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 
Abstract—The popularity of the Internet and the demand for 

24/7 services uptime is driving system performance and 
reliability requirements to levels that today’s data centers can no 
longer support. This article examines the traditional monolithic 
conventional server (CS) design and compares it to a new design 
paradigm: the disaggregated server (DS) data center design. The 
DS design arranges data centers resources in physical pools, such 
as processing, memory, and IO module pools, rather than 
packing each subset of such resources into a single server box. In 
this work, we study energy efficient resource provisioning and 
virtual machine (VM) allocation in DS-based data centers 
compared to CS-based data centers. First, we present our new 
design for the photonic DS-based data center architecture, 
supplemented with a complete description of the architectural 
components. Second, we develop a mixed integer linear 
programming (MILP) model to optimize VM allocation for the 
DS-based data center, including the data center communication 
fabric power consumption. Our results indicate that, in DS data 
centers, the optimum allocation of pooled resources and their 
communication power yields up to 42% average savings in total 
power consumption when compared with the CS approach. Due 
to the MILP high computational complexity, we developed an 
energy efficient resource provisioning heuristic for DS with 
communication fabric (EERP-DSCF), based on the MILP model 
insights, with comparable power efficiency to the MILP model. 
With EERP-DSCF, we can extend the number of served VMs 
where the MILP model scalability for a large number of VMs is 
challenging. Furthermore, we assess the energy efficiency of the 
DS design under stringent conditions by increasing the CPU to 
memory traffic and by including high non-communication power 
consumption to determine the conditions at which the DS and CS 
designs become comparable in power consumption. Finally, we 
present a complete analysis of the communication patterns in our 
new DS design and some recommendations for design and 
implementation challenges. 

  
Index Terms— Disaggregated Server, Data Center, Silicon 

Photonics, Energy Efficiency, Resource Provisioning, Data 
Center Communication Fabric.  

I. INTRODUCTION 

IRTUALIZED data centers provide key efficient services 
to clients with variable requirements. However, today’s 
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data center architectures are rigid in that they are composed of 
“server boxes”, where each box has a predetermined ratio of 
CPU to memory to I/O that is unchangeable [1]. The single 
box server adds barriers and difficulties, including inefficient 
resource utilization, prolonged provisioning, and difficulties in 
big data management, as well as a high risk of blocking when 
deploying virtual data center resource instances. To 
understand the usefulness of the DS concept, consider the 
example of a conventional ‘server in a box’ (CS), where a 
processing intensive task occupies the processor while the 
input-output (IO) module is idle. Such an idle resource cannot 
be accessed in this case by other servers due to the current CS 
constrained architecture. Similarly, a server running an 
application involving intensive IO usage may have a large idle 
fraction of the CPU processing capability not accessible by 
other tasks that require access through the bottleneck IO 
module. The DS concept removes the barriers of the CS 
approach and allows VMs to construct servers on the fly with 
the required specifications for a specific duration and release 
these resources at the end of the task, thus removing many 
barriers and improving data center efficiency significantly. 
Another challenge facing current data centers is the energy 
consumption of the physical infrastructure that provides 
resources for the cloud. Thus, energy management is a key 
challenge for data centers in reducing all their energy related 
costs [2, 3]. 
Significant efforts have been dedicated to optimizing the 
power consumption of conventional data centers, including 
energy efficient data center designs [4, 5], energy efficient 
inter- and intra-data center network architectures [6-8], 
designing energy efficient cloud computing services [9], [10], 
designing energy efficient network topologies [11], using 
renewable energy optimally [12], and introducing energy 
efficient resource provisioning and virtual network embedding 
for cloud systems [13]. 

 The above work has a major shortcoming in that it relies 
on the single-boxed server approach, where flexible addition 
and removal of physical resources is very limited. 
Accordingly, in this paper, the disaggregated server (DS) 
architecture is considered as a potential approach to minimize 
data centers’ power consumption. In this approach, servers’ 
resources are separated into discrete pools of resources that are 
mixed and matched in real time to create differently sized and 
shaped systems. This technique brings a new server vision for 
data centers and motivates a plethora of potential new 
applications and services [14]. 

The revolutionary concept of DS can bring about radical 
change to traditional data centers and can simplify the vertical 
scalability of virtual machines (VMs) by decoupling the server 
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components from each other. On the other hand, resources are 
combined according to their types in a standalone and type 
homogenous “resource rack”, constructing resource pools, 
where elements in the pool are interconnected using an optical 
backplane. Here, a data center network directly interconnects 
all resource racks via a high bandwidth and low latency inter-
rack switching fabric [15]. Therefore, DS design introduces 
the sharing of CPU, memory, and network components’ 
modularity and independent allocation of resources, such that 
a certain resource is no longer tightly coupled to any other 
resource, meaning that resources can be used more efficiently. 

 
Fig. 1. DS concept. 

Fig. 1 highlights the main concept of DS. In Fig. 1, we 
consider hybrid Electronic/Optical switching fabric in addition 
to the disaggregated resources pools. Therefore, resources in 
both the electronic IP layer (packet switched) and the optical 
layer (circuit switched) are needed. IP switches are needed to 
aggregate traffic from resources, and each IP switch is 
connected to an optical switch, which is connected to other 
optical switches by optical fiber links. Optical fibers provide 
the large capacity and fast data transmission required to 
support the communication between the disaggregated 
resources. Intel Silicon Photonic connectors (SiPh) [16] 
provide OEO processing for full wavelength conversion at 
each node. This architecture will be discussed in more detail in 
Section III, where we present the architecture of our DS 
design with a full description of all the components and 
communication patterns.  

The main aim of this paper is to analyze the energy 
efficiency of the DS approach compared to CS using the 
MILP model and real-time heuristics. In addition, this paper 
gives a detailed description of the DS concept and provides a 
detailed architecture. In this work, we developed an energy 
efficient resource provisioning MILP model and simulation 
heuristic, considering the DS, and compared it to CS design. 
We accounted in our MILP model for the impact of the 
communication power on the total power saving and 
developed a heuristic which enables real time operation and 
verifies the MILP model. We have also designed a new 
switch-based communication architecture for the new DS-
based data center. 

It should be noted that the performance of the DS-based 
data center can be measured using several metrics and these 
include power consumption, latency, resilience, security, 
scalability and other metrics. It is not possible to study all 
these dimensions in a single article. Therefore our work 
reported here focuses on performance along the power 
consumption saving dimension. We however ensure that we 
serve all the VM requests, as serving a lower number of VM 
requests / rejecting VM requests results in unrealistic low 

power consumption and potential service level agreement 
violation. We also outline the improvements needed in 
electrical and optical switching technology to achieve the DS 
vision and outline further rack-clustering measures that can be 
introduced to help reduce latency. Performance along other 
known dimensions such as security, resilience and scalability, 
while interesting is outside the scope of this paper. 

The remainder of this paper is organized as follows. 
Section II briefly reviews the related work. In Section III, we 
present our disaggregated server design. A description is 
presented in Section IV of the resource provisioning strategy 
in DS design with communication fabric. In this section, we 
introduce our MILP model for resource provisioning in DS, 
discuss its results, and propose the EERP-DSCF real-time 
heuristic. Section V presents a detailed evaluation of our 
disaggregated server design and the implementation of our 
proposed architectures. Finally, Section VI concludes the 
paper.  

