase followed by a classical resolution phase. This makes it easy to transfer almost
the full spectrum of the classical relations to

A
Exp+Res (Theorem 6.1).

To lift these results to IR-calc (Theorem 6.2), we show a series of careful space and
width-preserving simulations between tree-like Q-Res,

A
Exp+Res, and IR-calc. In par-

ticular, we show the surprising result that tree-like
A

Exp+Res and tree-like IR-calc are
polynomially equivalent (Lemma 5.3), thus providing a rare example of two proof sys-
tems that coincide in the tree-like, but are separated in the dag-like model [Beyersdorff
et al. 2015]. The only other such example that we are aware of is regular resolution vs.
full resolution (although this is perhaps slightly less natural as regular resolution is
just a sub-system of resolution). In addition, our simulations provide a simpler proof
for the simulation of tree-like Q-Res by

A
Exp+Res (Corollary 5.5), shown by Janota

and Marques-Silva [2015] via a substantially more involved argument.
Our last positive result is a size-space relation in tree-like Q-Res (Theorem 6.2),

which we show by a pebbling game analogous to the classical relation by Esteban and
Torán [2001]. Not surprisingly, this only positive result for Q-Res avoids any reference
to the notion of width.

We highlight that throughout this article we deal with QBF resolution systems that
can only resolve on existential variables, a restriction that is crucial for some of our
results. This condition holds for the base systems Q-Res and

A
Exp+Res as well as the

stronger system IR-calc. To clarify the size-width relation for QBF resolution systems
like QU-Res of Van Gelder [2012], which allow resolution steps on universal variables,
remains an open problem (cf. also the discussion in Section 7).

As the bottom line we can say that QBF proof complexity is not just a replication
of classical proof complexity: it shows quite different and interesting effects as we
demonstrate here. Especially for lower bounds it requires new ideas and techniques.
We remark that in this direction, a new and ‘genuine QBF technique’ based on strategy
extraction was recently developed, showing lower bounds for Q-Res [Beyersdorff et al.
2015] and indeed much stronger systems [Beyersdorff et al. 2016; Beyersdorff and Pich
2016].

Organisation of the paper

The remainder of this paper is organised as follows. We start by reviewing background
information on classical and QBF resolution systems (Section 2), including definitions
of size, space, and width together with their main classical relations (Section 3). In
Section 4 we prove our main negative results on the failure of the transfer of the clas-
sical size-width and space-width results to QBF. Section 5 contains the simulations
between tree-like versions of Q-Res,

A
Exp+Res, and IR-calc, paying special attention

to width and space. This enables us to show in Section 6 the positive results for rela-
tions between size, width, and space in these systems. We conclude in Section 7 with a
discussion and directions for future research.
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2. NOTATIONS AND PRELIMINARIES

We assume familiarity with basic notions from logic, including propositional and quan-
tified Boolean logic. We just review those concepts here that are subsequently needed,
also setting the notation for later sections. For background information and a rigorous
syntactic and semantic definition of the logics we refer to the monograph of Kleine
Büning and Lettmann [1999].

Quantified Boolean Formulas. A literal is a Boolean variable or its negation. We say
a literal x is complementary to the literal ¬x and vice versa. A clause is a disjunction
(∨) of literals and a term is a conjunction (∧) of literals. The empty clause is denoted
by 2, and is semantically equivalent to false. A propositional formula in conjunctive
normal form (CNF) is a conjunction of clauses. For a literal l = x or l = ¬x, we write
var(l) for x and extend this notation to the set var(C) of variables of a clause C.

A partial assignment α for a set of variables X is a partial function α : X → {0, 1}.
We say that a variable x is assigned a value in α if x is in the domain of α, denoted
x ∈ dom(α). We denote an assignment b ∈ {0, 1} to a single variable x by the notation
x/b. A partial assignment α is specified as a set of such singleton assignments, eg
{x1/0, x3/1}.

Let α be any partial assignment. For a clause C, we write C|α for the clause obtained
by applying the partial assignment α to C. That is, we remove literals falisfied by α
from C, and further, if some literal of C is true under α, then Cα is the tautological
clause 1. For example, applying α = {x1/0} to the clause C = (x1 ∨ x2 ∨ x3) yields
C|α = (x2 ∨ x3), and applying α′ = {x1/1} to the same clause gives C|α′ = 1. We say
that a partial assignment α satisfies a clause C if C|α = 1, and it satisfies a CNF
formula F if it satisfies each of the clauses of F .

Let A,B be propositional formulas. We say that A |= B holds, if any (partial) assign-
ment which satisfies A also satisfies B. Let F be a CNF formula, and x be a variable
in F . Then F |x/1 is a CNF formula obtained from F by removing all clauses containing
the literal x, and removing all occurrences of the literal ¬x. The CNF formula F |x/0 is
similarly defined.

We consider quantified Boolean Formulas (QBFs) in closed prenex form with a CNF
matrix3, i.e., we consider the form Q1x1 · · · Qnxn .φ where each Qi is either ∃ or ∀,
and φ is a quantifier-free CNF formula in the variables x1, . . . , xn. Such formulas are
succinctly denoted as Qφ, where φ is called the matrix, and Q is its quantifier prefix.

Given a variable y, either existentially quantified or universally quantified in Qφ,
the quantification level of y in Qφ, lv(y), is the number of alternations of quantifiers
y has on its left in the quantifier prefix of Qφ. Given a variable y, we will sometimes
refer to the variables with quantification level lower than lv(y) as variables left of y;
analogously the variables with quantification lever higher than lv(y) will be right of y.

The semantics of QBFs can be defined via a 2-player game between a universal
and an existential player (cf. e.g. [Arora and Barak 2009]) or via an inductive truth
definition, using that ∀x.F is equivalent to F |x/0 ∧ F |x/1 and ∃x.F to F |x/0 ∨ F |x/1
(cf. [Kleine Büning and Lettmann 1999]).

Resolution Calculi

Resolution (Res), introduced by Blake [1937] and Robinson [1965], is a refutational
proof system for formulas in CNF. The lines in the Res proofs are clauses. Given a
CNF formula F , Res can infer new clauses according to the resolution inference rule:

3Any QBF can be efficiently (in polynomial time) converted to an equivalent QBF in this form. See for
instance [Arora and Barak 2009]
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C ∨ x D ∨ ¬x
(Res).

C ∨D

Here C,D denote clauses and x is a variable being resolved, called the pivot variable.
The clauses C ∨ x and D ∨ ¬x are referred to as the hypotheses and C ∨ D is the
conclusion (resolvent) of the resolution rule.

Let F be an unsatisfiable CNF formula. A resolution proof (refutation) π of F is
a sequence of clauses D1, . . . , Dl, where Dl = 2, and each clause in the sequence is
either from F or is derived from some previous clauses of the sequence via the above
resolution rule.

We say that a directed acyclic graph (dag) G = (V,E) represents the refutation π
if V = {D1, . . . , Dl}, the source nodes are the clauses from F , internal nodes are the
derived clauses, and the empty nodeDl is the unique sink. Furthermore, edges inG are
from the hypotheses to the conclusion for each resolution step. That is, each derived
clauseDi has incoming edges fromDj andDk where the indices j, k are less than i, and
Di is the resolvent of Dj and Dk. (Since a clause could be derived from more than one
set of previous premises, there could be more than one graph representing π. Similarly,
such a graph G represents not just π, but any sequence corresponding to a topological
sort of the nodes of G.) If there is a tree representing π, we call π a tree-like resolution
proof (ResT) of F . In other words, in a tree-like resolution proof one cannot reuse the
derived clauses. We call π a regular resolution proof if in some representation G, on
each directed path in G no variable appears twice as a pivot variable. In what follows,
we will refer to any graph G representing π (and having the desired property of being
a tree, or not reusing pivots along a path, in the case of tree-like and regular proofs
respectively) as the graph Gπ corresponding to π. This is a slight abuse of notation, but
the intended meaning should be clear from the context.

QBF resolution calculi. Q-resolution (Q-Res) by Kleine Büning et al. [1995] is a
resolution-like calculus that operates on QBFs in closed prenex form where the ma-
trix is a CNF. The lines in Q-Res proofs are clauses. It uses the resolution rule (Res)
with the side condition that the pivot variable is existential and provided that the re-
solvent clause is not a tautology. That is, from C ∨ x and D ∨ ¬x, it can infer C ∨ D
provided x is an existential variable and there is no literal ℓ ∈ C whose negation ¬ℓ is
in D.

In addition Q-Res has a universal reduction rule (∀-Red) which allows dropping a
universal variable literal from a clause provided the clause has no existential variable
to the right of the reduced variable. Note that we also forbid tautological clauses in the
input. This is to ensure the soundness of the system. For example, consider the true
formula ∀x. (x∨¬x). The ∀-Red rule on the formula derives the empty clause, which is
unsound. The inference rules of Q-Res are given in Figure 1.

Similar to tree-like resolution we have tree-like Q-Res (denoted Q-ResT). To be pre-
cise, if the underlying proof graph of a Q-Res proof is a tree (that is, no derived clause
is used more than once), then we have a Q-ResT proof.

