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Abstract: The screening effectiveness of a chemical similarity 

search depends on a range of factors, including the bioactivity of 

interest, the types of similarity coefficient and fingerprint that 

comprise the similarity measure, and the nature of the reference 

structure that is being searched against a database.  This paper 

introduces the use of cross-classified multilevel modelling as a way 

to investigate the relative importance of these four factors when 

carrying out similarity searches on the ChEMBL database.  Two 

principal conclusions can be drawn from the analyses: that the 

fingerprint plays a more important role than the similarity coefficient 

in determining the effectiveness of a similarity search; and that 

comparative studies of similarity measures should involve many 

more reference structures than has been the case in much previous 

work. 

Introduction 

Similarity searching is one of the simplest, most widely used 

forms of ligand-based virtual screening in drug discovery 

programmes.  The approach is based on the empirical 

observation – normally referred to as the ‘similar property 
principle’ - that molecules that are structurally similar to each 

other tend to have the same chemical, physical and biological 

properties.[1-6] Given a reference structure, R, with some desired 

biological activity and a database of structures that have not 

previously been tested for that particular bioactivity, a similarity 

search involves comparing R with each database structure in 

turn to determine the degree of inter-molecular structural 

similarity, and then returning those database structures that 

have the largest computed similarities to R. These nearest-

neighbours are then candidates for biological screening, since 

the similar property principle indicates that they are the 

molecules with the highest a priori probabilities of exhibiting the 

desired activity. The effectiveness of the search can then be 

assessed by the extent to which the tested molecules do in fact 

prove to be bioactive. 

 

At the heart of similarity searching is the measure that is used to 

quantify the degree of resemblance between two molecules. A 

measure has three components: the representation, or 

descriptor, that is used to characterise the two molecules that 

are being compared (with 2D fingerprints being by far the most 

common form of representation in current chemical information 

systems); the weighting scheme that is used to reflect the 

relative importance of different parts of the representation 

(though, as in the work reported here, most studies have 

considered binary, unweighted representations); and the 

similarity coefficient that is used to quantify the degree of 

resemblance between two appropriately weighted structural 

representations. Given these various factors, it is hardly 

surprising that many comparative studies have been reported 

that seek to identify those methods that yield the most effective 

searches.[7-12] These studies typically focus on the effect of 

variations in one particular characteristic, with other factors 

(such as the structures in the database that is being searched) 

held constant across a set of experiments. Such procedures 

enable the identification of, e.g., the ‘best’ similarity coefficient, 
but often only in the context of specified values of the other 

characteristics, and are usually unable to say anything as to the 

relative importance of the various factors. In this paper we report 

an alternative approach, in which a cross-classified multilevel 

model is developed that enables us to compare the importance 

of similarity coefficients and fingerprints (and other factors) in 

their effects on the overall screening effectiveness of a similarity 

search, and to find out the best and worst performing similarity 

coefficients and fingerprints.   

Results and Discussion 

The results from fitting the initial model in Eq. (1) (see 

Experimental Section) for all 46,500 similarity searches of the 

ChEMBL subset are listed in Table 1, which reports the 

parameter estimates and associated standard errors estimated 
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for β0 and the variances of each of the four components (i.e., 

activity class, fingerprint, similarity coefficient, and residual error) 

in the model. Thus, the mean enrichment factor across all levels 

is estimated to be 12.725 with a standard error of 1.857; and the 

between-activity class variance is estimated to be 54.170 with a 

standard error of 23.635 etc. The same format has also been 

adopted for the results presented in Tables 2-4 discussed below, 

with the first pair of values in each row reporting the parameter 

estimate and the associated standard error for βo, and 

subsequent pairs the variance and associated standard error for 

each factor. It will be seen that the residual error in Table 1 is 

notably larger than the variances estimated for the other three 

factors, and of these the activity class variance is far greater 

than those for the fingerprint and the similarity coefficient (whose 

effects on the enrichment are of comparable magnitudes).   

