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Abstract—We propose a machine learning method to
automatically classify the extracted ngrams from a corpus
into terms and non-terms. We use 10 common statistics in
previous term extraction literature as features for training.
The proposed method, applicable to term recognition in
multiple domains and languages, can help 1) avoid the labo-
rious work in the post-processing (e.g. subjective threshold
setting); 2) handle the skewness and demonstrate noticeable
resilience to domain-shift issue of training data. Experiments
are carried out on 6 corpora of multiple domains and
languages, including GENIA and ACLRD-TEC(1.0) corpus
as training set and four TTC subcorpora of wind energy
and mobile technology in both Chinese and English as test
set. Promising results are found, which indicate that this
approach is capable of identifying both single word terms
and multiword terms with reasonably good precision and
recall.
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I. INTRODUCTION

Automatic Term Extraction (ATE) (also known as Term

Recognition) has many potential applications, such as

human or machine translation, document indexing, lexi-

cography, knowledge engineering, etc.[1]. There have been

a plethora of studies into ATE. [2] have identified among

them that rule-based systems, purely statistical systems

and hybrid systems are three predominant approaches to

Automatic Term Recognition (ATR).

Rule-based Approach is heavily language-dependent

with low portability and extensibility to a different lan-

guage. Additionally, PoS based rule system suffers from

low recall due to erroneous PoS tagging. Moreover,

complex structures using modifiers always pose parsing

challenges for most simple PoS tagging algorithms.

Purely statistical systems are commonly achieved by

means of frequency, significance and degree of association

and heuristics measures in order to determine the termhood

of words and the unithood for multiple terminology units.

However, studies have shown that quantity and quality of

the dataset have been identified as the important factors

influencing statistical approaches [3].

For the predominant hybrid approach, it exploits the

advantages of both rule-based and statistical methods.

Statistical steps are applied to the narrowed-down list

of candidate terms identified by various domain-specific

linguistic heuristics so as to further improve the accuracy.

Nevertheless, the combination of linguistic filters and

statistical ranking would lead to a degenerated precision

with the increase of recall, as reported in [4].

In general, these approaches are heuristic, unsupervised

in nature. Supervised learning method has been proved

superior to unsupervised methods in many NLP tasks,

including but not limited to sentiment analysis [5], named

entity recognition [6], event detection [7], and coreference

resolution [8]. These studies show that supervised learning

often produces a state-of-the-art system that outperforms

systems built with complex models.

In contrast to other machine learning based methods

[9], [10], our approach does not restrict itself on a limited

set of certain patterns or unigram/bigram terms. The

more difficult challenge of Multi-Word Terms (MWTs)

extraction is also tackled instead. In addition, unlike that

most of the current studies work only on monolingual

data and single domain, the effectiveness of our proposed

features and model across multiple domains and languages

are examined too. For cross-language processing, we adopt

no features that require domain-specific heuristics (e.g.

term length).

II. METHODOLOGY

In the following we briefly describe our proposed

method.

A. Supervised Learning Method

We treat the process of identifying terms as a supervised

learning task. Our assumption is that statistical features

applicable to both single words and multiword lexemes

can be employed to train supervised classifiers, given

sufficient annotated data of different domains. This ap-

proach is domain independent and could minimize the

negative impacts of previous heuristic-based and language

dependent methods.

For the purpose of comparison, we select six learning

algorithms, including Random Forest (RF), Linear Sup-

port Vector Machine (LinearSVC), Radial Basis Function

Support Vector Machine (SVC RBF), Multinomial Naive

Bayes (MNB), Linear model (Logistic Regression, SLR)

and Linear model (SGDClassifier, SGD), in the wish to

test whether the proposed approach is robust enough in

different types of classifiers and estimate the optimal

performance. For the model selection, stratified ten-fold

cross-validation is used and repeated grid-search is em-

ployed for parameter tuning.