In addition to Q-Res we consider two further QBF resolution calculi that have been
introduced to model expansion-based QBF solving. The basic idea used in expansion-
based QBF solving is to first expand the universal variables and then apply resolution.
For example, consider the QBF ∃x∀y∃z.φ(x, y, z). We can expand the universal variable
y and get ∃x.(∃z.φ(x, 0, z))∧ (∃z.φ(x, 1, z)). Observe that z may depend on the universal
variable y. Therefore while converting this to prenex form, we need two distinct copies
of z. Doing so yields an equivalent formula ∃x∃zy/0∃zy/1. φ(x, 0, zy/0)∧φ(x, 1, zy/1). Here
zy/0 and zy/1 are two fresh copies of z, which have been annotated by the reason for
their creation. Syntactically, zy/0 and zy/1 are just new, distinct existential variables.
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(Axiom)
C C is a clause in the input matrix.

C1 ∪ {x} C2 ∪ {¬x}
(Res)

C1 ∪ C2

Variable x is existential.
If z ∈ C1, then ¬z /∈ C2.

C ∪ {u}
(∀-Red)

C

u is a universal literal.
If x ∈ C is existential, then
lv(x) < lv(u).

Fig. 1. The rules of Q-Res [Kleine Büning et al. 1995]

Inspired by the above idea, two calculi based on instantiation of universal variables
were introduced:

A
Exp+Res by Janota and Marques-Silva [2015] and IR-calc by Bey-

ersdorff et al. [2014]. Both calculi operate on clauses that comprise of only existential
variables from the original QBF, which are additionally annotated by a substitution to
some universal variables, e.g. ¬xu1/0,u2/1. For any annotated literal lσ, the substitution
σ must not make assignments to variables at a higher quantification level than l, i.e.
if u ∈ dom(σ), then u is universal and lv(u) < lv(l). To preserve this invariant, we use
the auxiliary notation l[σ], which for an existential literal l and an assignment σ to the
universal variables filters out all assignments that are not permitted, i.e.

l[σ] = l{u/c∈σ | lv(u)<lv(l), c∈{0,1}}.

We say that an assignment is complete if its domain is the set of all universal variables.
Likewise, we say that a literal xτ is fully annotated if all universal variables u with
lv(u) < lv(x) in the QBF are in dom(τ), and a clause is fully annotated if all its literals
are fully annotated.

The calculus
A

Exp+Res of Janota and Marques-Silva [2015] works with fully anno-
tated clauses on which resolution is performed. This requires, apart from resolution,
an axiom download rule that specifies, for an axiom clause C, what annotated clause
can be used in the proof. The rules of

A
Exp+Res are shown in Figure 2.

(Axiom){

l[τ ] | l ∈ C, l existential
}

C is a clause from the input matrix and τ is an assignment to all universal variables
that falsifies all universal literals in C.

C1 ∨ x
τ C2 ∨ ¬xτ

(Res)
C1 ∨ C2

Fig. 2. The rules of
A

Exp+Res [Janota and Marques-Silva 2015]

We illustrate the axiom download step in
A

Exp+Res with an example: consider a
QBF with the quantifier prefix ∃e1∀u1∃e2∀u2∃e3∀u3 and containing the clause C =
(e1 ∨¬e2 ∨ u1 ∨ e3 ∨¬u3). Let τ = {u1/0, u2/1, u3/1}. Note that τ is an assignment to all
universal variables, which falsifies all universal literals in C. Then in

A
Exp+Res the

clause (e1 ∨ ¬e
u1/0
2 ∨ e

u1/0,u2/1
3 ) can be downloaded from C with respect to τ . Likewise,

under a different assignment we could download the clause as (e1 ∨¬e
u1/0
2 ∨ e

u1/0,u2/0
3 ).
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The resolution rule (Res) of
A

Exp+Res is just the propositional resolution rule. How-
ever, the pivot annotations need to match exactly. This makes sense, as different an-
notations syntactically lead to different variables.

In comparison to
A

Exp+Res, the system IR-calc by Beyersdorff et al. [2014] is more
flexible. It uses ‘delayed’ expansion and can mix instantiation with resolution steps.
Formally, IR-calc works with partial assignments on which we use auxiliary opera-
tions of completion and instantiation. For assignments τ and µ, we write τ ◦ µ for the
assignment σ defined as σ(x) = τ(x) if x ∈ dom(τ), otherwise σ(x) = µ(x) if x ∈ dom(µ).
The operation τ ◦ µ is called completion as µ provides values for variables not defined
in τ . For an assignment τ and an annotated clause C, the function inst(τ, C) returns
the annotated clause

{

l[σ◦τ ] | lσ ∈ C
}

. The system IR-calc uses the rules depicted in
Figure 3.

(Axiom){

x[τ ] | x ∈ C, x is existential
}

C is a non-tautological clause from the input matrix.
τ = {u/0 | u is universal in C}, where the notation u/0 for literals u is shorthand for
x/0 if u = x and x/1 if u = ¬x.

C1 ∨ x
τ C2 ∨ ¬xτ

(Res)
C1 ∨ C2

C
(Instantiation)

inst(τ, C)

τ is a (partial) assignment to universal variables.

Fig. 3. The rules of IR-calc [Beyersdorff et al. 2014]

Unlike
A

Exp+Res, in an axiom download step in IR-calc the assignment τ sets val-
ues to all universal variables in the clause being downloaded, but not to other uni-
versal variables. For example, consider the same QBF quantifier prefix and clause C
described above while discussing

A
Exp+Res. For τ = {u1/0, u3/1}, IR-calc downloads

the following clause: (e1 ∨ ¬e
u1/0
2 ∨ e

u1/0
3 ). Note that the universal variable u2 does not

belong to the domain of τ , but τ falsifies all universal variables in C.
The resolution rule in IR-calc is exactly as in

A
Exp+Res. Again, pivot annotations

need to match in both parent clauses.
To enable further resolution steps, the system IR-calc allows to extend the anno-

tations in the instantiation rule, which uses the function inst discussed above. For

instance, in the preceding example, (e1 ∨ ¬e
u1/0
2 ∨ e

u1/0
3 ) can be further instantiated by

τ = {u2/0} to (e1 ∨ ¬e
u1/0
2 ∨ e

u1/0,u2/0
3 ).

Simulations. Given two proof systems P and Q for the same language (the set of
propositional tautologies TAUT, or the set of true quantified Boolean formulas QBF),
P p-simulates Q (denoted Q ≤p P ) if each Q-proof can be transformed in polynomial
time into a P -proof of the same formula. Two systems are called p-equivalent if they
p-simulate each other.

Beyersdorff et al. [2014] have shown that IR-calc p-simulates both Q-Res andA
Exp+Res, while Beyersdorff et al. [2015] show that Q-Res and

A
Exp+Res are incom-

parable, i.e., IR-calc is exponentially stronger than both Q-Res and
A

Exp+Res. How-
ever,

A
Exp+Res can p-simulate Q-ResT [Janota and Marques-Silva 2015].
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Are Short Proofs Narrow? QBF Resolution is not so Simple A:9

3. SIZE, WIDTH, AND SPACE IN RESOLUTION CALCULI

The purpose of the section is twofold: first to review the measures size, width, and
space and their relations in classical resolution; and second to explain how to apply
these measures to QBF resolution systems. While this is straightforward for size and
space, we need a more elaborate discussion on what constitutes a good notion of width
for QBF resolution systems.

3.1. Defining size, width, and space for resolution

For a CNF F , |F | denotes the number of clauses in it. We extend the same notation to
QBFs with a CNF matrix.

For P one of the resolution calculi Res, Q-Res,
A

Exp+Res, IR-calc, let π
P
F (resp.

π
PT
F ) denote that π is a P -proof (tree-like P -proof, respectively) of the formula F . For

a proof π of F in system P , its size |π| is defined as the number of clauses in π. The size

complexity S(
P
F ) of deriving F in P is defined as min {|π| : π

P
F}. The tree-like size

complexity, denoted S(
PT
F ), is min {|π| : π

PT
F}.

A second complexity measure is the minimal width. The width of a clause C is
the number of literals in C, denoted w(C). The width of a CNF F , denoted w(F ), is
the maximum width of a clause in F , i.e., w(F ) = max{w(C) : C ∈ F}. The width
w(π) of a proof π is defined as the maximum width of any clause appearing in π, i.e.,
w(π) = max{w(C) : C ∈ π}. The width w(

P
F ) of refuting a CNF F in P is defined as

min{w(π) : π
P
F}. Again the same notation extends to quantified CNFs.

Note that for width in any calculus, whether the proof is tree-like or not is immate-
rial, since a proof can always be made tree-like by duplication without increasing the
width. We therefore drop the T subscript when talking about proof width.

The third complexity measure for resolution calculi is space. For classical resolu-
tion, this measure was first defined by Esteban and Torán [2001]. In the literature, it
is also called clause space, to distinguish it from variable space or total space (see for
example, [Ben-Sasson 2002]). We consider only clause space in this paper, and so we
call it just space. Informally, space is the minimal number of clauses that must be kept
simultaneously in memory to refute a formula. Instead of viewing a proof π as a dag,
we view it as a sequence σ of CNF formulas σ = F0, F1, . . . , Fs, where F0 = ∅, 2 ∈ Fs,
and each Fi+1 is obtained from Fi by either erasing some clause, or by downloading an
axiom, or by adding a resolvent of clauses in Fi. In the latter case, one of the clauses
used in the resolution may also simultaneously be deleted. The space used by this
proof is the maximum number of clauses in any Fi, i.e., CSpace(σ) = max{|Fi| | i ∈ [s]}.
A straightforward way of representing a proof π = D1, . . . , Dl in this way is to set
Fi = {Dj | j ≤ i}; this proof will have space l. But there could be other ways of repre-
senting π that are more economical in space.