 

That the enrichment is strongly dependent on the type of activity 

class is to be expected, since a homogeneous set of active 

molecules is likely to yield high values for the enrichment factor 

in similarity searches, whereas this is unlikely to be the case 

with heterogeneous actives that are not strongly clustered 

together in chemical space. The large residual error variance in 

Table 1 describes the random variation from one search to 

another, suggesting that the nature of the individual reference 

structure also plays an important role in the enrichment that will 

be obtained. This is again not surprising since, even with a 

relatively homogeneous set of active molecules, the presence of 

an unusual sidechain or of a differently functionalized 

heterocycle can lead to marked variations in effectiveness, 

depending on the extent to which other actives are grouped 

around the chosen reference structure. Table 2 hence shows the 

results that were obtained when the basic model shown 

previously (Eq. 1) was extended by the inclusion of an additional 

term representing the effect of variations in the reference 

molecule that was used for the similarity searches in each 

activity class. It will be seen that there has been a substantial 

reduction in the magnitude of the residual error, with the activity 

class and the reference structure exhibiting by far the largest 

variances. Further sets of experiments were hence conducted to 

compare the relative roles of the fingerprint and the coefficient 

when the activity class and the reference structure respectively 

were held constant.   

 

Tables 1 and 2 about here 

 

First, 15 models were generated, each describing the 3,100 (i.e., 

10 reference structures × 31 similarity coefficients × 10 

fingerprints) distinct searches for one of the 15 activity classes. 

The results of these runs are shown in Table 3, where it will be 

seen that the residual error has been much reduced; instead, 

the fingerprint makes the largest contribution to the models with 

the sole exception of the phosphodiesterase searches, where 

the type of similarity coefficient is the largest contributor. We can 

hence conclude that the fingerprint component of a similarity 

measure in general has a greater influence on the effectiveness 

of screening than does the similarity coefficient. In the final set of 

experiments, 150 models were generated, each model 

describing the 310 (i.e., 31 similarity coefficients × 10 

fingerprints) distinct searches for one of the ten reference 

structures in each of the 15 activity classes. The results for one 

of these sets of 10 models – those for the serotonin transporter  

(denoted by 5HT) activity class – are shown in Table 4. 

Inspection of this table shows that the influence of the residual 

error has been substantially reduced, and provides the largest 

contribution to the performance only once (in the ninth model); 

for the other nine models it always contributes less than does 

the fingerprint, but contributes more than the similarity coefficient 

in seven of them. It will be seen that the fingerprint contribution 

exceeds that of the similarity coefficient in all but the second 

model, and a similar pattern of behaviour was observed for all of 

the other activity classes: the fingerprint contribution exceeded 

that of the similarity coefficient in 136 of the 150 models; and the 

residual error provided the largest contribution in only 18 of the 

150 models. These sets of experiments provide strong evidence 

for concluding that an appropriate choice of fingerprint is more 

important than the choice of similarity coefficient when 

constructing a similarity measure for ligand-based virtual 

screening.   

 

Tables 3 and 4 about here 

 

The relative degrees of importance of the various factors can be 

demonstrated graphically, as shown in Figure 1, which also 

shows the relative rankings of the various factors. The top-left 

part of the figure shows the effect of variations in the activity 

class.  Here, each of the 15 points represents the mean 

enrichment factor when averaged over all of the 3,100 individual 

searches that involved a particular activity class. It will be seen 

that the enrichment factors are widely spread from the best-

performing Type-1 Angiotensin II receptor searches (denoted 

here by AT1) down to the worst-performing 5HT searches at the 

right-hand end of the plot. There is a still greater degree of 

spread for the mean enrichment factors when averaged over the 

310 searches that involved each of the 150 different reference 

structures, as shown in the bottom-right of the figure. The 

searches involving the ten different fingerprints (top-right of the 

figure) are also well dispersed (with the best results coming from 

use of the MorganR2 fingerprint that is analogous to the widely 

used ECFP4 fingerprint), but this is not the case with the 

searches involving the 31 different similarity coefficients shown 

in the bottom-left of the figure.  Here,  the identifier Bx denotes 

the x-th of the 51 different similarity coefficients studied by 

Todeschini et al.[11, 12], with the bext results coming from use of 

the Maxwell-Pilliner coefficient and with B3 in the figure being 

the Tanimoto coefficient that is the de facto standard for 

molecular similarity studies. It will be seen that, while there are a 

few poorly performing coefficients, the majority of them give 

broadly comparable mean enrichments. This implies that as long 

as one avoids the very weak performers here, a change in the 

similarity coefficient used is unlikely to have a significant effect 

on the screening ability of a similarity search system.    