Table I
FEATURES USED FOR TRAINING

Feature Algorithm

TTF Total Term Freq.
ATTF Average TTF
TTF-IDF TTF with Inverse doccument Freq.
RIDF Residual IDF
C-Value C-Value
RAKE Rapid Keyword Extraction

χ
2 Chi-square

Weirdness Weirdness
GlossEx Glossary Extraction
TermEx Term Extraction

Table II
TRAINING AND TESTING CORPORA

Corpus # of documents Size(tokens) RTL

GENIA 1,999 420,000 35,800
ACL RD-TEC 10,900 36,729,513 22,013
TTC-W (EN) 172 750,855 188
TTC-M (EN) 37 308,263 143
TTC-W (ZH) 178 4,263,336 204
TTC-M (ZH) 92 2,435,232 150

B. Features

Our study is based on the assumption that domain-

specific terms has morphological feature, distribution fea-

ture, context feature, domain-specific feature and so forth,

which distinguish them from common words. Identifying

and leveraging those features, to indicate the term’s ter-

mhood or unithood for MWTs, serve as a basis for the

methods of ATR.

We take some conventional measures for candidate

terms as our feature input obtained from JATE 2.0 [11]

(listed in Table I).

III. EXPERIMENTS

A. Corpora

6 corpora are selected in our experiment, covering

4 different domains and 2 different languages (ranging

from small to large size). The GENIA corpus [12],ACL

RD-TEC(Version 1.0) [13] are used as training and de-

velopment data, while TTC subcorpora of wind energy

(TTC-W) and mobile technology (TTC-M) in English and

Chinese [14] are used as test sets for evaluation. Detailed

information of all 6 corpora we used are presented in Table

II.

B. Dataset Pre-processing

Both English and Chinese datasets are tokenized. Next,

1-5 grams candidates are extracted and further filtered by

stop words.

In the training stage, two methods of feature scaling

are applied respectively, namely Min-Max scaling and

Mean and Standard deviation scaling. To address the low

proportion of true terms in unbalanced data set (see details

in Table III), under-sampling method [15] for the majority

non-terms is applied.

Table III
TERMS AND NON-TERMS IN NGRAM DATASETS

Ngram Datasets # of terms # of non-terms # recall

GENIA 4,240 45,350 38%
ACL RD-TEC 9,057 858,544 45.1%
TTC-W (EN) 120 30,925 76.5%
TTC-M (EN) 149 20,505 98%
TTC-W (ZH) 125 132,407 41.8%
TTC-M (ZH) 168 105,599 57.1%

All training sets (i.e., GENIA and ACL RD-TEC) are

split proportionally (75% for training and 25% for held-out

development). All 4 TTC test datasets generated and used

in our experiments are labeled data based on the public

available Reference Term List (RTL) [16], which contains

annotated terms, their inflected forms, and synonymous

variants.

C. Evaluation

For our experiment, the performance of 7 classifiers

trained on two train sets (‘GENIA’ and ‘ACL RE-TEC’)

is evaluated on the held-out set and the other 5 separate

test sets. Additionally, the contribution of each feature

is studied. We assume that all the features are indepen-

dent from each other, and therefore Pearsons correlation

coefficient is employed to evaluate statistical correlation

between individual feature and the label (i.e. term vs. non-

term). GENIA dataset is employed to study the feature

correlation. Pearsons score is computed by Weka tool

[17]. The performance variance with Top N features are

examined based on the SLR classifier.

Although the task is treated as a binary classification

problem, we only focus on the evaluation results cor-

responding to ‘term’ class. The standard Precision (P),

Recall (R) and F-measure (F1) is adopted to measure the

output of the model. These measures are defined as:

precison =
tp

tp+ fp
(1)

recall =
tp

tp+ fn
(2)

F1 =
2∗tp

2∗tp+ fp+ fn
(3)

where tp stands for true positive (terms), fp stands

for false positive (non-terms misclassified as terms) and

fn stands for false negative (terms misclassified as non-

terms).