The space used by a proof is precisely the number of pebbles required to pebble
the proof dag (cf. also the survey by Nordström [2013]), and we here use the pebbling
number as the formal definition of the space used by the proof. We first define the
pebbling game on graphs.

Definition 3.1. (Pebbling Game) Let G = (V,E) be a connected directed acyclic
graph with a unique sink s, where every vertex of G has at most 2 incoming edges. The
aim of the game is to put a pebble on the sink of the graph following this set of rules:

(1) A pebble can be placed on any source vertex, that is, on a vertex with no incoming
edge.

(2) A pebble can be removed from any vertex.
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A:10 O. Beyersdorff et al.

(3) A pebble can be placed on an internal vertex provided all vertices with an incoming
edge to it are pebbled. In this case, instead of placing a new pebble on it, one can
shift a pebble along an incoming edge to the vertex.

The minimum number of pebbles needed to pebble the unique sink following the above
rules is said to be the pebbling number of G.

Consider the proof graph Gπ corresponding to a Q-Res proof π of a false QBF F .
In Gπ clauses are the vertices and edges go from the hypotheses to the conclusion of
inference rules (i.e., ∀-Red, resolution steps). Clearly Gπ is a dag with initial clauses
as sources and the empty clause as the unique sink. Also each vertex in Gπ is at most
2 incoming edges. Hence the pebbling game is well defined on Gπ.

We now define the space required to refute a false QBF F as the minimum number
of pebbles needed to play the pebble game on the graph of a Q-Res proof of F .

Definition 3.2. (Space in Q-Res) For a false QBF F in prenex form we set

CSpace(
Q-Res

F) = min {k : ∃ Q-Res proof π of F , Gπ can be pebbled with k pebbles} .

The analogous definition is used for tree-like proofs:

CSpace(
Q-ResT

F) = min{k : ∃ Q-ResT proof π of F , Gπ can be pebbled with k pebbles}.

3.2. Relations between size, width, and space in classical resolution

We now state some of the main relations between size, width, and space for classi-
cal resolution. We start with the foundational size-width relations of Ben-Sasson and
Wigderson [2001].

THEOREM 3.3 (BEN-SASSON AND WIGDERSON [2001]). For all unsatisfiable
CNFs F in n variables the following holds:

S(
ResT

F ) ≥ 2
w
(

Res
F
)

−w(F )
, and

S(
Res

F ) = exp

(

Ω

(

(

w
(

Res
F
)

− w(F )
)2

n

))

.

Space complexity was introduced by Esteban and Torán [2001] and relations be-
tween space, size and width are explored (cf. also [Kullmann 1999; Beyersdorff and
Kullmann 2014]), establishing the size-space relation for tree-like resolution:

THEOREM 3.4 (ESTEBAN AND TORÁN [2001]). For all unsatisfiable CNFs F the

following relation holds: S(
ResT

F ) ≥ 2
CSpace

(

ResT
F
)

− 1.

The fundamental relation between space and width for full resolution was obtained
by Atserias and Dalmau [2008].

THEOREM 3.5 (ATSERIAS AND DALMAU [2008]). For all unsatisfiable CNFs F the

following relation holds: w(
Res

F ) ≤ CSpace(
Res

F ) + w(F )− 1.

A more direct proof was given recently by Filmus et al. [2015] and shows that
w(

Res
F ) ≤ CSpace(

Res
F ) + w(F )− 3.

3.3. Existential width: What is the right width notion for QBF?

We wish to explore the possibility of a similar approach as used by Ben-Sasson and
Wigderson [2001] to prove an analogue of Theorem 3.3 when dealing with QBFs.
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The following simple example shows that the relationships in Theorem 3.3 and Theo-
rem 3.5 do not carry over for the system Q-Res. For n ∈ N, let [n] denote {1, 2, . . . , n}.

Consider the following false QBF Fn over 2n+ 1 variables:

Fn =∀u1 . . . un∃e0∃e1 . . . en.

C0 : (e0) ∧

For i ∈ [n], Di : (¬ei−1 ∨ ui ∨ ei) ∧

Dn+1 : (¬en)

PROPOSITION 3.6. S(
Q-ResT

Fn) = O(n) and CSpace(
Q-ResT

Fn) = O(1), but

w(
Q-Res

Fn) = Ω(n).

PROOF SKETCH. For the upper bounds consider the following proof. For i ∈ [n], let
Ci = (u1 ∨ · · · ∨ ui ∨ ei). For i ∈ [n] in sequence, resolving Ci−1 and Di on variable ei−1

gives Ci. Resolving Cn and Dn+1 on variable en gives the clause U = (u1 ∨ · · · ∨ un).
Finally, applying ∀-Red on the clause U yields the empty clause in n more steps. The
proof is depicted in Figure 4.

2

u1 ∨ · · · ∨ unU

u1 ∨ · · · ∨ un ∨ enCn ¬en Dn+1

u1 ∨ u2 ∨ u3 ∨ e3C3

u1 ∨ u2 ∨ e2C2 ¬e2 ∨ u3 ∨ e3 D3

u1 ∨ e1C1 ¬e1 ∨ u2 ∨ e2 D2

e0C0 ¬e0 ∨ u1 ∨ e1 D1

n ∀-Red steps

Fig. 4. Proof of Proposition 3.6: A Q-ResT refutation of the false QBF Fn.

This is a tree-like proof of size O(n). Further, each resolution step involves an axiom
clause, so at each step we need to pebble just two clauses, and so the space requirement
is O(1).

Concerning the width lower bound, by the order of quantification in Fn, every ex-
istential literal in Fn blocks any ∀-reduction. Therefore, in any refutation, when a
∀-reduction is first used, the clause C has only universal variables. At this point, the
empty clause is derivable from C by a series of ∀-reductions. Note that if any clause is
dropped from Fn, the resulting QBF is no longer false. Thus any refutation must use
all clauses. Hence C must have all universal variables in it; it must be (u1 ∨ · · · ∨ un)
as all ui variables have been accumulated, without being reduced. Then clause C has
width n.

Noting that w(Fn) = 3, Proposition 3.6 implies that the relationships from Theo-
rem 3.3 and Theorem 3.5 do not hold for Q-Res and Q-ResT.
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As the above example illustrates, it is easy to enforce that universal variables are
accumulated in a clause, thus leading to large width. Hence the following question
naturally arises: can we obtain size-width or space-width relations by using the tighter
measure of only counting existential variables?

This aligns with the situation in the expansion systems
A

Exp+Res and IR-calc,
where clauses contain only existential variables. In this respect, it is worth noting
that the above example indeed does not demonstrate the failure of the size-width rela-
tionship in expansion-based calculi. For instance, in

A
Exp+Res, a tree-like refutation

could download the existential variables of axioms annotated with ui/0 for i ∈ [n], and
generate the empty clause in O(n) steps with width just 2 at the leaves and 1 at the
internal nodes. More formally, consider the assignment τ which assigns 0 to all univer-
sal variables of Fn. In

A
Exp+Res, we can download the following clauses, with respect

to τ :

Cτ
0 : (e

u1/0,...,un/0
0 )

For i ∈ [n], Dτ
i : (¬e

u1/0,...,un/0
i−1 ∨ e

u1/0,...,un/0
i )

Dτ
n+1 : (¬eu1/0,...,un/0

n ).

Now, the
A

Exp+Res proof of Fn is straightforward: for i ∈ {0, 1, . . . , n}, let Eτ
i be the

unit clause (e
u1/0,...,un/0
i ). Note that Eτ

0 has been downloaded as Cτ
0 . For i ∈ [n], in

sequence, resolve Eτ
i−1 and Dτ

i on variable e
u1/0,...,un/0
i−1 to derive Eτ

i . Finally resolve

Eτ
n and Dτ

n+1 on variable e
u1/0,...,un/0
n to derive the empty clause. Clearly, the size and

width of this proof are O(n) and O(1) respectively.
Thus, to get a consistent and interesting width measure for QBF calculi, we consider

the notion of existential width that just counts the number of existential literals.
This approach is justified also for Q-Res as the calculus can only resolve on existential
variables, and rules out the easy counterexamples above. Formally we define it as
follows.

Definition 3.7. The existential width of a clause C is the number of existential liter-
als in C; we denote it by w∃(C). Using w∃ instead of w, we obtain the existential width
of a formula w∃(F ), of a proof w∃(π), and of refuting a false QBF w∃( P

F).

For the expansion systems
A

Exp+Res and IR-calc the notions of existential width and
width of a proof coincide. (In particular, distinct annotations of the same existential
variable in a single clause are counted as distinct literals.) Hence we can drop the
∃ subscript in width of proofs in these systems. However, for the width of the input
clauses from the QBF under consideration, there is still a difference between the two
measures w and w∃, as the QBF may contain universal literals.

4. NEGATIVE RESULTS: SIZE-WIDTH AND SPACE-WIDTH RELATIONS FAIL IN Q-RES

In this section we show that in the Q-Res proof system, even replacing width by ex-
istential width, the relations to size or space as in classical resolution (Theorems 3.3
and 3.5) no longer hold for both tree-like and general proofs.