II. RELATED WORK 

The idea of server disaggregation became prominent when 
pioneers, Intel and Facebook, announced their Open Compute 
Project [15-17] in the 2013 Open Compute Summit. 
Subsequently, a series of companies, including Cisco, 
Tencent, Mellanox, and some research groups, dedicated 
extensive time and effort to developing this topic. Before the 
2013 Open Compute Summit, Mellanox Technologies [18] 
had shown that their Infiniband switching fabric can 
disaggregate the IO and storage subsystem, isolating these 
from the main computing system. The authors in [19-22] 
studied the DS idea and presented the design of a new general-
purpose architectural building block, a memory blade, which 
allows memory to be “disaggregated” from the rest of the 
system ensemble. In [23] the authors discussed the ability of 
current data center communication networks to support the 
idea of disaggregation. The authors in [24] proposed a cloud 
architecture that disaggregates resources into virtual resource 
pools in order to provide virtual machines with the right 
amount of resources. Their cloud architecture creates a 
distributed and shared physical resource layer by providing a 
virtual layer and a cloud resource aggregation layer between 
applications and physical servers in real time. In [25], the 
authors presented Marlin, a memory-based addressing model 
for both I/O device sharing among multiple hosts and inter-
host communications. Marlin is a PCI-based rack area network 
system which was designed to support the communications 
and resource sharing between disaggregated racks. In [26], 
Cisco presented the Cisco Composable Infrastructure, a 
software-defined infrastructure (SDI) solution which allows 
the infrastructure to be treated as a code, disaggregating 
compute resources so they can easily be programmed and 
automatically managed. A number of companies and 
university research groups have, in [27], provided their vision, 
work, and some metrics for the disaggregated data center. The 
authors in [28] and [29] presented an all-optical FPGA-based 
optical switch and interface card (SIC) for an optical 
programmable disaggregated data center network. In [30], a 
collaboration was set up between Tencent and Intel on a proof 
of concept project to demonstrate that the disaggregated data 
center and resource pooling, even in the early stages of 
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development, can introduce improved performance and 
reduced power consumption and can enhance the end users 
experience. The authors in [31] studied the trade-off between 
cost and performance of building a disaggregated memory 
system; they constructed a simple cost model that compares 
the savings expected from a disaggregated memory system to 
the expected costs, such as latency and bandwidth costs, and 
then identified the level at which a disaggregated memory 
system becomes cost competitive with a traditional direct-
attached memory system. In [32], the authors proposed a 
software-defined architecture for the next generation data 
center, dRedBox, and presented a design prototype hardware  
architecture where system-on-chip (SoC)-based microservers, 
memory modules, and accelerators are placed in separated 
modular server trays interconnected via a high-speed, low-
latency optoelectronic system fabric and are allocated in 
arbitrary sets. In [33-35], we presented a detailed description 
and comprehensive review of the idea of DS, with a focus on 
the energy efficiency benefits of this design. We presented a 
summary of our MILP model and heuristics for resource 
provisioning and VM allocation in DS-based data centers and 
compared the performance of the new server approach to the 
CS-based data center. The idea of VM migration in DS was 
discussed and is augmented in this work with detailed results. 
Our contributions in this paper beyond the conference versions 
[33-35] are: (i) to the best of our knowledge, we are the first to 
develop a MILP model for energy efficient resource 
provisioning and VM allocation in disaggregated resources 
(CPU, memory, and IO) at the hardware level; (ii) we extend 
our MILP model in [33-35] to account for inter-rack 
communication power consumption; (iii) we develop simple 
and efficient heuristics that converge to near optimal solutions 
in a shorter time when compared with the MILP model; and 
(iv) we introduce a detailed architecture including a 
communications fabric that supports and enables interaction 
among the disaggregated resources. 

III.  DISAGGREGATED SERVER DESIGN 

In this section, we present our photonically enabled design, 
which uses Intel’s new photonic interconnect [16]. The design 
shares the memory and IO modules among multiple 
processors to form resource pools connected through a 
distributed switching fabric. The concept of distributed switch 
functionality and modular architecture design supports very 
granular resource deployment approaches, which allow for 
greater resilience and upgradability, and scaling up a VM can 
be done directly and seamlessly with this modular 
architecture. This architecture can potentially enable re-
partitioning of the resources in such a way that system 
resources can be better shared between different compute 
elements. 

Based on the ideas and guidelines given in [16-18] and 
[27], we built our modular architecture for the disaggregated 
server, and proposed a new interconnect topology to support 
the communication between the disaggregated server blocks. 
Given a data center system, the main communication 
components are inter- and intra-rack communications. 
Considering the inter-rack communications, the 
communicating units (e.g. servers or disaggregated devices) 
are located in different racks, while, for the intra-rack 

communication, these communicating units are located within 
the same rack. Thus, for DS, the communication that used to 
be confined inside single servers is now an inter-rack traffic 
and traverses the whole data center communication fabric.  

To show the functionality of the suggested architecture and 
clarify its performance, we will define each type of these 
communications while describing our design. Moreover, we 
will show how each part of the architecture will perform its 
assumed function in supporting these communications. The 
following sections detail all the distributed components, 
focusing on each part of the architecture and the 
interconnecting components. 

A. Disassembled Memory Controller (DMC) 

The main driving factor we consider in the DS design is 
that resources are to be disaggregated while maintaining the 
same original interfaces they connected to before 
disaggregation. Based on this vision and design approach, the 
memory controller is disassembled into functional blocks to 
enable its disaggregation motivated by the fact that it has been 
moved over time from the motherboard's north bridge to other 
locations such as the CPU die. In this design, we split the 
memory controller into three functional blocks. The first block 
is attached to the CPU itself, named the CPU attached memory 
controller (CPUMC), and the second block is general to the 
whole memory rack, named the middling memory controller 
(MMC), while the last block is attached to the memory 
module directly and is the memory attached memory 
controller (MEMC). Before we present our new Disassembled 
Memory Controller (DMC), we need to examine the current 
classical memory controller. Fig. 2.a displays the complete 
architecture of the current memory controller [36]. It is mainly 
composed of two segments, the front end and the back end. 
While the front end is independent of the memory module 
type and provides an interface to the back-end segment of the 
memory controller, the back end is memory type dependent. It 
translates requests from the front end to the target memory.  

Functions such as buffering and instruction mapping and 
sequencing are performed in the front-end segment, which 
consists of buffers to store memory requests and responses. 
The buffers are attached to multiplexers/demultiplexers in 
order to send/receive one data word at a time [37]. The 
memory mapping decodes the memory address from the CPU 
address view to the memory address view (virtual memory to 
physical memory), and the arbiter decides the sequence in 
which requests from the CPU can access the memory 
modules. Thus, memory access requests are queued in the 
arbiter. The back-end command generator generates the 
commands for the target memory. It is memory-type 
dependent; thus, we will keep it attached to the memory, and it 
is customized to handle different timings so that different 
components having different clock rates can access the same 
memory module.  

When disassembling the memory controller, we construct 
the three functional blocks shown in Fig. 2.b. The first block 
of Fig. 2.b, starting from the left, is the CPU directly attached 
to the CPUMC, as the CPU needs to see the same old 
interface. Buffers from the memory controller are attached to 
the CPU directly, and data is selected from these buffers in 
order to be sent to its destination memory rack.  
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(a) Classical Memory Controller 

 
(b) Disassembled Memory Controller 

Fig. 2. Memory controller. 