 

Figure 1 about here 
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As noted in the Introduction there are many comparative studies 

that consider the effect of variations in, e.g., the similarity 

coefficient on the effectiveness of similarity searching. Of these, 

the one most closely related to the present study is that 

described by Sastry et al., who conducted an extended series of 

similarity searches on a sample of the MDL Drug Data Report 

(MDDR) database and involved a systematic variation of the 

similarity coefficient, the fingerprint, the atom-typing and the 

weighting scheme.[9] Their comparison sought to identify the 

most generally useful settings for each of these parameters, and 

they concluded that an appropriate choice of parameter settings 

could result in high levels of screening effectiveness (as 

measured by the enrichment factor), though they also noted that 

no single combination of settings was ideal across the eleven 

activity classes from the MDDR database that were tested. Their 

study differs from that reported here in that they were seeking to 

identify the best combination(s) of parameter settings, whereas 

the present study has sought to establish the relative degrees of 

importance of the various parameters. That said, there is a fair 

measure of agreement between the two studies in that Sastry et 

al. found that the best overall fingerprint performance in their 

experiments was given by MOLPRINT2D, a circular fingerprint 

that is not markedly different in character from the fingerprints 

derived from the Morgan algorithm that are at the top-left of the 

fingerprint plot in Figure 1. They also noted that while there was 

much less variation in screening effectiveness between most of 

the twelve similarity coefficients that were tested, there were 

some that performed significantly worse than the others (as is 

clearly the case in the bottom-left portion of Figure 1).    

 

The key role played by the individual reference structure that 

has been observed here provides a rationale for the findings of a 

study of the numbers of reference structures that were required 

to enable robust conclusions to be drawn as to the utilities of 

different types of similarity measure.[13] Arif et al. carried out 

similarity searches using 20 different similarity measures (based 

on five different binary fingerprints and four different similarity 

coefficients) with the aim of ranking these measures in order of 

decreasing effectiveness when averaged over multiple reference 

structures for each of six different MDDR activity classes. They 

found that rankings obtained using small samples of reference 

structures could be markedly different from those resulting from 

use of all of the available reference structures. This finding is 

just what would be expected if there are considerable 

differences in effectiveness between one search and another, 

and highlights a potential limitation of previous comparative 

studies (including many of those carried out in our laboratory) of 

similarity searching that have used only small numbers of 

reference structures. While showing that small samples of 

reference structures could yield misleading results, Arif et al. did 

not suggest any threshold number that should be employed, and 

this might hence usefully provide a focus for future studies of 

similarity searching  

Conclusions 

Similarity-based virtual screening is an important technique for 

use in the lead-discovery stage of pharmaceutical and 

agrochemical research programmes. There has thus been much 

interest in the development and evaluation of measures of inter-

molecular structural similarity, in particular measures that are 

based on the use of binary association coefficients and of 2D 

fingerprint representations of molecular structure. Previous 

studies have evaluated many different coefficients and many 

different fingerprints to identify those that are most effective in 

identifying potential bioactive molecules. In the work reported 

here, we have considered both of these components of a 

similarity measure using cross-classified multilevel modelling 

and demonstrated that the type of fingerprint plays a much 

greater role in determining screening effectiveness than does 

the similarity coefficient. It is hence suggested that future work 

on the optimisation of similarity measures should prioritise the 

identification of the most appropriate type of fingerprint and that 

relatively less attention be devoted to the evaluation of similarity 

coefficients. Our results additionally suggest that comparative 

studies of similarity searching should use many more reference 

structures than has been the case in much previous research. 

Finally, it could be of interest to apply the cross-classified 

multilevel modelling approach introduced here to analyse other 

multi-factor chemoinformatics applications, such as the 

clustering of chemical databases and methods for flexible 

ligand-protein docking. 