Table IV presents the previous state-of-the-art methods

on four English corpora. Firstly, TTC TermSuite v2.21[18]

is used in our experiment as the primary baseline for four

English dataset. At the time of writing, it does not support

Chinese processing. PoS based C-Value implementation in

JATE 2.0 [11] is also chosen as baseline for ACL RD-TEC

and GENIA corpus. [19]’s system was the best performed

system in the shared task of BioNLP/NLPBA 2004 which

used GENIA as dataset. It is worth noting that except for

1http://termsuite.github.io/



[19], since the goal of predominant ATR systems focus

on term ranking, these results are not directly comparable

with our results. Thus, we only report and compare our

results with their Top N subset performance. For all test

sets, we further compare results between classifiers trained

with two different train sets.

Table IV
BASELINES PERFORMANCE ON FOUR ENGLISH CORPORA

Precision Recall

Baselines Dataset Top 50 Top 100 Top 300 Top 500 Top 800 Top 1000 Top 1500 Top 2000 Top 10000 Overall Overall

TermSuite v2.2

ACL RD-TEC 0.12 0.09 0.14 0.15 0.12 0.11 - - 0.06 - 0.15

GENIA 0.48 0.46 0.48 0.43 0.43 0.44 - - 0.46 - 0.1

TTC-W(EN) 0.4 0.29 0.18 0.12 0.08 0.08 - - 0.01 - 0.44

TTC-M(EN) 0.32 0.24 0.15 0.12 0.45 0.07 - - 0.01 - 0.62

JATE 2.0
CValue (PoS)

ACL RD-TEC 0.46 0.41 0.37 0.36 0.35 0.35 0.35 0.36 0.28 - 0.74

GENIA 0.94 0.91 0.9 0.86 0.84 0.82 0.79 0.77 - - 0.1

Zhou & Su (2004) GENIA - - - - - - - - - 0.76 0.69

IV. RESULTS AND DISCUSSION

The performance of 6 classifiers on 6 datasets is pre-

sented in Table V. The classifers with best F1 score are

considered as best models in our experiment. With regards

to the overall recall, baseline results of four English

corpora overall are relatively lower than those of our

classifiers trained on either train set, except that the result

of [19] on GENIA is about 25% higher than that of our

optimal model (LinearSVC) trained with ACL RD-TEC

dataset.

The recalls of optimal models with ACL RD-TEC train

set on two TTC English test sets are relatively higher than

the results of those on GENIA train set by 1% and 4%

respectively, while the results in two TTC Chinese test

sets are much lower than those of GENIA based optimal

models by 16% and 11% respectively. More obviously, the

optimal model (SVC RBF) with GENIA train set has a

48% higher recall on ACL RD-TEC test set over the ACL

RD-TEC based optimal model (LinearSVC) on GENIA

test set.

As expected, the Top N precisions of statistic based

baselines (TermSuite v2.2 and JATE 2.0 CValue) decease

gradually with the increase of recall. The overall precisions

of all optimal models trained with either GENIA or ACL

RD-TEC dataset obtained much higher precisions than all

the Top N subset precisions of TermSuite baselines on two

English TTC datasets. In addition, the overall precisions

of GENIA based optimal models in ACL RD-TEC test set

are much higher than all the top N precisions of JATE 2.0

CValue baseline for ACL RD-TEC corpus (by 26%, 31%,

35%, 36%, 37%, 37%, 37%, 36% and 44% respectively).

However, the overall precision (79%) of ACL RD-TEC

based optimal model in GENIA test set is relatively

lower than all subsets of Top 1500 precisions of JATE 2.0

Cvalue baselines by (by 15%, 12%, 11%, 7%, 5% and

3% respectively), despite that the result is still slightly

higher than previous best performed system [19] by 3%

and much higher than all Top N precisions of TermSuite

baseline. In terms of precision, ACL RD-TEC train set

Table V
MODEL PERFORMANCE ON 6 TESTING DATASETS

GENIA ACL RD-TEC

Classifier Testing Dataset Precision Recall F1 Precision Recall F1

Random Forest

GENIA/ACL(held-out) 0.80 0.84 0.82 0.84 0.88 0.86
TTC-W(EN) 0.79 0.71 0.75 0.84 0.51 0.64
TTC-M(EN) 0.77 0.74 0.75 0.83 0.68 0.75
TTC-W(ZH) 0.58 0.69 0.63 0.67 0.53 0.60