 In this block, we have added a packetizer [38], after 
multiplexing the incoming memory access requests from the 
CPU. The packetizer’s role is to packetize the memory 
controller data to be switched between the CPU rack and the 
memory rack. On the other hand, the depacketizer puts the 
responses from the memory in normal data form to be read by 
the CPU. The block in the middle is the MMC, where the 
memory mapping and the arbiter functional blocks are 
integrated with the top of the memory rack switch. The 
memory mapping and the switch arbiter form the control plane 
of the switch. When receiving memory access requests, in 
packets form, the control plane of the memory controller reads 
the header of the packets and, according to the ID of the 
destination memory module, a path is established to the 
intended memory module. Finally, the command generator is 
attached directly to the memory modules to form the MEMC, 
as shown in Fig 2.b. It generates commands to read from/write 
to the memory through the control path for control signaling 
and through the data path for receive and send data. 

B. Design Description 

The architecture is wavelength division multiplexing (WDM) 
over hybrid optical and electrical switching, utilizing 

components such as the optical cross connect (OXC) switch 
and the electronic core packet (EXC) switch, in addition to 
Intel Silicon Photonic (SiPh) interconnect and optical fiber 
links, as shown in Fig. 3. In this architecture, Intel’s new SiPh 
interconnect, which uses light as a speedy way to shuffle data 
between components, is used to perform the electrical to 
optical transformation function and to feed each fiber link. 
This new SiPh interconnect is designed especially for data 
center applications, using new materials and manufacturing 
techniques to be smaller, more resilient to dust and other 
pollutants, more reliable, and cheaper [38]. Our optically 
enabled modular architecture is a composition of different 
components, and the key ones are presented in Table I.  

C. Racks Interconnect Topology 

We have designed a modular software-defined architecture 
that can replace the traditional single rack of servers with three 
racks: the CPU rack, memory rack, and IO rack. These racks 
are connected and communicate using the new communication 
fabric described. In this architecture, our DS design is built up 
by disaggregating the server into its main components, where 
the switching between the racks is accomplished in a 
distributed manner through the use of the previously
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Fig. 3. DS architecture

mentioned components in Table I. Despite the fact that the 
single CS rack is replaced by three DS racks, power saving is 
still possible as the same number of resources (CPU, memory, 
IO, hard disks etc) are distributed (no increase in number of 
resources) and are utilized in an energy efficient manner in the 
DS racks as in [33]. In this work, DS racks consume extra 
power in the communication fabric, however, power saving is 
still possible as long as the increase in power in the 
communication fabric (DS communication fabric power minus 
CS communication power) is outweighed by the power saving 
due to efficient resource utilization as a result of the DS 
concept. 

The DS design concept requires attention to the non-IT 
components that consume power. These non-IT components 
include networking, cooling and power supplies for example. 
The design of a custom networking architecture and 
subsystems for the DS has been considered in this work. The 
number of components to be cooled, i.e. CPUs, IO cards, and 
memory remain the same in the DS and CS cases (despite the 
fact that a single CS rack may be replaced by three DS racks). 
Therefore, the amount of cooling required in the data center 
remains the same provided custom cooling systems are 
introduced at the rack level instead of replicating the full 
server cooling system next to the CPU and replicating the full 
server cooling system next to (each of) memory and IO. The 
power supply unit has to be redesigned at the rack level 
instead of individual power supplies for each component 
(CPU, IO and memory). Such custom cooling and power 
supply designs for rack scale data centers are starting to 
appear in the industry [16]. Developments in this direction are 
already starting to appear in blade servers. Each server blade 
slides into a blade bay in a system chassis and plugs into a 
backplane to share common support components, such as 

power supplies, fans, CD-ROM, Ethernet and fibre channel 
and system ports [39]. 

Starting with the CPU rack, in this implementation, the 
new photonic interconnects and fiber cables are used to 
connect the CPUs throughout the rack via a point-to-point to a 
Top of Rack electronic memory switch (MEXC). These intra-
rack connections are all optical, i.e. different wavelengths are 
used for the set of computing trays in each rack. In this design, 
the computing systems have been configured in trays, and 
each tray contains a single CPU die and its associated cache 
memory and control. Having large L1, L2, or even L3 caches 
reduces the impact of the main memory latency since the CPU 
can retrieve  
cached data faster from its caches. The control consists of a 
CPUMC and PCIe interface connecting the CPU with the IO 
packet engine. Thus, both PCI and Ethernet networking 
protocols can be implemented in the same rack system, all 
enabled by the functionality of the MEXC and IOEXC 
switches, using light as the transmission medium over fiber 
channels. 

TABLE I 
MAIN COMPONENTS IN OUR DS DESIGN 

Optical Connectors (SiPh) Intel Silicon Photonic interconnects [16] 

MEXC 
Electronic switch that grooms CPU traffic 
to access RAM racks  

IOXC 
Electronic switch that grooms CPU traffic 
to access IO racks  

IO Packet Engine IO adapter [40] 
IO CTRL IO controller  

OXC Switch 
Top of Rack (ToR) optical switching units 
[22] 

DMC Blocks Disassembled memory controller blocks 

 
Two IO packet engines are used in this design: one for each 
side of the CPU-IO link. This serial interface is configured to 
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transfer the data and address and control information required 
to communicate with external IO modules, such as hard disks 
and Ethernet ports, using a serial packetized protocol. The 
CPU side IO packet engine provides an interface to the CPU 
and supports the IO switch IOEXC on top of the CPU rack by 
packetizing/depacketizing the IO control/data signals to be 
sent to their intended destination. The IO side IO packet 
engine provides an interface to peripheral devices, such as IO 
cards, to support the support the communication between the 
disaggregated resources. This relies on the design idea given 
in [18], where the IO modules are disaggregated from the rest 
of the server box.  
Due to differences between the memory and IO packet 
formats, two separate switches have to be implemented: one 
for the CPU-MEM, and the other for the CPU-IO 
communications. Another reason for separating the electronic 
switches is that the CPU-MEM communication is latency 
intolerant. Here, application specific switches have to be used, 
which are normally expensive but are high performance, in 
contrast to the CPU-IO traffic, which is latency tolerant, and 
commodity switches can be used to transfer such traffic. 
Furthermore, the separation of the two types of traffic reduces 
the load on the bottleneck MEXC and results in fast 
communication. These switches are very important for traffic 
grooming in collecting traffic from different CPU cards to 
optimize the number of wavelengths used in the optical layer. 
These switches can be programmed to assign all traffic 
associated with a particular CPU to a specified port. The 
switch is programmable in order to allow software-based 
implementation of the protocols used for communications at 
any particular port. The output from these switches is fed into 
an OXC switch, which is the gateway for the rack to connect it 
with its neighboring racks. The connecting inter-rack links, 
linking the OXCs, are all optical in order to achieve a high 
bandwidth, low latency data transmission and simplicity of 
wiring through the use of fewer cables/fibers, which is an 
essential issue for certain dense applications.  

The number of output ports of each WDM OXC switch 
depends on the number of neighbors of the rack where the 
switch resides, where these outputs are connected to their 
neighboring OXCs. In the memory rack, starting from the top, 
the OXC is connected to the middling memory controller via 
the fibers and silicon photonic interconnects. The middling 
memory controller, in turn, provides a path to the selected 
memory module. The middling memory controller combines 
both the switching and the MMC functionalities. 