Experimental Section 

Multilevel modelling is a statistical modelling technique that allows the 

structure of a dataset to be specified, with observations nested in one or 

more higher ‘levels’.[14] The effects of these higher level factors can then 

be tested. Cross-classified modelling allows for situations when those 

factors are not nested exactly within each other.[15] The approach is 

completely general in nature, and has thus been applied to the analysis 

of a wide range of types of data, though principally thus far in the social 

and medical sciences. Examples include studies of the parental choices 

of secondary schools for their children,[16] of the relative importance of 

schools and neighbourhood effects on student attainment,[17] of the 

outcomes of criminal trials of indicted terrorists,[18] of women’s 
reproductive behaviour,[19] and of bibliometric indicators describing the 

impact of academic research[20] inter alia. However the approach has not, 

to our knowledge, been applied to the analysis of virtual screening as 

considered here or, indeed, to problems in chemoinformatics more 

generally. The starting point for our work was a study by Bell et al. that 

analysed Formula One data to determine the relative importance of 

motor racing teams and of drivers in determining race success.[21] These 

authors were able to demonstrate that the individual racing team was 

generally more important than the individual driver in winning Formula 

One races (although the difference appeared to be reduced in wet 

weather and on street tracks), and it was this finding that spurred the 

study reported here where we have sought to determine the relative 

importance of factors affecting the success of similarity-based virtual 

screening.  

 

Multilevel analyses are appropriate where one has a measured response 

variable that is the result of a set of influence variables, and where the 
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data is in some way structured. These structures can be a strict hierarchy, 

where the levels of the structure are nested within each other, or can be 

cross-classified, whereby observations are nested within two or more 

higher levels, but those levels are not nested within each other. The 

structure used in this paper is a combination of these two approaches, 

with the response variable being the enrichment factor as a measure of 

screening effectiveness. The resulting approach can perhaps be 

regarded as being analogous to multiple regression using nominal 

variables (e.g., fingerprint or coefficient as discussed below), but with the 

difference that the variance components in a model test the importance 

of the overall level (e.g., fingerprints as a whole), rather than/as well as 

the importance of individual identifiers within that level (e.g., individual 

types of fingerprint).  

 

We are primarily interested in the relative importance of fingerprints and 

similarity coefficients as influence variables, but it is important to 

additionally account for the type of activity for which screening is being 

conducted. Much of the data in the ChEMBL dataset used here has 

come from drug-discovery programmes that have involved the synthesis 

and testing of close analogues, with the result that many of the active 

molecules have a relatively high-degree of similarity to each other; 

conversely, there are other types of bioactivity where the known actives 

are structurally heterogeneous, a factor that tends to make similarity 

searching less powerful than in the case of more homogeneous sets of 

active molecules. Given these three factors the basic model studied here 

is of the form shown below (though, as will be seen in Results and 

Discussion, further models were developed as the study progressed): 

efi = β0 + uclass(j) + ufp(k) + ucoef(l) + ei      (1) 

Here, 𝑒𝑓𝑖 is the observed value of the enrichment factor for the top 1% of 

the ranked database for a given similarity search i (1≤i≤46,500), 𝛽0 is the 

mean enrichment factor across all activity classes, fingerprints and 

similarity coefficients, uclass(j) (1≤j≤15) represents the effect of similarity 
search i’s activity class, ufp(k) (1≤k≤10) represents the effect of similarity 
search i’s fingerprint, ucoef(l) (1≤l≤31) represents the effect of similarity 
search 𝑖’s similarity coefficient, and ei is a term describing the residual 

error and incorporating the random variation from one search to another 

that can affect the enrichment value. The activity class, fingerprint, 

similarity coefficient and residual error are assumed to be statistically 

independent and to be normally distributed with zero means and constant 

variances that are estimated by the model. It is the variances that are of 

interest in the present context, since a small variance means that 

changes in an influence variable, e.g., the similarity coefficient, are 

unlikely to result in substantial changes in the effectiveness of screening 

(with the converse applying with a large variance).  