Firstly, we point out where the technique of Ben-Sasson and Wigderson [2001] fails.
A crucial ingredient of their proof is the following statement: if a clause A can be
derived from F |x/1 in width w, then the clause A ∨ ¬x can be derived from F in width
w + 1 (possibly using a weakening rule at the end). We show that the statement no
longer holds in Q-Res.

PROPOSITION 4.1. There are false QBFs Fn, with an existential variable b quanti-
fied at the innermost level, such that the QBF Fn|b/1 is false and has a small existential-
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Are Short Proofs Narrow? QBF Resolution is not so Simple A:13

width proof, but to derive ¬b from Fn requires large existential width in Q-Res. In fact,
Fn itself requires large existential width to refute in Q-Res.

PROOF. The QBF Fn is constructed by taking the conjunction of two QBFs with
distinct variables. The first QBF is a very simple one: ∃a∀u∃b. (a ∨ u ∨ ¬b) ∧ (¬a). It
is true, but if b is set to 1, it becomes false. The second QBF is a false QBF of the
form ∃~xGn(~x), where Gn are polynomial-size unsatisfiable CNF formulas over the ~x
variables, such that Gn needs large width in classical resolution. One such example is
the CNF formula described by Bonet and Galesi [1999], that we denote as BGn. BGn

is an unsatisfiable 3-CNF formula over O(n2) variables with w(
Res

BGn) = Ω(n). Now
define Fn as:

∃~x∃a∀u∃b. (a ∨ u ∨ ¬b) ∧ (¬a) ∧BGn(~x).

Note that the clauses (a∨u∨¬b)∧(¬a) contain a contradiction if and only if b = 1. Thus
Fn|b/1 can be refuted with existential width 1 using just these two clauses: a ∀-Red on
(a ∨ u) yields a which can be resolved with ¬a.

Let us now see how we can derive ¬b from Fn. From clauses a∨u∨¬b and ¬a we can
derive u ∨ ¬b, but now we cannot ∀-reduce u as it is blocked by b. Therefore we need to
expose the contradiction in BGn, derive the empty clause and then use weakening to
obtain ¬b. Since all the variables inBGn are existential, Q-Res degenerates to classical
resolution, requiring (existential) width Ω(n).

Since setting a = b = 0 satisfies the first part of the QBF, and since the two parts of
the QBF have disjoint variables, the only way to refute Fn is to expose the contradiction
in BGn, and as discussed above, this requires (existential) width Ω(n).

The example in the proof of Proposition 4.1 can be made ‘less degenerate’ by inter-
leaving more existential and universal variables disjoint from ~x and putting them in
the first QBF. All we need is that b is quantified existentially at the end, the first QBF
is true as a whole but false if b = 1, and this latter QBF can be refuted in Q-Res with
small existential width.

We now show that it is not just the technique of Ben-Sasson and Wigderson [2001]
that fails for Q-Res. No other technique will work either, because the relation from
Theorem 3.3 between size and existential width itself fails to hold. The same example
also shows that the relation from Theorem 3.5 between space and existential width
also fails to hold.

We first give an example where the relation for tree-like proofs fails. For this we
use formulas CRn describing a natural completion principle, introduced by Janota and
Marques-Silva [2015].4 The formula CRn is as follows:

CRn = ∃x1,1 . . . xn,n ∀z ∃a1 . . . an∃b1 . . . bn.

Ci,j : (xi,j ∨ z ∨ ai), i, j ∈ [n]

Di,j : (¬xi,j ∨ ¬z ∨ bj), i, j ∈ [n]

A :
∨

i∈[n]

¬ai

B :
∨

i∈[n]

¬bi.

4These formulas are called CRn in [Janota and Marques-Silva 2015]; we use the same name.
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CRn is constructed from a principle called the completion principle. Consider two sets
A = {a1, . . . , an} and B = {b1, . . . , bn}, and depict their cross product A×B as in Table I.

Table I. Completion Principle.

a1 a1 . . . a1 a2 a2 . . . a2 . . . . . . an an . . . an
b1 b2 . . . bn b1 b2 . . . bn . . . . . . b1 b2 . . . bn

The following two-player game is played on Table I. In the first round, player 1
deletes exactly one cell from each column. In the second round, player 2 chooses one
of the two rows. Player 2 wins if the chosen row contains either the complete set A or
the set B; otherwise player 1 wins. The completion principle states that player 2 has a
winning strategy. The false QBF CRn expresses the notion that player 1 has a winning

strategy. For each column

[

ai
bj

]

of the table (denote this the (i, j)th column), there is a

Boolean variable xi,j . Let xi,j = 0 denote that player 1 ‘deletes bj ’ (i.e., keeps ai) from
the (i, j)th column, and xi,j = 1 denotes that player 1 keeps bj in the (i, j)th column.
There is a variable z to denote the choice of player 2: z = 0 means ‘choose top row’.
The Boolean variables ai, bj , for i, j ∈ [n] encode that for the chosen values of all the
xk,ℓ, and the row chosen via z, at least one copy of the element ai and bj respectively is
kept. (eg (xi,j ∧ z) ⇒ bj).

It is known that CRn has a proof of size O(n2) in Q-Res, and even in Q-ResT [Maha-
jan and Shukla 2016]. However, CRn has large existential width (i.e., w∃(CRn) = n),
and for our next result we need a formula with constant initial existential width. To
achieve this we proceed similarly as in the Tseitin transformations, i.e., we introduce
2n + 2 new existential variables (i.e., ~y, ~p) at the innermost level in CRn, and replace
the two large clauses in CRn by any CNF formula which preserves their satisfiability.
Let CR′

n denote the modified formula

CR′
n = ∃x1,1 . . . xn,n ∀z ∃a1 . . . an∃b1 . . . bn∃y0 . . . yn∃p0 . . . pn.

Ci,j : (xi,j ∨ z ∨ ai), i, j ∈ [n] (1)

Di,j : (¬xi,j ∨ ¬z ∨ bj), i, j ∈ [n] (2)

¬y0 ∧
∧

i∈[n]

(yi−1 ∨ ¬ai ∨ ¬yi) ∧ yn (3)

¬p0 ∧
∧

i∈[n]

(pi−1 ∨ ¬bi ∨ ¬pi) ∧ pn. (4)

Note that CR′
n has O(n2) variables and w∃(CR

′
n) = 3.

We can use these formulas to refute the size-width and space-width relations in Q-
ResT.

THEOREM 4.2. For the above family of QBFs CR′
n holds S(

Q-ResT
CR′

n) = nO(1),

w∃(CR
′
n) = 3, CSpace(

Q-ResT
CR′

n) = O(1), and w∃( Q-Res
CR′

n) ≥ n.

PROOF. The clauses of CR′
n, as described above, are partitioned into 4 groups. For

i ∈ [4], we call an initial clause C a type-(i) clause if it belongs to the ith group. It is clear
that from the type-(3) clauses of CR′

n, we can derive the large clause A =
∨

i∈[n] ¬ai of

CRn in n+1 resolution steps. Similarly we can derive the large clause B =
∨

i∈[n] ¬bi of

CRn from the type-(4) clauses in n+1 steps. The proof refuting CRn uses each of these
large clauses n times; see below. Thus S(

Q-ResT
CR′

n) ≤ S(
Q-ResT

CRn) +O(n2) = O(n2).
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We briefly sketch the refutation of CRn of Mahajan and Shukla [2016] to analyse
its space requirement. The fragment Wj starts with clause A, successively resolves it
with clauses from C∗,j to get z ∨ x1,j ∨ · · · ∨ xn,j , eliminates z through a ∀-reduction
to get Xj = (x1,j ∨ · · · ∨ xn,j), then successively resolves Xj with clauses from D∗,j to
get Wj = ¬z ∨ bj . It is easy to see that O(1) space suffices to construct this fragment.
The overall proof starts with the clause B, successively resolves it with W1,W2, . . . ,Wn

(reusing the space to construct successiveWj ’s), and finally gets ¬z which is eliminated
through a ∀-reduction. Again O(1) space suffices. Refer to Figure 5.

x1,j ∨ · · · ∨ xn,jXj

x1,j ∨ · · · ∨ xn−1,j ∨ xn,j ∨ z

x1,j ∨ · · · ∨ xn−1,j ∨ xn,j ∨ z ∨ ¬an xn,j ∨ z ∨ an Cn,j

x1,j ∨ x2,j ∨ z ∨ ¬a3 ∨ · · · ¬an

x1,j ∨ z ∨ ¬a2 ∨ · · · ¬an x2,j ∨ z ∨ a2 C2,j

¬a1 ∨ · · · ∨ ¬anA x1,j ∨ z ∨ a1 C1,j

∀-Red step

(a) A Q-ResT derivation of Xj from axiom clauses A and C∗,j

¬z ∨ bjWj

xn,j ∨ ¬z ∨ bj ¬xn,j ∨ ¬z ∨ bj Dn,j

x3,j ∨ · · · ∨ xn,j ∨ ¬z ∨ bj

x2,j ∨ · · · ∨ xn,j ∨ ¬z ∨ bj ¬x2,j ∨ ¬z ∨ bj D2,j

x1,j ∨ x2,j ∨ · · · xn,jXj x1,j ∨ ¬z ∨ bj D1,j

(b) A Q-ResT derivation of Wj = (¬z ∨ bj) from the de-
rived clause Xj and axiom clauses D∗,j

2

¬z

¬bn ∨ ¬z ¬z ∨ bn Wn

¬b3 ∨ · · · ∨ ¬bn ∨ ¬z

¬b2 ∨ ¬b3 ∨ · · · ∨ ¬bn ∨ ¬z ¬z ∨ b2 W2

¬b1 ∨ b2 · · · ∨ ¬bnB ¬z ∨ ¬b1 W1

∀-Red step

(c) Deriving the empty clause from the derived
clauses Wj and the axiom clause B

Fig. 5. A Q-ResT refutation of CRn from [Mahajan and Shukla 2016].