TTC-M(ZH) 0.57 0.60 0.58 0.69 0.51 0.59
ACL RD-TEC(1.0)/GENIA 0.51 0.99 0.67 0.82 0.26 0.40

LinearSVC

GENIA/ACL(held-out) 0.70 0.69 0.70 0.82 0.81 0.82
TTC-W(EN) 0.66 0.79 0.72 0.78 0.55 0.65
TTC-M(EN) 0.67 0.76 0.71 0.74 0.56 0.63
TTC-W(ZH) 0.56 0.51 0.53 0.63 0.36 0.46
TTC-M(ZH) 0.54 0.56 0.55 0.65 0.42 0.51
ACL RD-TEC(1.0)/GENIA 0.71 0.93 0.81 0.79 0.44 0.57

SVC RBF

GENIA/ACL(held-out) 0.73 0.73 0.73 0.83 0.83 0.83
TTC-W(EN) 0.69 0.82 0.75 0.76 0.68 0.71
TTC-M(EN) 0.70 0.82 0.75 0.79 0.78 0.78

TTC-W(ZH) 0.51 0.53 0.52 0.62 0.42 0.50
TTC-M(ZH) 0.59 0.65 0.62 0.64 0.44 0.52
ACL RD-TEC(1.0)/GENIA 0.72 0.92 0.81 0.81 0.41 0.55

MultinomialNB

GENIA/ACL(held-out) 0.64 0.59 0.61 0.79 0.73 0.76
TTC-W(EN) 0.51 0.89 0.65 0.66 0.75 0.70
TTC-M(EN) 0.53 0.97 0.69 0.64 0.95 0.76
TTC-W(ZH) 0.74 0.49 0.59 0.68 0.20 0.31
TTC-M(ZH) 0.66 0.62 0.64 0.76 0.36 0.49
ACL RD-TEC(1.0)/GENIA 0.69 0.82 0.75 0.78 0.22 0.35

SGD

GENIA/ACL(held-out) 0.70 0.69 0.70 0.83 0.80 0.82
TTC-W(EN) 0.69 0.79 0.74 0.73 0.55 0.63
TTC-M(EN) 0.67 0.82 0.73 0.76 0.55 0.64
TTC-W(ZH) 0.60 0.49 0.54 0.61 0.34 0.43
TTC-M(ZH) 0.58 0.59 0.58 0.62 0.38 0.47
ACL RD-TEC(1.0)/GENIA 0.72 0.92 0.81 0.79 0.43 0.56

SLR

GENIA/ACL(held-out) 0.70 0.70 0.70 0.82 0.81 0.82
TTC-W(EN) 0.68 0.81 0.74 0.73 0.57 0.64
TTC-M(EN) 0.70 0.81 0.75 0.73 0.56 0.63
TTC-W(ZH) 0.58 0.51 0.54 0.60 0.35 0.44
TTC-M(ZH) 0.59 0.59 0.59 0.65 0.37 0.47
ACL RD-TEC(1.0)/GENIA 0.71 0.93 0.80 0.78 0.44 0.57

Table VI
SLR MODEL PERFORMANCE ON TOP FEATURES

GENIA ACL RD-TEC

Classifier Testing Dataset Precision Recall F1 Precision Recall F1

Top 1 Feature

GENIA/ACL(held-out) 0.70 0.37 0.48 0.83 0.64 0.73
TTC-W(EN) 0.75 0.69 0.72 0.72 0.69 0.70
TTC-M(EN) 0.77 0.79 0.78 0.74 0.79 0.77
TTC-W(ZH) 0.72 0.57 0.64 0.77 0.54 0.63
TTC-M(ZH) 0.71 0.53 0.61 0.73 0.53 0.61
ACL RD-TEC(1.0)/GENIA 0.82 0.67 0.74 0.72 0.33 0.45