 

The cross-classified models were run using MLwiN version 2.36.[22] This 

is a freely available software package that allows a user to create, fit and 

manipulate multilevel models, estimating the parameter variances using 

a Bayesian Markov chain Monte Carlo method.[23] In addition to its 

widespread availability, the Monte Carlo method used in MLwiN has the 

advantages over alternative maximum-likelihood-type techniques that it is 

relatively quick to run and that it does not suffer from the biases 

associated with analysing small numbers of units at each level (e.g., we 

consider here just ten different types of fingerprint).[24] MLwiN 

commences by making initial estimates of the various parameters and 

then iterates until a threshold number of iterations have taken place (for 

which the default value is 500 iterations); after this point, estimates are 

generated for a further number of iterations (500,000 in our experiments) 

and the summary statistics for this chain of estimates provide the mean 

and standard deviations for the model parameters. For further details of 

this estimation method, see Browne.[23] 

 

Our dataset is based on the well-known, open-access ChEMBL dataset 

available from the European Bioinformatics Institute at 

https://www.ebi.ac.uk/chembl/. This contains a large number of drug-like 

bioactive compounds compiled from the published literature on a regular 

basis. The version used here was derived from those molecules in 

ChEMBL 18 that satisfied the following criteria: homo sapiens as the 

target organism; a pIC50 of at least 5.0; and a confidence score of 9. In 

view of the computational costs associated with the large number of 

similarity searches that were carried out, a systematic 1-in-10 sample of 

the database was used, this yielding a dataset containing a total of 

134,362 molecules. A set of 15 activity classes were chosen from 

amongst those studied by Heikamp and Bajorath[25] so as to include 

examples of both structurally heterogeneous and structurally 

homogeneous sets of actives: the classes and the numbers of active 

molecules in each case are listed in the left-hand column of Table 3.   

 

The molecules in the ChEMBL dataset were characterised using ten 

different 1024-bit 2D fingerprints that were generated using the RDKit 

software.[26] These fingerprints were AtomPair, Avalon, FeatMorganR1, 

FeatMorganR2, Layered, MorganR1, MorganR2, Pattern, RDKit and 

Torsion, as detailed by Landrum.[26] Similarities were computed using 31 

different binary similarity coefficients, chosen from those studied by 

Todeschini et al.[11,12] after the removal of one coefficient from any pair of 

coefficients that were found to be fully monotonic with each other, and 

with the pairs of remaining coefficients showing Spearman rank-

correlation values ranging from 0.99 down to -0.18. Taken together, the 

sets of fingerprints and coefficients yielded a total of 310 different 

similarity measures. Similarity searches based on each of these 310 

measures were carried out using ten different, randomly selected 

reference structures for each of the 15 different activity classes, giving a 

total of 46,500 (i.e., 10×31×10×15) distinct searches. Whilst the 

reference structure is not particularly of interest in itself, it is important to 

include it because it is a key part of the structure of the data and 

Schmidt-Catran and Fairbrother have suggested that failing to include all 

relevant levels can lead to erroneous results.[27]  

 

The effectiveness of each similarity search was evaluated using the 

enrichment factor for the top-1% of the ranked list of molecules, i.e., the 

ratio of the number of actives retrieved in the top 1% to the number of 

actives that would have been retrieved if molecules were picked from the 

database at random. Other evaluation criteria have been suggested in 

the literature but these tend to be closely correlated with each other.  For 

example, Riniker and Landrum discuss the very close relationship 

between the enrichment factor and the BEDROC criterion, and note the 

greater comprehendibility of the former, as used here.[28]
 

Acknowledgements 

LM thanks Majlis Amanah Rakyat (MARA) and Universiti 

Teknologi MARA (UiTM) for funding. 



FULL PAPER    

5 

 

Keywords: Chemical fingerprint • Cross-classified multilevel 

modelling • Similarity coefficient • Similarity searching • Virtual 

screening 

 

References: 

[1] R. P. Sheridan, S. K. Kearsley, Drug Discov. Today 2002, 7, 903-911. 

[2] H. Eckert, J. Bajorath, Drug Discov. Today 2007, 12, 225-233. 

[3] P. Willett, Ann. Rev. Inf. Sci. Technol. 2009, 43, 3-71. 