Finally, we show that CR′
n needs large existential width to refute, i.e.,

w∃( Q-Res
CR′

n) ≥ n.

Let π be a proof in Q-Res, π
Q-Res

CR′
n. List the clauses of π in sequence, π =

{D0, D1, . . . , Ds = 2}, where each clause in the sequence is either a clause from CR′
n, or

is derived from clause(s) preceding it in the sequence using resolution or ∀-Red. There
must be at least one universal reduction step in π, since all the initial clauses are nec-
essary for refuting CR′

n, some of them contain universal variables, and the only way to
remove a universal variable in Q-Res is by ∀-Red. Let t be the least index such that in
the clause Dt, a ∀-Red step has been performed on the only universal variable. Without
loss of generality, let the universal literal be the positive literal z; the argument for ¬z

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 O. Beyersdorff et al.

is identical. As the existential variables ~a,~b, ~y, and ~p all block the universal variable z,
none of them is present in the clause Dt. We use this fact to show that w∃(Dt) ≥ n. Our
strategy is to associate some set with each clause in π in a specific way, and use the set
size to bound existential width. More formally, we associate a set σ with each clause in
π, and show that the cardinality of σ is large for the clause Dt. We further argue that
Dt can have a large σ set only if its existential width is large.

We associate the following sets with the literals of CR′
n and the clauses of π.

σ(z) = ∅ = σ(¬z)
∀i ∈ [n] σ(ai) = [n] \ {i} = {1, . . . , n} \ {i}
∀i ∈ [n] σ(xi,j) = σ(¬ai) = {i}
∀i ∈ [n] σ(¬yi) = [n] \ [i] = {i+ 1, . . . , n}
∀i ∈ [n] σ(yi) = [i] = {1, . . . , i}
∀j ∈ [n] σ(bj) = [n] \ {j} = {1, . . . , n} \ {j}
∀j ∈ [n] σ(¬xi,j) = σ(¬bj) = {j}
∀j ∈ [n] σ(¬pj) = [n] \ [j] = {j + 1, . . . , n}
∀j ∈ [n] σ(pj) = [j] = {1, . . . , j}

∀D ∈ π σ(D) =
⋃

l∈D

σ(l).

The intuition of defining σ in such a way is simple: for all the initial clauses, we
want the cardinality of the set σ to be large. Observe that for all clauses C ∈ CR′

n,
σ(C) = [n].

Secondly, we want that as long as no ∀-Red step has been used, every resolution step

must preserve the cardinality of σ. Observe that for variables v in ~a,~b, ~p, ~y, the sets σ(v)
and σ(¬v) form a partition of [n]. This helps us in achieving our second goal as follows:
for CR′

n, we show that any resolution step, before a ∀-Red step, must use only one of the

variables ~a,~b, ~p, and ~y as a pivot variable. Since the resolvent clause of a resolution rule
contains all the literals from the hypothesis except the literals corresponding to the
pivot variables, and the literals corresponding to the pivot variables form a partition
of [n], the second goal follows.

Finally, we want to show that the existential width of the clause Dt is large. Observe
that we have a singleton set σ for the literals xi,j , and ¬xi,j . We show that the clause
Dt contains only the literals corresponding to the xi,j variables (along with the only
universal variable being resolved), and since Dt has a large set (this follows from our
second goal), it must have many xi,j variables.

For D ∈ π, let πD be the sub-dag of π, rooted at D. Consider the sub-dag πDt
of π. We

have the following observations:

OBSERVATION 4.3. πDt
contains at least one type-(1) clause as a source; this is be-

cause z ∈ Dt, and the only initial clauses containing z are the type-(1) clauses.

OBSERVATION 4.4. πDt
does not contain any clause of type-(2) : as z ∈ Dt, we know

that ¬z /∈ Dt. Therefore if some type-(2) clause is present in this sub-dag, the only way
to remove ¬z is via ∀-Red. This reduction will take place before the reduction on Dt,
contradicting our choice of index t. We also conclude that the literal ¬z cannot appear
anywhere in πDt

.

OBSERVATION 4.5. πDt
does not contain any type-(4) clause: we know that Dt does

not contain ~p and ~b variables (because they block z). Any use of type-(4) clauses intro-
duces ~p variables and possibly ¬b literals. Removing ~p variables introduces ¬b literals.
But ¬b can be removed only by resolving with b, which is only in type-(2) clauses. We
have already seen that type-(2) clauses are not present in πDt

.
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OBSERVATION 4.6. No clause in πDt
contains a literal ¬xi,j , since ¬xi,j are intro-

duced only in type-(2) clauses which were already ruled out.

OBSERVATION 4.7. For any clause C derived solely from type-(3) clauses, σ(C) =
[n]. This is true for type-(3) clauses by definition of σ. Using only these clauses, the
only resolution step possible is with a y variable as pivot. The claim can be verified by
induction on depth: since σ(yi) and σ(¬yi) partition [n], [n] \ σ(yi) and [n] \ σ(¬yi) also
partition [n].

We show that all clauses in πDt
that are descendants of some type-(1) clause have

large sets associated with them. In particular, we show:

CLAIM 4.8. Every clause D in πDt
such that πD contains a type-(1) clause has

σ(D) = [n].

Deferring the proof briefly, we continue with our argument. From Claim 4.8, we

conclude that σ(Dt) = [n]. Recall that the variables ~a,~b, ~y, ~p and the literals ¬xi,j are
not present in Dt. The only literals left are positive xi,j . These literals are associated
with singleton sets, and the variables xi,j for different values of j give the same sin-
gleton set. So we conclude that for each i ∈ [n], there must be some xi,j ∈ Dt. Hence
w∃(Dt) ≥ n.

It remains to establish the claimed set size.

PROOF OF CLAIM 4.8. We proceed by induction on the depth of descendants of type-
(1) clauses in πDt

. The base case is a type-(1) clause itself and follows from the defini-
tion of σ.

For the inductive step, let D be obtained by resolving (E ∨ r) and (F ∨ ¬r). There
are two cases to consider: both are descendants of some type-(1) clauses, or only one
of them, say (E ∨ r), is a descendant of a type-(1) clause. In the former case, by the
induction hypothesis, σ(E∨r) = [n] and σ(F ∨¬r) = [n]. In the latter case, σ(E∨r) = [n]
by induction hypothesis, and σ(F ∨ ¬r) = [n] from the observations above. ((F ∨ ¬r) is
not a descendant of any type-(1) clause. But it belongs to πDt

which has only type-(1)
and type-(3) clauses. So it must be a descendant of only type-(3) clauses, and hence has
[n] associated with it.)

Thus in both cases, we have σ(E ∨ r) = σ(F ∨ ¬r) = [n]. So we have σ(E) ⊇ [n] \ σ(r)
and σ(F ) ⊇ [n] \ σ(¬r). Observe that the pivot variable r can only be either an ~a or
a ~y variable. Thus σ(r) and σ(¬r) are disjoint, and hence σ(E) ∪ σ(F ) = [n]. Thus
σ(D) = σ(E) ∪ σ(F ) = [n] as claimed.

This completes the proof of the theorem.

Since tree-like space is at least as large as space, Theorem 4.2 also rules out the
space-width relation for general dag-like Q-Res proofs. However, observe that Theo-
rem 4.2 cannot be used to show that the size-existential-width relationship for general
dag-like proofs fails in Q-Res, because the QBFs CR′

n have O(n2) variables. However,
we show via another example that the relation fails to hold in Q-Res as well. This
example cannot be used for proving Theorem 4.2 because it is known to be hard for
Q-ResT [Janota and Marques-Silva 2015]. (Janota and Marques-Silva [2015] show the
hardness for

A
Exp+Res, which implies hardness for Q-ResT, as

A
Exp+Res p-simulates

Q-ResT.)

THEOREM 4.9. There is a family of false QBFs φ′n in O(n) variables such that

S(
Q-Res

φ′n) = nO(1), w∃(φ
′
n) = 3, and w∃( Q-Res

φ′n) = Ω(n).
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PROOF. Consider the following formulas φn, also introduced by Janota and
Marques-Silva [2015]:

φn = ∃e1∀u1∃c1c2 . . . ∃en∀un∃c2n−1c2n.
∧

i∈[n]

(

(¬ei ∨ c2i−1) ∧ (¬ui ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)
)

∧
(

∨

i∈[2n]

¬ci
)

We know from [Janota and Marques-Silva 2015] that φn have polynomial-size proofs
in Q-Res (but require exponential-size proofs in Q-ResT). However, in order to prove
Theorem 4.9, we need a formula with constant initial width. To achieve this we con-
sider quantified Tseitin transformations of φn, i.e., we introduce 2n+1 new existential
variables xi at the innermost quantification level in φn, and replace the only large
clause in φn by any CNF formula that preserves satisfiability. Let φ′n denote the modi-
fied formula:

φ′n = ∃e1∀u1∃c1c2 . . . ∃en∀un∃c2n−1c2n∃x0 . . . x2n.
∧

i∈[n]

(

(¬ei ∨ c2i−1) ∧ (¬ui ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)
)

∧ (5)

¬x0 ∧
∧

i∈[2n]

(xi−1 ∨ ¬ci ∨ ¬xi) ∧ x2n. (6)

Note that w∃(φ
′
n) = 3.