Top 2 Feature

GENIA/ACL(held-out) 0.64 0.67 0.65 0.79 0.76 0.78
TTC-W(EN) 0.74 0.69 0.72 0.70 0.58 0.63
TTC-M(EN) 0.71 0.78 0.74 0.76 0.71 0.73
TTC-W(ZH) 0.71 0.53 0.61 0.71 0.47 0.56
TTC-M(ZH) 0.68 0.53 0.59 0.69 0.51 0.59
ACL RD-TEC(1.0)/GENIA 0.75 0.81 0.78 0.76 0.41 0.53

Top 3 Feature

GENIA/ACL(held-out) 0.63 0.67 0.65 0.80 0.76 0.78
TTC-W(EN) 0.70 0.71 0.70 0.70 0.56 0.62
TTC-M(EN) 0.70 0.78 0.74 0.74 0.69 0.71
TTC-W(ZH) 0.64 0.54 0.59 0.68 0.45 0.54
TTC-M(ZH) 0.70 0.53 0.60 0.65 0.50 0.56
ACL RD-TEC(1.0)/GENIA 0.71 0.82 0.76 0.76 0.41 0.53

Top 4 Feature

GENIA/ACL(held-out) 0.63 0.65 0.64 0.80 0.76 0.78
TTC-W(EN) 0.68 0.74 0.71 0.74 0.56 0.64
TTC-M(EN) 0.71 0.79 0.75 0.74 0.69 0.71
TTC-W(ZH) 0.59 0.53 0.56 0.69 0.45 0.55
TTC-M(ZH) 0.52 0.62 0.57 0.71 0.50 0.59
ACL RD-TEC(1.0)/GENIA 0.70 0.84 0.76 0.76 0.41 0.53

Top 5 Feature

GENIA/ACL(held-out) 0.65 0.60 0.62 0.80 0.76 0.78
TTC-W(EN) 0.76 0.75 0.76 0.73 0.55 0.63
TTC-M(EN) 0.67 0.82 0.74 0.78 0.69 0.73
TTC-W(ZH) 0.69 0.61 0.65 0.66 0.43 0.52
TTC-M(ZH) 0.68 0.57 0.62 0.69 0.48 0.57
ACL RD-TEC(1.0)/GENIA 0.71 0.83 0.76 0.76 0.40 0.52

based models apparently perform better than those trained

on GENIA dataset for the latter four test sets (by 2%,

9%, 3% and 7% respectively), although the result for the

first test set (TTC-W(EN)) is 7% lower. Therefore, the

current experiment indicates that although larger train set



(ACL RD-TEC) does not necessarily perform better than

a smaller (but with a good quality) train set (GENIA) in

terms of overall performance (F1), it can be leveraged to

boost precision for specific situations (typically in ATR),

which precision is a top priority concern. The results of

optimal models trained separately with GENIA and ACL

RD-TEC on 5 test sets are highlighted in Table V.

V. CONCLUSION

In this study, we propose a machine learning method

that automatically discriminates terms from the large

amounts of ngram candidates extracted from textual cor-

pus cross domains and languages. This method exploits

10 commonly used ATE ranking algorithms available in

JATE2 library as features for machine learning methods.

Our cross-domain and cross-language evaluation presents

its robustness and efficiency in generic ATE task.

This approach is advantageous in that it can save the

steps of candidate term ranking and subjective threshold

setting as seen in conventional ATE methods, and can

work across languages and domains. Making use of fea-

tures computed and extracted by using an open-source

ATE library, term classifiers trained for (a) domain(s)

can be directly applied to a different domain or language

with acceptable accuracy. In the future, we may consider

researching into bilingual term extraction with the integra-

tion of word and phrase alignment.
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