After switching, the data is sent to the MEMC, attached to 
the required memory module, optically. Additionally, our 
design supports direct memory access (DMA), such that the 
memory rack can communicate with the IO rack directly 
without interrupting the busy CPU. This is because the 
memory and IO racks are interconnected through their top of 
rack WDM OXC switches, either by passing the OXC on top 
of the intermediate CPU rack in the bypass scenario or 
through the intermediate top of CPU rack OXC, in a non-
bypass scenario. 

The IO rack structure is relatively similar to the memory 
rack, and it is disaggregated in a similar way to what is done 
in [18], with the use of the IOEXC to support the OXC. All 
the communication links here are optical to achieve fast and 

high bandwidth transmission. In this rack, the WDM OXC on 
the very top of the IO rack is connected to the electronic 
switch on top of the IO modules, IOEXC, and the IOEXC is 
connected optically to the different IO modules, which reside 
in the IO rack, through their packet engines and passing their 
IO controllers. 

Communication integrity, control, and management are 
provided by a global data center operating system (GOS). This 
operating system is a general control layer that has an 
inclusive view for the whole disaggregated racks with their 
connectivity in order to be able to provide fluency in 
communication and manage the connectivity. 

A hypervisor, which is a software layer that runs on top of 
the hardware resources and provides virtual partitioning 
capabilities to higher-level virtualization services, can be 
coupled with the GOS. The hypervisor enables the GOS to 
supervise and multiplex multiple operating systems in order to 
maintain and control every resource at all times and enable 
different operating systems to operate cooperatively. 

CPU-to-CPU communication is managed by the top of 
memory rack electronic switch, MMC, and the MEXC, as 
communicating CPUs will interconnect through the remote 
memory modules, shared memory, they are using [41, 42]. 
CPU-MEM rack communication is performed by mutual 
functionality between the OXCs, DMC blocks, and the 
MEXC. The CPU-IO communication is facilitated by the 
functionality of IO packet engines on both racks to support the 
switching fabric implemented by the IOEXCs and the OXCs.  

In brief, in the CPU rack, there are CPU trays whose traffic 
is aggregated using an electronic switch and is forwarded to 
the destined rack through optical layer switching using the 
OXC switch. 

IV.  ENERGY EFFICIENT RESOURCE PROVISIONING IN DS 

SERVER WITH COMMUNICATION FABRIC 

In the literature, a number of energy efficient inter-data 
center communication networks and architectures have been 
proposed and previously studied in [43-45]; however, data 
center energy management is still a hot topic for both industry 
and academia. We believe that implementing the DS-based 
data centers architecture can bring a variety of benefits, 
considering different prospects which include improved 
energy efficiency. In this section, we focus on the energy 
efficiency gains of resource provisioning and VM allocation in 
a DS-based data center. Data centers are large computing 
facilities which are built for applications that have very 
diverse resource requirements and are supposed to last for 15 
to 20 years. Some applications are network intensive, such as 
video streaming applications, while others are latency 
sensitive and/or CPU intensive, such as web searching. The 
loads on a data center vary throughout the day and are related 
to our daily life events. This, in turn, creates challenges in 
attempting to reduce power consumption while maintaining 
the data center’s performance. Precise resource provisioning 
and management directly influence overall data center energy 
efficiency and are of extreme importance in data center 
design. Under-provisioning of data center resources means 
that resources will be bottlenecked, while over-provisioning 
data center resources means a loss of power and capital. Thus, 
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accurate provisioning is of vital importance and motivates the 
efficient design of data centers. Our vision is that 
implementing DS to provide a solution for the problem of 
good resource provisioning can result in notable outcomes. 

Most of the previous work in the area of resource 
provisioning in data centers has focused on dealing with the 
VM itself, such as slicing [46], queuing, and migration [47], 
and multiple VM multiplexing [48]. In this paper, and due to 
the limitations of current server design, we study the DS 
approach as a means of improving data center resource 
provisioning and resource utilization. In this sense, the main 
aim is an efficient data center in terms of power consumption. 

 In the following paragraphs, we describe the type of data 
center we considered and how we can account for the power 
consumption associated with a requested VM running in the 
data center. We present details of the assumptions and system 
configuration for the resource provisioning and VM placement 
using disaggregated resources. Each VM request is identified 

by a unique id, denoted by index ݅; in addition, each CPU, 
memory, and IO module in the data center is similarly 
identified by a unique id, denoted by index ݆. Throughout the 
rest of the paper, we use VM and VM requests 
interchangeably to refer to requested resources by a VM.  

In order to optimize the VM placement in DS-based data 
centers, consideration has to also be given to the inter-rack 
communication power consumption, which is very important 
due to the new DS design structure. In the CS data center, 
resource utilization may not be as efficient as in the DS data 
center; however, the traffic which used to be contained within 
the same server or the same rack in the CS data center, now 
typically navigates through several racks spanning part of the 
data center fabric.  

In this section, we highlight the main components required 
to establish an end-to-end connection and guarantee a fast and 
durable communication path from source 

to destination based on our novel design for the DS 
architecture. We present our MILP model, followed by a 
heuristic that mimics the MILP model behavior and expands 
the scope of the MILP model by providing lower complexity 
algorithms that enable real-time operation of the DS data 
center and enable the evaluation of relatively large size DS 
data center clusters.  

A.  Resource Provisioning MILP model with Communication 
Fabric 

As explained in Fig. 1 and in Section III, each processing 
resource rack is served by two electrical switches, one for 
CPU-MEM communication and the other for CPU-IO 
communication; in addition, there is an optical switch on the 
top of the rack. The memory rack and IO rack are each served 
by a single electrical switch and a top of rack optical switch. 
All optical switches on top of the racks are connected in a 
semi- mesh connection. Inside each rack, the transceivers [49] 
shown in Fig. 3 (SiPh) support each port in each electronic 
switch. Each link is supported by transceivers and packetizers 
(packet engines for communications with IO modules) [50] at 
each end, one next to the source resource and one next to the 
destination resource. In addition, an optical Mux/Demux [51] 
is added after the transceivers at the link ends near the 
resources. As each transceiver is a 100 Gb/s in our design, and 
single resource traffic could exceed this 100 Gb/s, more 
transceivers can be used by a single resource, imposing the 
need to add multiplexing units. For the added functionalities 
of the memory mapping and arbiter to the MMC, we consider 
an additional 5 W to each working MMC to account for the 
power consumption of these units. 

 VMs demand resources in both the IP layer and the optical 
layer, in addition to the underlying DS resources. For 
evaluation, we define the following sets: 

Sets:  ܴܰ Set of all racks ܴܲ Set of CPU racks ܴܯ Set of memory racks ܴܱܫ Set of IO racks ௔ܰ Set of neighbor racks of rack ܽ ܸܯ Set of VMs to be served ܰܲ Set of CPUs in each CPU rack 

 Set of IOs in each IO rack ܱܫܰ Set of memories in each memory rack ܯܰ

The power consumption of a data center based on the DS 
architecture is composed of two parts, the first is the power 
consumed by active resources: 

1) The power consumption of active processors  ෍ ෍ ሺሺܺ ௝ܲ௣ ή ܲ݉݅݊ሻ௝אே௉ ൅ ሺοܲ ൉ ߜ ௝ܲ௣ሻሻ௣א௉ோ   

2) The power consumption of active memories  ෍ ෍ ሺሺܺܯ௝௠ ൉ ேெאሻ௝݊݅݉ܯ ൅ ሺοܯ ൉ ெோא௝௠ሻሻ௠ܯߜ   