We refer to the clauses in (6) as x-clauses. It is clear that from the x-clauses, we
can derive the large clause of φn in 2n + 1 resolution steps and get back φn. Thus
S(

Q-Res
φ′n) ≤ S(

Q-Res
φn) + 2n+ 1 = nO(1).

We now show that φ′n needs large existential width. We follow the same strategy
used in proving Theorem 4.2.

Let π be a proof in Q-Res, π
Q-Res

φ′n. List the clauses of π in sequence, π =
{D0, D1, . . . , Ds = 2}, where each clause in the sequence is either a clause from φ′n,
or is derived from clause(s) preceding it in the sequence using resolution or ∀-Red.
There must be at least one universal reduction step in π, since all the initial clauses
are necessary for refuting φ′n, some of them contain universal variables, and the only
way to remove a universal variable in Q-Res is by ∀-Red. Let i be the least index such
that the clause Di is obtained by ∀-Red on Dj for some 0 < i. Since all x variables block
all u variables, Dj and Di cannot contain any x variables. We use this fact to show that
w∃(Di) = Ω(n). Our strategy is to associate some set with each clause in π in a specific
way, and use the set size to bound existential width.

We associate the following sets with the literals of φ′n and the clauses of π.

σ(x0) = ∅
∀i ∈ [2n] σ(xi) = [i] = {1, 2, . . . , i}

σ(¬x0) = [2n]
∀i ∈ [2n] σ(¬xi) = [2n] \ [i] = {i+ 1, . . . , 2n}
∀i ∈ [n] σ(ei) = σ(ui) = σ(¬c2i) = σ(c2i−1) = {2i}
∀i ∈ [n] σ(¬ei) = σ(¬ui) = σ(¬c2i−1) = σ(c2i) = {2i− 1}

∀D ∈ π σ(D) =
⋃

l∈D

σ(l).

Note that for any literal ℓ, σ(ℓ) and σ(¬ℓ) are disjoint. The intuition of defining σ this
way is as in the proof of Theorem 4.2.

For D ∈ π, let πD be the sub-dag of π, rooted at D.

CLAIM 4.10. πDi
contains at least one x-clause (axiom clause of type-(6)).
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PROOF. The parent Dj of node Di contains a universal variable which is then re-
moved through ∀-Red to get Di. The universal variables appear only in clauses of type-
(5), but are blocked by the c-variables in every clause where they appear. Thus, before
a reduction is permitted, a c-variable must be eliminated by resolution. Since all c-
variables appear only positively in type-(5) clauses, some x-clause must be used in the
resolution.

We show that all clauses in πDi
that are descendants of some x-clause have large

sets associated with them. In particular, we show:

CLAIM 4.11. Every clause D in πDi
such that πD contains an x-clause has σ(D) =

[2n].

Deferring the proof briefly, we continue with our argument. From Claim 4.11, we con-
clude that σ(Di) = [2n]. Recall that none of the x variables belongs to Di. All other
literals are associated with singleton sets, so Di must contains at least 2n literals in
order to be associated with the complete set [2n]. Since Q-Res proofs prohibit a vari-
able and its negation in the same clause, at most n of the literals in Di can be universal
variables. Thus Di has at least n existential literals, hence w∃(Di) = Ω(n).

It remains to establish the claimed set size.

PROOF OF CLAIM 4.11. We proceed by induction on the depth of descendants of x-
clauses in πDi

. The base case is an x-clause itself and follows from the definition of σ.
For the inductive step, let D be obtained by resolving (E ∨ z) and (F ∨¬z). There are

two cases to consider:
Case 1: Both (E ∨ z) and (F ∨ ¬z) are descendants of x-clauses (not necessarily the
same x-clause). Then by induction, σ(E ∨ z) = σ(F ∨ ¬z) = [2n]. So σ(E) ⊇ [2n] \ σ(z)
and σ(F ) ⊇ [2n] \ σ(¬z). Since σ(z) and σ(¬z) are disjoint, σ(E) ∪ σ(F ) = [2n]. Thus
σ(D) = σ(E) ∪ σ(F ) = [2n] as claimed.
Case 2: Exactly one of (E ∨ z) and (F ∨ ¬z) is a descendant of an x-clause. Without
loss of generality, let F ∨¬z be the descendant. Then E ∨ z is either a type-(5) clause or
is derived solely from type-(5) clauses using resolution. However, observe that the only
clauses derivable solely from type-(5) clauses via resolution, without creating tautolo-
gies as mandated in Q-Res, are of the form (c2i−1∨c2i) for some i. It follows that z is not
an x variable. Hence σ(z) and σ(¬z) are distinct singleton sets. Further, z cannot be a
u variable either, since resolution on universal variables is not permitted in Q-Res.

Now note that for any type-(5) clause C, σ(C) = {2i − 1, 2i} for the appropriate i.
Similarly, σ(c2i−1 ∨ c2i) = {2i− 1, 2i}. So if E ∨ z is one of these clauses, then σ(E ∨ z) =
σ(z) ∪ σ(¬z) and σ(E) = σ(¬z). Further, as in Case 1, by induction we know that
σ(F ∨ ¬z) = [2n] and σ(F ) ⊇ [2n] \ σ(¬z). Hence, σ(E ∨ F ) = [2n] as claimed.

This completes the proof of the theorem.

The above counterexamples are provided by formulas that require small size, but
large existential width. We will now illustrate via another example that also large size
and large width can occur. These examples are very natural formulas based on the
parity function, which have recently been used by Beyersdorff et al. [2015] to show
exponential size lower bounds for Q-Res, and indeed a separation between Q-Res andA

Exp+Res. We will later use these formulas in Section 5 to also show a separation for
width between Q-Res and

A
Exp+Res.

Let xor(o1, o2, o) be the set of clauses expressing o ≡ o1⊕o2; that is, {¬o1∨¬o2∨¬o, o1∨
o2 ∨ ¬o, ¬o1 ∨ o2 ∨ o, o1 ∨ ¬o2 ∨ o}. In [Beyersdorff et al. 2015], the QBF QPARITYn is
defined as follows:

∃x1 · · · ∃xn ∀z ∃t2 · · · ∃tn. xor(x1, x2, t2) ∪
⋃n

i=3
xor(ti−1, xi, ti) ∪ {z ∨ tn,¬z ∨ ¬tn}.
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The xi variables act as the input for the parity function, and the ti variables are
defined inductively to calculate PARITY(x1, . . . , xi).

We now complement the exponential size lower bound of Beyersdorff et al. [2015] by
a width lower bound.

THEOREM 4.12. w∃( Q-Res
QPARITYn) ≥ n.

PROOF. In the formula QPARITYn, the contradiction occurs semantically because
of the clauses z ∨ tn, ¬z ∨ ¬tn asserting z 6= tn (along with the fact that the values of
x variables uniquely determine the values of all t variables, in particular, tn). Thus,
at least one of these clauses must be used in any proof, necessitating a ∀-reduction.
In Q-Res we cannot reduce z while any of the t variables are present; and due to the
restrictions in Q-Res we cannot resolve any descendants of z∨tn with any descendants
of ¬z ∨ ¬tn until there is at least one ∀-reduction.

Consider a smallest Q-Res proof, and assume without loss of generality that a
first (lowest) ∀-reduction happens on the positive literal z. Therefore before this ∀-
reduction step we have essentially a resolution proof π from Γ = xor(x1, x2, t2) ∪
⋃n

i=3 xor(ti−1, xi, ti) ∪ {tn ∨ z}. The clause D that occurs in π immediately before the
∀-reduction must only contain variables from {x1, . . . , xn} apart from the literal z, else
the reduction is blocked.

We now use the following observation.

CLAIM 4.13. Suppose x1 ⊕ · · · ⊕ xn � C for some clause C. Then C is either a tau-
tology or C contains all variables x1, . . . , xn.

PROOF OF CLAIM 4.13. Suppose the clause C is not a tautology, but for some
nonempty set I ⊂ [n], none of the variables xi with i ∈ I appears in C. Since C is
a non-tautological clause, there is exactly one partial assignment α falsifying C. By
setting the variables xi, i ∈ I, appropriately, we can increase α to an assignment satis-
fying x1 ⊕ · · · ⊕ xn, but still falsifying C. Hence x1 ⊕ · · · ⊕ xn 2 C.

Any assignment to the x variables satisfying x1 ⊕ · · · ⊕ xn has a unique extension to
z and the t variables satisfying all clauses of the formula QPARITYn. This extension
necessarily has tn = x1 ⊕ · · · ⊕ xn = 1 and z = 0. Since it satisfies all axioms, by
soundness of resolution, it also satisfies D.

This, along with Claim 4.13, implies that D is either a tautology or has all x vari-
ables. Since it cannot be a tautology (it appears in the proof, and besides, at the very
least it has the variable z), it must have all x variables, and hence has existential
width n.