[4] G. Maggiora, V. Shanmugasundaram, Methods Mol. Biol. 2011, 672, 

39-100. 

[5] G. Maggiora, M. Vogt, D. Stumpfe, J. Bajorath, J. Med. Chem. 2014, 

57, 3186-3204. 

 [6] P. Willett, Mol. Informatics 2014, 33, 403-413. 

[7] R. P. Sheridan, Expert Opin. Drug Discov. 2007, 2, 423-430. 

[8] A. Bender, J. L. Jenkins, J. Scheiber, S. C. K. Sukuru, M. Glick, J. W. 

Davies, J. Chem. Inf. Model. 2009, 49, 108-119. 

[9] J. Duan, S. L. Dixon, J. F. Lowrie, W. Sherman, J. Mol. Graph. Model. 

2010, 29, 157-170. 

[10] M. Sastry, J. F. Lowrie, S. L. Dixon, W. Sherman, J. Chem. Inf. Model. 

2010, 50, 771-748. 

 [11] R. Todeschini, V. Consonni, H. Xiang, J. D. Holliday, M. Buscema, P. 

Willett, J. Chem. Inf. Model. 2012, 52, 2884-2901. 

[12] R. Todeschini, D. Ballabio, V. Consonni, Distances and other 

dissimilarity measures in chemometrics, at 

http://onlinelibrary.wiley.com/doi/10.1002/9780470027318.a9438/pdf. 

[13] S. M. Arif, J. D. Holliday, P. Willett, J. Inf. Sci. 2013, 39, 7-14. 

[14] H. Goldstein, in Encyclopedia of Biostatistics Vol. 4 (Eds.: P. Armitage, 

T. Colton), Wiley, Chichester, 1998, pp. 2725-2731. 

[15] A. Fielding, H. Goldstein, Cross-classified and Multiple Membership 

Structures in Multilevel Models: An Introduction and Review, 

Department for Education and Skills, Birmingam, 2006. 

[16] H. Goldstein, Sociolog. Methods Research 1994, 22, 364-375. 

[17] G. Leckie, J. Royal Stat. Soc.: Series A 2009, 172, 537-554. 

[18] B. D. Johnson, J. Quant. Criminol. 2012, 28, 163-189. 

[19] S. Zaccarin, G. Rivellini, Stat. Methods Applicat. 2002, 11, 95-108. 

[20] L. Bornmann, R. Mutz, S. E. Hug, H.-D. Daniel, J. Informetrics 2011, 5, 

346-359. 

[21] A. Bell, J. Smith, C. E. Sabel, K. Jones, J. Quant. Anal. Sports 2016, 

12, 99-112. 

[22] J. Rasbash, F. Steele, W. J. Browne, H. Goldstein, A User’s Guide to 

MLwiN, v2.26, Centre for Multilevel Modelling, University of Bristol, 

Bristol, 2012. 

[23] W. J. Browne, MCMC Estimation in MLwiN, v2.32, at 

http://www.bris.ac.uk/cmm/media/software/mlwin/downloads/manuals/2

-32/mcmc-web.pdf. 

[24] D. Stegmueller,. Am. J. Pol. Sci. 2013, 57, 748–761. 

[25] K. Heikamp, J. Bajorath, J. Chem. Inf. Model. 2011, 51, 1831-1839. 

[26] G. Landrum, RDKit Documentation. Release 2016.03.1, at 

http://www.rdkit.org/RDKit_Docs.current.pdf. 

 [27] A. W. Schmidt-Catran, M. Fairbrother, Eur. Sociol. Rev. 2015, 32, 23–
38. 

[28] S. Riniker, G. A. Landrum, J. Cheminf. 2013, 5, 26. 