3) The power consumption of active IO modules ෍ ෍ ሺሺܺܫ ௝ܱ௜௢ ൉ ேூைאሻ௝ܱ݊݅݉ܫ ൅ ൫οܱܫ ൉ ܫߜ ௝ܱ௜௢൯௜௢אூைோ   

The second part is the power consumed by networking 
elements: 

1) Power consumption due to CPU-MEM traffic, which 
in turn is composed of: 
a) The power consumed by the electrical switches  ෍ ܴܲܵ ή ௉ோ א ௣௣ܯܲܳ ൅ ෍ ෍ ܫܴܲ ή ேோאேೌ௔אǡܾ௕ܽܯܹܲ  

b) The power consumed by the optical switch ෍ ܱܲ௔אை௉ோ  

2) Power consumption due to CPU-IO traffic, which is 
composed of: 
a) The power consumed by the electrical switch  ෍ ܴܲܵ ή ܫܲܳ ௣ܱ௣א௉ோ ൅ ෍ ෍ ܫܴܲ ή ܫܹܲ ܱܽǡܾ௕אேೌ௔אேோ  

b) The power consumed by the optical switch ෍ ܱܲ௔אெோ  

3) Power consumption due to Memory-IO traffic, which 
consists of: 
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a) The power consumed by the electrical switch  ෍ ܴܲܵ ή ெோא௠௠ܱܫܯܳ ൅ ෍ ෍ ܫܴܲ ή ܫܯܹ ܱܽǡܾ௕אேೌ௔אேோ  

b) The power consumed by the optical switch ෍ ܱܲ௔אூைோ  

The MILP model is defined as follows: 

Objective: minimize: ෍ ෍ ሺሺ݆ܺܲ݌ ή ܲ݉݅݊ሻ݆ܲܰא ൅ ሺοܲ ൉ ܴܲא݌ሻሻ݆݌ܲߜ ൅  

෍ ෍ ሺሺ݆ܺ݉ܯ ൉ ܯܰאሻ݆݊݅݉ܯ ൅ οܯ ൉ ݆݉ܯߜ ሻሻܴ݉ܯא ൅ 
 

෍ ෍ ሺሺܺ݋݆ܱ݅ܫ ൉ ܱܫܰאሻ݆ܱ݊݅݉ܫ ൅ ቀοܱܫ ൉ ܴܱܫא݋ቁ݅݋݆ܱ݅ܫߜ ൅ 

 

෍ ܴܲܵ ή ܴܲא݌݌ܯܲܳ ൅ 
 

෍ ෍ ܫܴܲ ή ܴܰאܽܽܰאǡܾܾܽܯܹܲ  ൅ 
 

෍ ܴܲܵ ή ܴܲא݌݌ܱܫܲܳ ൅ 
 

෍ ෍ ܫܴܲ ή ܴܰאܽܽܰאǡܾܾܱܽܫܹܲ  ൅ 
 

෍ ܴܲܵ ή ܴܯאܱ݉݉ܫܯܳ ൅ 
 

෍ ෍ ܫܴܲ ή ܴܰאܽܽܰאǡܾܾܱܽܫܯܹ  ൅ 
 

෍ ܴܰאܱܽܲ  (1) 

Equation (1) gives the MILP model objective, which is to 
minimize the resource provisioning power consumption and 
the communication fabric power consumption, where  ܺ ௝ܲ௣ is a binary indicator and ܺܲ ௝௣ =1 indicates that processor ݆ in CPU rack ݌ is active; otherwise, ܺ ௝ܲ௣ = 0. ܺܯ௝௠, and ܺܫ ௝ܱ௜௢are defined in a similar manner for the memory and IO 
respectively. οܲ=Pmax-Pmin, where οܲ is referred to as the CPU 
power factor (Watt), Pmax and Pmin are the CPU maximum 
and idle (i.e. minimum) powers respectively (Watt). οܯ and οܱܫ are the memory and IO power factors respectively. ߜ ௝ܲ௣

is 

the total utilization of processor ݆ in CPU rack ݌ (unitless). ܯߜ௝௠and ܫߜ ௝ܱ௜௢  are the memory and IO total utilization 
respectively. ܲ ܴܵ and ܲ  are the electrical switch port power ܫܴ
for the source and intermediate nodes respectively (Watt). ܴܲܵ and ܲ  will be explained later in detail in order to show ܫܴ

the difference between their values. ܳܲܯ௣  and ܳ ܫܲ ௣ܱ are the 
number of aggregation ports of the MEXC and IOEXC 
electrical switches in CPU rack ݌ respectively, and ܳ  ௠ isܱܫܯ
the number of aggregation ports of the electrical switch at 
memory rack ݉ ܫܹܲ ,ǡܾܽܯܹܲ . ܱܽǡܾ and ܹܫܯ ܱܽǡܾ are the number of 
wavelengths that carry the CPU-MEM, CPU-IO and MEM-IO 
traffic in the physical link (ܽ ǡ ܾ) respectively. 

For simplicity and due to their small power consumption, 
we assume that the optical switches are always on. Note that ܴܰ unites all of ܲ ܴ, Mܴ, and ܴܱܫ, and therefore the optical 
switch power ܲ ܱ (Watts) is summed once over ܴܰ. 

 

The minimization is subject to: 

1) Resource Allocation Constraints. 
 

Capacity Constraints:   ݆݌ܲߜ ൌ ෍ ݌ǡ݆݅ܲߠ   ൑ ܯܸא݅ ݈ݐܷ א ݆ ׊   ܰܲǡ  ݌ א ܴܲ 
(2) 

෍ ෍ ݌ǡ݆݅ܲߠ
ܴܲא݌ ܲܰ א ݆  ൌ א ݅ ׊ ܱܴܸܲ݅ܲ ݌ǡ݆݅ܲߠ (3) ܯܸ ൑ ܹ ή ܻܲ݅ǡ݆݌

 
א ݅ ׊ ǡܯܸ א ݆  ܰܲǡ ݌ א ܴܲ 

݌ǡ݆݅ܲߠ (4) ൒ ݁ ൅ ܻܲ݅ǡ݆݌ െ ͳ    א ݅ ׊ ǡܯܸ א ݆  ܰܲǡ ݌ א ܴܲ 
݆݉ܯߜ (5) ൌ ෍ ǡ݆݉݅ܯߠ ൑ ܯܸא݅ ݈ݐܷ א ݆ ׊  ǡܯܰ  א݉  ܴܯ
(6) 

෍ ෍ ܴܯא݉ ܯܰ א ݆ ǡ݆݉݅ܯߠ ൌ א ݅ ׊ ܯܧܯ݅ܯܸ  (7) ܯܸ

ǡ݆݉݅ܯߠ ൑ ܹ ή ܻ݅ܯǡ݆݉ 
א ݅ ׊ ǡܯܸ א ݆ ǡܯܰ  ݉ א  ܴܯ

ǡ݆݉݅ܯߠ (8) ൒ ݁ ൅ ǡ݆݉݅ܯܻ െ ͳ    א ݅ ׊ ǡܯܸ א ݆ ǡܯܰ  ݉ א  ܴܯ
݋݆ܱ݅ܫߜ (9) ൌ ෍ ݋ǡ݆ܱ݅݅ܫߠ ൑ ܯܸא݈݅ݐܷ א ݆ ׊  ǡܱܫܰ  א݋݅ ෍ (10) ܴܱܫ ෍ ݋ǡ݆ܱ݅݅ܫߠ