5. SIMULATIONS: PRESERVING SIZE, WIDTH, AND SPACE ACROSS CALCULI

After these strong negative results, ruling out size-width and space-width relations
in Q-Res and Q-ResT, we aim to determine whether any positive results hold in the
expansion systems

A
Exp+Res and IR-calc. Before we can do this we need to relate the

measures of size, width, and space across the three calculi Q-Res,
A

Exp+Res, IR-calc.
Of course, such a comparison in terms of refined simulations is also interesting in
its own as it determines the relative strength of the different proof systems. As size
corresponds to running time, and space to memory consumption of QBF solvers, such
a comparison yields interesting insights into the power of QBF solvers using CDCL vs.
expansion techniques.

It is known that IR-calc p-simulates
A

Exp+Res and Q-Res [Beyersdorff et al. 2014],
and that

A
Exp+Res p-simulates Q-ResT [Janota and Marques-Silva 2015]. We revisit

these proofs, with special attention to the width parameter, and also obtain simulating
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proofs that are tree-like if the original proof is tree-like. The relationships we establish
are stated in the following theorem:

THEOREM 5.1. For all false QBFs F , the following relations hold:

(1) 1
2S( IRT-calc

F) ≤ S( ∀Exp+ResT
F) ≤ S(

IRT-calc
F) ≤ 3S(

Q-ResT
F).

(2) w(
IR-calc

F) = w( ∀Exp+Res
F) ≤ w∃( Q-Res

F).

(3) CSpace( ∀Exp+ResT
F) = CSpace(

IRT-calc
F) ≤ CSpace(

Q-ResT
F).

These results follow from Proposition 5.2 and Lemmas 5.3, 5.4 that are stated and
established below.

PROPOSITION 5.2 (BEYERSDORFF ET AL. [2014]). Any proof in
A

Exp+Res of size
S, width W , and space C can be efficiently converted into a proof in IR-calc of size at
most 2S, width W , and space C. If the proof in

A
Exp+Res is tree-like, so is the resulting

IR-calc proof.

PROOF. In IR-calc, when an axiom is downloaded, the existential literals in it are
annotated partially. However in

A
Exp+Res, the annotations are complete; all universal

variables at a lower level than a literal appear in its annotation. To convert a proof π inA
Exp+Res to one in IR-calc, all that is needed is to follow up each axiom-download with

an instantiation that completes the annotations as in π. This introduces at most one
extra step per leaf but does not increase width. Also observe that the space required
has not changed: to instantiate a clause we can reuse the same space.

LEMMA 5.3.
A

Exp+ResT p-simulates IRT-calc while preserving its width, size, and
space.

PROOF. Recall the main reason why IRT-calc proofs differ from those in
A

Exp+ResT:
axioms are downloaded with partial rather than complete annotations, and annota-
tions can be extended at any stage by the inst operation.

The idea is to systematically transform an IRT-calc proof, proceeding downwards
from the top where we have the empty clause, and modifying annotations as we go
down, so that when all leaves have been modified the resulting proof is in fact anA

Exp+ResT proof. This crucially requires that we start with a tree-like proof; if the un-
derlying graph is not a tree, we cannot always find a way of modifying the annotations
that will work for all descendants.

Let π be an IRT-calc proof of a false QBF F . Without loss of generality, we can assume
that every resolution node has, as parent, an instantiation node. (If it does not, we
introduce the dummy inst(∅, ∗) node between it and its parent.) Since the proof is tree-
like, we can also collapse contiguous instantiation nodes into a single instantiation
node. Thus, as we move down a path from the root, nodes are alternately instantiation
and resolution nodes. We consider each resolution node and its parent instantiation
node to be at the same level.

Starting from the top, which we call level zero, we transform π to another proof π′

in IRT-calc maintaining the following invariants: after the ith step, all the instantiated
clauses up to level i are fully annotated and the instantiating assignments are com-
plete. Thus the instantiation steps become redundant. This further implies that after
the last level (when we reach the axiom farthest from the top), the resulting proof is in
fact a

A
Exp+ResT proof.

— At level 0: The node at this level must be a resolution producing the empty clause,
followed by a dummy instantiation with the empty assignment. Thus the clauses at
this level are already fully annotated, but the instantiating assignment is far from
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complete. Pick an arbitrary complete assignment, say σ, and instantiate the empty
clause with σ. Clearly the invariants hold now.

— Assume that the invariants holds after processing all nodes at level i− 1.
— At level i: Let D be an instantiated clause at level i − 1, obtained by instantiat-

ing some clause C by an assignment σ. That is, D = inst(C, σ). By the induction
hypothesis, D is fully annotated and σ is complete. Let C be obtained by resolving
E = (G ∨ xτ ) and F = (H ∨ ¬xτ ). We need to make E and F fully annotated. Let
E = inst(I, β1) and F = inst(J, β2) in π. Replace E by E′ = inst(I, β1 ◦ σ) and F by
F ′ = inst(J, β2 ◦ σ). As σ is complete, both β1 ◦ σ and β2 ◦ σ are complete, and hence

both E′ and F ′ are fully annotated. The resolution step is now performed on xτ
′

,
where τ ′ = τ ◦ σ is the resulting annotation on x. It is easy to see that the resolvent
of E′ and F ′ is D, so the intermediate instantiation step going from C to D becomes
redundant.

It is clear that the simulation preserves width. It also does not increase size: we may
introduce dummy instantiation nodes to make the proof ‘alternating’, but after the
transformation, all instantiations — dummy and actual — are eliminated completely.
It is also clear that the simulation preserves the space needed, since the structure of
the proof is preserved.

The simulation in Lemma 5.3 exhibits an interesting phenomenon: while it shows
that the tree-like versions of

A
Exp+Res and IR-calc are p-equivalent, it was shown by

Beyersdorff et al. [2015] that in the dag-like versions, IR-calc is exponentially stronger
than

A
Exp+Res. Thus

A
Exp+Res and IR-calc provide a rare example in proof complex-

ity of two systems that coincide in the tree-like model, but are separated in the dag-like
model.

LEMMA 5.4. IRT-calc p-simulates Q-ResT while preserving space and existen-
tial width exactly and size upto a factor of 3. That is, S(

IRT-calc
F) ≤ 3S(

Q-ResT
F),

CSpace(
IRT-calc

F) ≤ CSpace(
Q-ResT

F), and w(
IR-calc

F) ≤ w∃( Q-Res
F).

PROOF. We use the same simulation as given by Beyersdorff et al. [2014]. This sim-
ulation was originally for dag-like proof systems, but here we check that it also works
for tree-like systems, and we observe that space and existential width are preserved.

Let C1, . . . , Ck be a Q-ResT proof. We translate the clauses into clauses D1, . . . , Dk,
which will form the skeleton of a proof in IR-calc.

— For an axiom Ci in Q-ResT we introduce the same clause Di by the axiom rule of
IR-calc, i.e., we remove all universal variables and add annotations.

— If Ci is obtained via ∀-reduction from Cj , then Di = Dj ; we make no change.
— Consider now the case that Ci is derived by resolving Cj and Ck with pivot variable
x. Then Dj = xτ ∨ Kj and Dk = ¬xσ ∨ Kk. It is shown by Beyersdorff et al. [2014]
that the annotations τ and σ are not contradictory; in fact, no annotations in the
two clauses are contradictory. So if we define D′

j = inst(σ,Dj) and D′
k = inst(τ,Dk),

then the annotations of x in D′
j and ¬x in D′

k match, and we can resolve on this
literal. Define D′

i as the resolvent of D′
j and D′

k. We can perform a further instan-
tiation to obtain Di = inst(η,Di), where η is the set of all assignments to universal
variables appearing anywhere in D′

i. Di has no more literals than Ci. For details,
see [Beyersdorff et al. 2014].

Note that to complete this skeleton into a proof, we only add instantiation rules. Thus,
if the original proof was tree-like, so is the new proof. If the original proof has size
S, the new proof has size at most 4S, since each resolution may now be preceded by
two instantiations and followed by one instantiation. However, this is an overcount,
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since we are counting two instantiations per edge, and contiguous instantiations can be
collapsed. That is, every instantiation following a resolution step can be merged with
the instantiation preceding the next resolution and need not be counted separately.
The only exception is at the root, where there is nothing to collapse it with. However,
at the root, the instantiation itself is redundant and can be discarded. Thus we obtain
a new proof of size at most 3S.

Further, if the original proof had existential width w, then the new proof has width
w since each Di has at most (annotated versions of) the existential literals of Ci.

Regarding space, observe that simulating axiom download and ∀-Red do not require
additional space. At the resolution step, the simulation first performs additional in-
stantiations. But instantiation does not need additional space. So the space bound
remains the same.

As a by-product, these simulations enable us to give an easy and elementary proof
of the simulation of Q-ResT by

A
Exp+Res, shown by Janota and Marques-Silva [2015]

via a more involved argument. In fact, our result improves upon the simulation of
Janota and Marques-Silva [2015] as we show that even tree-like

A
Exp+Res suffices to

p-simulate Q-ResT.

COROLLARY 5.5 (JANOTA AND MARQUES-SILVA [2015]).
A

Exp+ResT p-simulates
Q-ResT.

PROOF. By Lemma 5.3,
A

Exp+ResT p-simulates IRT-calc, which in turn p-simulates
Q-ResT by Lemma 5.4.