 

 
 

 

Table 1. Basic model of similarity searching 

Mean enrichment factor Activity class Fingerprint Similarity coefficient Residual error 

12.725 1.857 54.170 23.635 4.689 3.042 4.222 1.772 92.473 0.607 

 

Table 2. Model of similarity searching including consideration of the individual reference structures 

Mean enrichment factor Activity class Fingerprint Similarity coefficient Reference structure Residual error 

12.973 2.368 49.362 25.539 5.126 6.646 4.272 1.765 60.130 7.465 39.160 0.257 

 
  

http://www.bris.ac.uk/cmm/media/software/mlwin/downloads/manuals/2-32/mcmc-web.pdf
http://www.bris.ac.uk/cmm/media/software/mlwin/downloads/manuals/2-32/mcmc-web.pdf
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Table 3. Models of similarity searching for each of the 15 different activity classes 

Activity class Mean enrichment 

factor 

Fingerprint Similarity coefficient Reference structure Residual error 

Serotonin transporter (2447)  5.099 0.989 7.676 4.878 1.191 0.807 1.252 0.361 4.848 0.124 

Serotonin 1a (5-HT1a) receptor 

(1483)  

7.379 1.717 19.385 12.222 8.989 5.720 2.167 0.641 14.382 0.368 

Serotonin 3a (5-HT3a) receptor 

(213) 

13.801 4.368 170.275 106.560 13.740 8.754 3.355 1.008 27.571 0.706 

Acetylcholinesterase (739)  9.577 2.125 37.322 23.471 5.136 3.526 1.612 0.477 10.468 0.268 

Type-1 Angiotensin II receptor 

(106)  

27.688 5.084 200.747 127.242 35.233 22.664 39.846 11.373 116.050 2.972 

Cyclooxygenase-1 (139)  8.213 1.362 15.128 9.665 1.636 1.155 2.401 0.702 12.538 0.321 

Dopamine D2 receptor (1858)  7.012 1.836 23.980 15.065 9.105 5.772 1.142 0.345 10.069 0.258 

Coagulation factor X (1502) 6.439 1.592 22.049 13.900 1.172 0.859 2.051 0.588 6.899 0.177 

HIV Type 1 protease (2157)  16.312 2.053 28.404 17.947 10.098 6.692 5.175 1.487 18.313 0.469 

Matrix metalloproteinase-1 (395)  21.928 3.617 79.820 50.140 52.736 32.671 10.049 2.880 33.011 0.845 

Phosphodiesterase 4a (254)  8.848 1.994 17.182 10.815 24.955 15.418 1.391 0.420 12.216 0.313 

Protein kinase C Alpha (211)  15.058 4.964 241.093 149.078 5.106 3.290 1.391 0.438 18.675 0.478 

Renin (982) 6.903 1.797 26.481 16.701 3.588 2.339 2.453 0.708 9.936 0.254 

Neurokinin 1 receptor (847)  21.977 5.460 218.451 137.615 66.817 42.443 25.260 7.314 109.063 2.793 

Thrombin (838)  15.093 2.334 39.749 25.084 9.531 6.292 8.422 2.384 17.613 0.451 

 
 
Table 4. Models of similarity searching for the ten reference structures in the serotonin transporter (5HT) activity class 
Reference structure Mean enrichment factor Fingerprint Similarity coefficient Residual error 

1 4.437 1.155 13.365 8.322 0.668 0.213 0.969 0.084 

2 5.465 0.503 1.729 1.123 2.484 0.727 1.334 0.116 

3 1.594 0.558 3.117 1.960 0.139 0.059 0.698 0.061 

4 4.243 0.600 3.286 2.094 1.029 0.327 1.463 0.127 

5 3.105 0.500 2.390 1.518 0.363 0.128 0.946 0.082 

6 7.702 0.907 7.574 4.790 2.303 0.707 2.437 0.212 

7 7.007 0.782 5.408 3.425 2.389 0.716 1.887 0.164 

8 9.180 1.026 9.165 5.795 4.587 1.359 3.092 0.269 

9 6.155 0.639 3.582 2.383 1.130 0.442 4.438 0.387 

10 2.324 0.481 2.299 1.446 0.136 0.054 0.571 0.050 
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Figure 1.  Effect of the various components of a similarity search on the resulting enrichment factor. 
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This paper describes the use of cross-classified multilevel modelling to analyse the results of similarity-based virtual screening 

searches using 2D fingerprints. It is shown that the choice of fingerprint is more important than the choice of similarity coefficient, and 

that multiple reference structures need to be employed in benchmark studies such as this.  
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