ܴܱܫא݋ܱ݅ܫܰ א ݆  ൌ ܱܫܱ݅ܫܸ א ݅ ׊   (11) ܯܸ

݋ǡ݆ܱ݅݅ܫߠ ൑ ܹ ή ܻܱ݅ܫǡ݆݅݋
 

א ݅ ׊ ǡܯܸ א ݆ ǡܱܫܰ  ݋݅ א  ܴܱܫ
݋ǡ݆ܱ݅݅ܫߠ (12) ൒ ݁ ൅ ݋ǡ݆ܱ݅݅ܫܻ െ ͳ    א ݅ ׊ ǡܯܸ א ݆ ǡܱܫܰ  ݋݅ א  ܴܱܫ
(13) 

Constraint (2) calculates the total processing utilization of 
each processor ߜ ௝ܲ௣and ensures that it is less than the 
maximum allowed utilization ሺܷ݈ݐሻ. Constraint (3) calculates 
the utilization of each processor per allocated VM, ߠ ௜ܲǡ௝௣ , 
where ܸ ௜ܲ is the processing demand of VM ݅ and ܲ ܴܱ is the 
CPU processing capacity (GHz). Constraints (4) and (5) 
allocate each VM to a certain processor in a certain CPU rack 
by evaluating ܻ ௜ܲǡ௝௣ , which is 1 if processor j in CPU rack p 
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hosts request ݅; otherwise, ܻ ௜ܲǡ௝௣ =0, using a very big number, ܹ, and a very small number ݁ǡ both numbers are used to help 
in the conversion to binary variables. Constraints (6)-(9) and 
(10)-(13) repeat the same steps of constraints (2)-(5), where 
the variables are defined in a similar manner but for the 
memory and IO modules respectively. 

2) SLA Constraints:   ෍ ݅ܭ  ൒ ܯܸܰ ή ܯܸא݅ܣܮܵ ݌݅ܭ (14)   ൑  ෍ ෍ ܻܲ݅ǡ݆ܴܲא ݌ܲܰא݆݌ א ݅ ׊     (15) ܯܸ

ܹ ή ௜௣ܭ  ൒ ෍ ෍ ܻ ௜ܲǡ௝௣௝אே௉௣א௉ோ א ݅ ׊        (16) ܯܸ

݉݅ܭ ൑  ෍ ෍ א ݅ ׊    ܴܯא݉ܯܰאǡ݆݆݉݅ܯܻ  (17) ܯܸ

ܹ ή ௜௠ܭ  ൒  ෍ ෍ א ݅ ׊       ெோאேெ௠א௜ǡ௝௠௝ܯܻ  (18) ܯܸ

݋݅݅ܭ ൑  ෍ ෍ ܴܱܫא݋ܱ݅ܫܰא݆݋ǡ݆ܱ݅݅ܫܻ א ݅ ׊     (19) ܯܸ

ܹ ή ௜௜௢ܭ  ൒  ෍ ෍ ܫܻ ௜ܱǡ௝௜௢௝אேூை௜௢אூைோ א ݅ ׊       ݅ܭ (20) ܯܸ ൌ ݌݅ܭ ൌ ݉݅ܭ ൌ א ݅ ׊ ݋݅݅ܭ  (21) ܯܸ

 
Constraint (14) ensures that the total number of served 

VMs is within an acceptable predefined percentage of the 

incoming VMs requests according to the service level 

agreement  ሺܵܣܮሻ value. The total number of served VMs, ܭ௜  depends on the outcomes of constraints (15)-(21) 

collectively; if all these constraints yield a value of 1, then ܭ௜  is 1, otherwise ܭ௜  is 0, where ܭ௜௣ ǡ ௜௠ܭ  and ܭ௜௜௢  are binary 

variables indicating if the processing, memory and IO 

requirements of request ݅ are, respectively, served or 

blocked. 
 
3) Slicing Constraints:   ෍ ෍ ܻܲ݅ǡ݆ܴܲא݌ܲܰא݆݌  ൑  ͳ א ݅ ׊ ෍ (22) ܯܸ ෍ ൑  ܴܯא݉ܯܰאǡ݆݆݉݅ܯܻ  ͳ א ݅ ׊ ෍ (23) ܯܸ ෍ ܴܱܫא݋ܱ݅ܫܰא݆݋ǡ݆ܱ݅݅ܫܻ  ൑  ͳ א ݅ ׊  (24) ܯܸ

 

Constraint (22) ensures that a VM i processing requirement 
is served by only one CPU, i.e. this constraint prevents VM 
slicing. Constraints (23) and (24) repeat constraint (22) for the 
memory and IO requirements. If multiple VM copies or VM 
slicing is required, equations (22)-(24) should be upper 
bounded by an appropriate number greater than 1, however, 

for consistency with the CS design, we considered a scenario 
where each of the VM resource requirements in the DS design 
is also served by a single physical resource. 

4) Active resources constraints: 

Active processors ݆ܺܲ݌ ൑ ܹ ή ݌ ׊  ݆݌ܲߜ א ܴܲǡ א ݆ ܰܲ      (25) ܹ ή ܺ ௝ܲ௣ ൒ ߜ ௝ܲ௣
݌ ׊  א ܴܲǡ א ݆ ܰܲ     (26) 

Active memory modules   ݆ܺ݉ܯ ൑ ܹ ή ݆݉ܯߜ ݉ ׊   א ǡܴܯ א ݆ ܹ (27)      ܯܰ ή ௝௠ܯܺ ൒ ݉ ׊ ௝௠ܯߜ א ǡܴܯ א ݆  (28)      ܯܰ

Active IO modules   ܺ݋݆ܱ݅ܫ ൑ ܹ ή ݋݅ ׊  ݋݆ܱ݅ܫߜ א ǡܴܱܫ א ݆ ܹ (29)      ܱܫܰ ή ݋݆ܱ݅ܫܺ ൒ ܫߜ ௝ܱ௜௢ ݋݅ ׊  א ǡܴܱܫ א ݆  (30) ܱܫܰ

Constraints (25) and (26) jointly find the active processors 
by checking the utilization ߜ ௝ܲ௣. Constraints (27) and (28) 
together check the active memory modules and constraints 
(29), and (30) repeat the same steps but for the IO modules. 

5) Communication constraints 

Generating the index matrix for the CPU-MEM traffic ܲ݅݌ܯǡ݉ ή ʹ ൌ ෍ ܻܲ݅ǡ݆ܲܰא݆݌ ൅ ෍ ܯܰאǡ݆݆݉݅ܯܻ  (31) 

א ݅ ׊   ǡܯܸ א ݌  ܴܲǡ ݉ א ǡ݉݅݌ܯܼܲ  ܴܯ  ൑ ǡ݉݅݌ܯܲ 
 

א ݅ ׊   א ݌  ǡܯܸ  ܴܲǡ  ݉ א  ܴܯ
(32) 

ǡ݉݅݌ܯܼܲ ൒ ǡ݉݅݌ܯܲ  െ ͲǤͷ 
א ݅ ׊   א ݌  ǡܯܸ  ܴܲǡ  ݉ א  ܴܯ

(33) 

Generating the index matrix for the CPU-IO traffic ܲ݅݌ܱܫǡ݅݋ ή ʹ ൌ ෍ ܻܲ݅ǡ݆ܲܰא݆݌ ൅ ෍ ݋݅ܰא݆݋ǡ݆ܱ݅݅ܫܻ  (34) 