Using again the width lower bound for QPARITYn (Theorem 4.12) we can show that
item 2 of Theorem 5.1 cannot be improved, i.e., we obtain an optimal width separation
between Q-Res and

A
Exp+Res.

THEOREM 5.6. There exist false QBFs ψn with w∃( Q-Res
ψn) = Ω(n), but

w( ∀Exp+Res
ψn) = O(1).

PROOF. We use the QPARITYn formulas, which by Theorem 4.12 require existential
width n in Q-Res. To get the separation it remains to show w( ∀Exp+Res

QPARITYn) =
O(1). For this we use the following

A
Exp+Res proofs of QPARITYn of Beyersdorff et al.

[2015]: the formulas QPARITYn have exactly one universal variable z, which we ex-
pand in both polarities 0 and 1. This does not affect the xi variables, but creates dif-

ferent copies t
z/0
i and t

z/1
i of the existential variables right of z. Using the clauses of

xor(ti−1, xi, ti), we can inductively derive clauses representing t
z/0
i = t

z/1
i . This lets us

derive a contradiction using the clauses t
z/0
n and ¬t

z/1
n .

Clearly, this proof only contains clauses of constant width, giving the result.

6. POSITIVE RESULTS: SIZE, WIDTH, AND SPACE IN TREE-LIKE QBF CALCULI

We are now in a position to show some positive results on size-width and size-space
relations for QBF resolution calculi. However, most of these results only apply to rather
weak tree-like proof systems.

6.1. Relations in the expansion calculi ∀Exp+Res and IR-calc

We first observe that for
A

Exp+Res almost the full spectrum of relations from classical
resolution remains valid.

THEOREM 6.1. For all false QBFs F , the following relations hold:

(1) S
(

∀Exp+ResT
F
)

≥ 2
w
(

∀Exp+Res
F
)

−w∃(F)
.
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(2) S
(

∀Exp+ResT
F
)

≥ 2
CSpace

(

∀Exp+ResT
F

)

− 1.

(3) CSpace
(

∀Exp+ResT
F
)

≥ CSpace
(

∀Exp+Res
F
)

≥ w
(

∀Exp+Res
F
)

− w∃(F) + 1.

PROOF. This theorem follows from the analogous statements for classical resolu-
tion. We just describe how to apply those results to

A
Exp+Res.

We know that in
A

Exp+ResT proofs, leaves corresponds to the expanded clauses from
F . The expanded clauses contain only existential (annotated) literals and no universal
literals. Let G be the QBF obtained after expanding F based on all possible assign-
ments of universal variables. Clearly, G contains no universal variables and hence can
be treated as a propositional CNF formula (all variables are only existentially quan-
tified). That is, if G is the matrix of clauses in G, then G asserts that G is satisfiable.
Also, w(G) = w(G) = w∃(F).

Refutations of F in
A

Exp+Res (respectively,
A

Exp+ResT) are precisely refuta-
tions (resp. tree-like refutations) of G in classical resolution; the size, space and

width are exactly the same, by definition. That is, S(
ResT

G) = S( ∀Exp+ResT
F),

w(
Res

G) = w( ∀Exp+Res
F), CSpace(

Res
G) = CSpace( ∀Exp+Res

F), and CSpace(
ResT

G) =

CSpace( ∀Exp+ResT
F). Now the Theorem follows by applying Theorems 3.3, 3.4, and

3.5, on G.

We remark that as in item 3 from Theorem 6.1, lower bounds in terms of width for
total space, which not only counts the number of pebbled clauses, but also the literals
in it, cf. [Bonacina et al. 2016], can also be transferred. In fact, Bonacina [2016] shows
that in propositional resolution, total space is at least width squared, and the same
holds for

A
Exp+Res – total space is at least square of existential width – as we directly

transfer the propositional bounds to that system.
By the equivalence of

A
Exp+ResT and IRT-calc with respect to all the three measures

size, width, and space (Theorem 5.1) we can immediately transfer all results from
Theorem 6.1 to IRT-calc.

THEOREM 6.2. For all false QBFs F , the following relations hold:

(1) S
(

IRT-calc
F
)

≥ 2
w
(

IR-calc
F
)

−w∃(F)
.

(2) S
(

IRT-calc
F
)

≥ 2
CSpace

(

IRT-calc
F
)

− 1.

(3) CSpace
(

IRT-calc
F
)

≥ w
(

IR-calc
F
)

− w∃(F) + 1.

6.2. The size-space relation in tree-like Q-resolution

We finally return to Q-Res. Most relations were already ruled out in Section 4 for both
Q-Res and Q-ResT. The only relation that we can still show to hold is the classical
size-space relation (Theorem 3.4), which we transfer from ResT to Q-ResT.

In classical resolution, this relationship was obtained using pebbling games [Este-
ban and Torán 2001]. We observe that the same approach works for Q-ResT as well,
giving the analogous relationship. That is, we show:

THEOREM 6.3. For a false QBF F ,

S(
Q-ResT

F) ≥ 2
CSpace

(

Q-ResT
F
)

− 1.

PROOF. The proof is almost identical to the proof for classical resolution by Esteban
and Torán [2001]. We give a brief sketch.
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Let S(
Q-ResT

F) = s. Consider a tree-like Q-ResT proof π of F (i.e., π
Q-ResT

F), of size
s, and let T be the underlying proof-tree.

In contrast to classical resolution, a proof graph in Q-Res may have unary nodes
corresponding to ∀-reductions. In particular, for a proof in Q-ResT, there may be paths
corresponding to series of ∀-reductions. Once the lower end of such a path is pebbled,
the same pebble can be slid up to the top of the path; no additional pebbles are needed.
So without loss of generality we work with the tree T ′ obtained by shortcutting all
paths containing unary nodes.

Let dc(T ) be the depth of the biggest complete binary tree that can be embedded in
T ′ or in T . (We say that a graph G1 is embeddable in a graph G2 if a graph isomorphic
to G2 can be obtained from G1 by adding vertices and edges or subdividing edges of
G1.) Clearly, 2dc(T )+1 − 1 ≤ s.

By induction on |T ′|, we can show that dc(T ) + 1 pebbles suffice to pebble T ′. Hence,
by the argument given above, dc(T ) + 1 pebbles suffice to pebble T as well. Now, by
Definition 3.2, we obtain CSpace(

Q-ResT
F) ≤ dc(T ) + 1. Hence

2CSpace(
Q-ResT

F) − 1 ≤ 2dc(T )+1 − 1 ≤ s = S(
Q-ResT

F)

as claimed.

7. CONCLUSION

Our results show that the success story of width in resolution needs to be rethought
when moving to QBF. Indeed, the question arises: is width a central parameter in QBF
resolution? Is there another parameter that plays a similar role as classical width for
understanding QBF resolution size and space?

Our findings almost completely uncover the picture for size, space, and width for the
most basic and arguably most important QBF resolution systems Q-Res,

A
Exp+Res,

and IR-calc. We showed that for the width measure, which counts both the universal
and existential variables, the size-width relation as in resolution fails in tree-like Q-
Res as well as in general Q-Res (Proposition 3.6). We also introduce a tighter width
measure, i.e., existential width, which only counts the existential variables and showed
that the size-width relation fails, even for this tighter measure, for both the tree-like
Q-Res (Theorem 4.2) as well as for general Q-Res (Theorem 4.9).

One question prompted by these results is whether one can define an even tighter
width measure for which we can obtain positive results for Q-Res. For instance, such
a measure could attach a weight to the existential variables, and, intuitively, the left-
most existential block should receive the highest weight. However, our results above
point to a negative answer also here.

In particular, consider QBFs of the form Q1X1, · · · QnXn. F , where Qi ∈ {∃, ∀}, with
Q1 = ∃,Qi 6= Qi+1, and Xi are pairwise disjoint sets of variables. F is a CNF formula
over variables X1 ∪ · · · ∪Xn. Define the first-block existential width for a clause C (over
variables X1 ∪ · · · ∪ Xn) to be the number of existential literals in C from the first
existential block (i.e., from X1). We denote this measure by w∃1

(C).
For the false QBF CR′

n from Theorem 4.2 we have S(
Q-ResT

CR′
n) = nO(1), w∃1

(CR′
n) =

O(1), but w∃1
(

Q-Res
CR′

n) ≥ n. This holds because any tree-like Q-Res proof π must
contain a clause Dt where the first ∀-Red step is performed, and we already showed
in Theorem 4.2 that Dt must contains at least n distinct existential variables xi,j .
Obviously, xi,j belong to the first existential block of CR′

n. Thus Theorem 4.2 shows
that the size-width relation with even the width measure w∃1

fails in tree-like Q-Res.
The most immediate open question arising from our investigation is whether size-

width relations hold for general dag-like
A

Exp+Res or IR-calc proofs. The issue here
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is that in the classical size-width relation of Ben-Sasson and Wigderson [2001] the
number of variables enters the formula in a crucial way. For the instantiation calculi it
is not clear what should qualify as the right count for this as different annotations of
the same existential variable are formally treated as distinct variables (which is also
clearly justified by the semantic meaning of expansions).

For further research it will also be interesting whether size-width or space-width
relations apply to any of the stronger QBF resolution systems QU-Res [Van Gelder
2012], LD-Q-Res [Balabanov and Jiang 2012], or IRM-calc [Beyersdorff et al. 2014].
However, we conjecture that the negative picture also prevails for these systems.
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