א ݅ ׊   ǡܯܸ א ݌  ܴܲǡ ݋݅ א   ܴܱܫ

݋ǡ݅݅݌ܱܫܼܲ  ൑ ݋ǡ݅݅݌ܱܫܲ 
 

א ݅ ׊   א ݌  ǡܯܸ  ܴܲǡ  ݅݋ א  ܴܱܫ

(35) 

݋ǡ݅݅݌ܱܫܼܲ ൒ ݋ǡ݅݅݌ܱܫܲ  െ ͲǤͷ 

א ݅ ׊   א ݌  ǡܯܸ  ܴܲǡ  ݅݋ א  ܴܱܫ

(36) 

Generating the index matrix for the Memory-IO traffic ܱ݉݅ܫܯ ǡ݅݋ ή ʹ ൌ ෍ ܲܰאǡ݆݆݉݅ܯܻ ൅ ෍ ܱܫܰא݆݋ǡ݆ܱ݅݅ܫܻ  (37) 

א ݅ ׊   ǡܯܸ א ݉ ǡܴܯ  ݋݅ א ܱ݉݅ܫܯܼ  ܴܱܫ ǡ݅݋  ൑ ܱ݉݅ܫܯ  ǡ݅݋
 

א ݅ ׊   א ݉  ǡܯܸ ݋݅  ǡܴܯ  א  ܴܱܫ

(38) 
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ܱ݉݅ܫܯܼ ǡ݅݋ ൒ ܱ݉݅ܫܯ  ǡ݅݋െ ͲǤͷ 

א ݅ ׊   א ݉  ǡܯܸ ݋݅  ǡܴܯ  א  ܴܱܫ

(39) 

 Constraint (31) connects each source CPU rack to its 
destination memory rack. ܲܯ௜௣ǡ௠is an integer indicator that 
connects the ݅௧௛ VM CPU-MEM traffic to the relevant CPU 
and MEM racks. Constraints (32) and (33) collectively 
generate source-destination index matrix, ܼܲܯ௜௣ǡ௠ for all 
CPU-MEM traffic, depending on constraint (31). ܼܲܯ௜௣ǡ௠ ൌ ͳ 
if the VM ݅ generates traffic between CPU rack ݌ and MEM 
rack ݉; otherwise, ܼ ௜௣ǡ௠ܯܲ ൌ Ͳ. Constraints (34)-(36) and 
constraints (37)-(39) repeat the same steps of (31)-(33), where 
the variables are defined in a similar manner but for the CPU-
IO traffic and Memory–IO traffic, respectively. 

Generating the traffic demand matrix: ܶܲ݌ܯǡ݉ ൌ ෍ ܯܸא݅݅ܯܸܲ ή ǡ݉݅݌ܯܼܲ
א ݌ ׊   ܴܲǡ ݉ א ݋ǡ݅݌ܱܫܲܶ (40) ܴܯ ൌ ෍ ܯܸאܱ݅݅ܫܸܲ ή ݋ǡ݅݅݌ܱܫܼܲ
א ݌ ׊   ܴܲǡ ݅݋ א ݋ǡܱ݅݉ܫܯܶ (41) ܴܱܫ ൌ ෍ ήܯܸאܱ݅݅ܫܯܸ ܱ݉݅ܫܯܼ ǡ݅݋

 

א ݉ ׊ ݋݅ ǡܴܯ  א  (42) ܴܱܫ

Constraint (40) generates the CPU-MEM traffic matrix ܶܲܯ௣ǡ௠ based on the index matrix ܼܲܯ௜௣ǡ௠calculated 
previously in constraints (32) and (33), and ܸ ௜ܯܲ ǡ which is the ݅௧௛ VM CPU-MEM traffic demands. Constraints (41) and (42) 
generate the CPU-IO and Memory-IO traffic matrices 
respectively, using the relevant variables. 

Traffic flow conservation: ෍ ܽܰאǡܾ݉݌ǡܾܽܯܹܲ െ ෍ ൌܽܰאǡܾ݉݌ǡܾܽܯܹܲ ቐ ሺܶܲ݌ܯǡ݉  Ȁܤሻ          ܽ ൌ ܽ        ሻܤǡ݉  Ȁ݌ܯെሺܶܲ݌ ൌ ݉Ͳ        ݁ݏ݅ݓݎ݄݁ݐ݋  

(43) 

א ݌׊ ܴܲǡ ݉ א ǡܴܯ ݏ א ܴܰ ෍ ܽܰאܾ݋ǡ݅݌ǡܾܱܽܫܹܲ െ ෍ ൌܽܰאܾ݋ǡ݅݌ǡܾܱܽܫܹܲ ቐ ሺܶܲ݌ܱܫǡ݅݋  Ȁܤሻ          ܽ ൌ ܽ       ሻܤȀ  ݋ǡ݅݌ܱܫെሺܶܲ݌ ൌ ݁ݏ݅ݓݎ݄݁ݐ݋        Ͳ݋݅  

(44) 

א ݌׊ ܴܲǡ ݋݅ א ǡܴܱܫ ݏ א ܴܰ ෍ ܽܰאܾ݋ǡܾ݉ǡܱ݅ܽܫܯܹ െ ෍ ൌܽܰאܾ݋ǡܽ݉ǡܾܱ݅ܫܯܹ ቐሺܱܶ݉ܫܯǡ݅݋  Ȁܤሻ           ܽ ൌ ݉െሺܱܶ݉ܫܯǡ݅݋  Ȁܤሻ       ܽ ൌ ݁ݏ݅ݓݎ݄݁ݐ݋        Ͳ݋݅  

(45) 

א ݉׊ ǡܴܯ ݋݅ א ǡܴܱܫ ݏ א ܴܰ 

 Constraints (43)-(45) are the flow conservation constraints 
for the CPU-MEM, CPU-IO, and Memory-IO traffic 
respectively in the networking elements switches, ensuring 

that the total incoming traffic is equal to the total outgoing 
traffic for all nodes except for the source and destination 
racks, where ܹܲܯ௔ǡ௕௣ǡ௠, ܹ ܹ ௔ǡ௕௣ǡ௜௢andܯܲ  ௔ǡ௕௠ǡ௜௢ are the numberܯܲ
of wavelengths of lightpath (p,m), (p,io), and (m,io) 
respectively passing through a physical link (a,b). 
 
Wavelengths capacity constraints:  

 ෍ ෍ ܴܯאǡ݉݉݌ǡܾܽܯܹܲ ൑ܴܲא݌  ܾܽܯܹܲ

אܽ ׊ ܴܲǡ אܾ ܰܽ (46) 

෍ ෍ ܴܱܫא݋݅݋ǡ݅݌ǡܾܱܽܫܹܲ ൑ܴܲא݌  ܾܱܽܫܹܲ

אܽ ׊ ܴܲǡ אܾ ܰܽ (47) 

෍ ෍ ܴܱܫא݋݅݋ǡܾ݉ǡܱ݅ܽܫܯܹ ൑ܴ݉ܯא  ܾܱܽܫܯܹ

אܽ ׊ ǡܴܯ אܾ ܰܽ (48) 

 Constraints (46)-(48) ensure that the summation of the 
number of wavelengths traversing a physical link in the optical 
layer does not exceed the total number of wavelengths in that 
link for the CPU-MEM, CPU-IO, and Memory-IO traffics 
respectively. ܳܲ݌ܯ ൌ ͳܤ ή ෍ ܴܯאǡ݉݉݌ܯܲܶ א ݌׊  ݌ܱܫܲܳ (49) ܴܲ ൌ ͳܤ ή ෍ ܴܱܫא݋݅݋ǡ݅݌ܱܫܲܶ א ݌׊  ൌܱ݉ܫܯܳ (50) ܴܲ ͳܤ ή ෍ ܴܱܫא݋݅݋ǡܱ݅݉ܫܯܶ  

א ݉׊  (51) ܴܯ

 Constraints (49)-(51) determine the total number of 
aggregation ports utilized by the CPU-MEM, CPU-IO, and 
Memory-IO traffics respectively in each rack by dividing the 
total traffic matrix by the wavelength rate ܤ (Gbps). 
 

B. Resource Provisioning in CS with Communication Power 
MILP Model 

Here, we assume that both the CS and DS use the same data 
center networking topology, such as fat tree or spine and leaf. 
Therefore, the power consumption of this fabric is not 
included in both CS and DS designs, but we include the 
communication fabric needed to realize the DS functionality 
as shown in Fig. 3. Note that such topologies might not be an 
optimal choice for the DS data center, and a specially designed 
communication fabric on top of the communication layer 
shown in Fig. 3 may be needed to form an optimal higher 
networking architecture layer for the DS data center 
interconnect topology; this is an issue for future research.  

In the CS MILP model we consider a pool of servers, rather 
than a pool of resources. Each CS is equipped with the same 
type of resources (CPU, memory, I/O) that are used in the DS. 
Furthermore, we assume that each CS has a single CPU 
associated with a single Memory and a single IO module. 
Therefore, the utilization of a certain resource in the CS will 
affect the utilization of the other two resources. For example 
CPU#1 is associated with memory#1 and IO module#1 in 
CS#1. If CPU#1 is fully utilized by VM#1 then memory#1 
and IO module#1 cannot be used by another VM even if they 



11 
 

have enough capacity for the second VM. This is to be 
compared to the DS design. Thus, the number of servers in CS 
design is the same as the number of one type of resources, 
such as the number of CPU resources, and here we have 24 
servers.  

To account for the server power, we consider a fully loaded 
server power of 300 Watts [52]. The power consumption of 
each resource (e.g. CPU, memory, IO card) in this server was 
comparable to the values used in the DS. Given that all the 
traffic is contained within the same server, and we assume that 
VMs are not sliced among different servers and VMs do not 
interact with each other, we are not using switches for inter-
server traffic with the CS design. Viewed differently, we 
essentially do not include the data centre communication 
fabric (eg. fat tree or spine and leaf) when comparing the CS 
and DS as the same fabric is considered in both cases and 
carries the same inter-server traffic, (although the DS can 
potentially benefit from an alternate custom higher layers 
architecture fabric as mentioned). Instead we account for the 
intra-server communication in the CS as follows: the power 
consumption of each resource was set exactly equal to the 
values used in DS to facilitate comparison, and the CS idle 
power consumption is considered to be 150W which is about 
50% of its maximum power consumption [53][72], to account 
for the intra-server communication power. Later in the paper 
we revisit this idle power and consider the situation where 
only a fraction of it contributes to the intra-server 
communication power while the remaining non-
communication power is distributed among other parts of the 
CS, e.g. non-IT components, hard disks, etc. Such non-
communication power consumption has to be added to the DS 
design to accurately assess its power savings compared to the 
CS design. 

For the CS approach, each VM is allocated to the server that 
has enough CPU, memory, and IO modules to accommodate 
the VM; otherwise, a new server is powered on to host the 
requesting VM. 

In addition to the parameters and variables defined in 
Section 
IV-A, we define the following: 

Sets:  ܰܵ Set of all servers ܸܯ Set of VMs to be served 
Variables:  ߜ ௝ܲ Total processor utilization of server ݆ ܯߜ௝  Total memory utilization of server ݆ ܫߜ ௝ܱ  Total IO utilization of server ݆ ௝ܺ  Indicates if server ݆ is active, ܺ ௝ ൌ ͳ; otherwise, ܺ௝ ൌ Ͳ ߠ ௜ܲ௝   Portion of the processing capacity of server ݆ allocated to 

request ݅  ܯߠ௜௝ 
Portion of the memory capacity of server ݆ allocated to 
request ݅  ܫߠ ௜ܱ௝ Portion of the IO capacity of server ݆ allocated to request ݅  

௜ܻ௝ ௜ܻ௝ ൌ ͳ if server ݆ hosts request ݅, otherwise, ܻ௜௝ ൌ Ͳ ܱܰܵ Number of working servers 

 

The resource provisioning in the CS-based data center MILP 
model is: 

Objective: minimize: ෍ ሺሺ ௝ܺ ൉ ܲ݉݅݊ሻ௝אேௌ ൅ ሺοܲ ൉ ሻሻ݆ܲߜ ൅  

෍ ሺሺ ௝ܺ ൉ ேௌאሻ௝݊݅݉ܯ ൅ ሺοܯ ൉ ሻሻ݆ܯߜ ൅  

෍ ሺሺ ௝ܺ ൉ ேௌאሻ௝ܱ݊݅݉ܫ ൅ ሺοIO ൉   ሻሻ݆ܱܫߜ

൅ܱܰܵ ή ͳͷͲ (52) 
The objective (52) aims to minimize the total power by 
consolidating VMs in the minimum number of working 
servers. 
Capacity Constraints:   ݆ܲߜ ൌ ෍ ݆݅ܲߠ   ൑ ܯܸא ݅ ݈ݐܷ ݆ ׊  א ܰܵ (53) ݆ܲ ή ݆݅ܲߠ  ൌ ܸܲ݅ ή א ݅ ׊        ݆ܻ݅  ǡܯܸ א ݆ ݆݅ܲߠ  (54)    ܵܰ ൑ ܹ ή ܻ݆݅ א ݅ ׊ ǡܯܸ א ݆ ܰܵ 

݆݅ܲߠ (55) ൒ ݁ ൅ ܻ݆݅ െ ͳ    א ݅ ׊ ǡܯܸ א ݆ ܰܵ 
݆ܯߜ (56) ൌ ෍ ݆݅ܯߠ ൑ ܯܸא ݅ ݈ݐܷ ݆ ׊  א ݆ܯ (57) ܵܰ ή ݆݅ܯߠ  ൌ ݅ܯܸ ή א ݅ ׊        ݆ܻ݅  ǡܯܸ א ݆ ܰܵ 
݆݅ܯߠ  (58) ൑ ܹ ή ܻ݆݅ א ݅ ׊ ǡܯܸ א ݆ ܰܵ 
݆݅ܯߠ (59) ൒ ݁ ൅ ܻ݆݅ െ ͳ    א ݅ ׊ ǡܯܸ א ݆ ܰܵ 
݆ܱܫߜ (60) ൌ ෍ ݆ܱ݅ܫߠ ൑ ܯܸא ݈݅ݐܷ ݆ ׊  א ܰܵ 
݆ܱܫ (61) ή ݆ܱ݅ܫߠ  ൌ ܱ݅ܫܸ ή א ݅ ׊        ݆ܻ݅  ǡܯܸ א ݆ ܰܵ 
݆ܱ݅ܫߠ  (62) ൑ ܹ ή  ܻ݆݅ א ݅ ׊ ǡܯܸ א ݆ ܰܵ 
݆ܱ݅ܫߠ (63) ൒ ݁ ൅ ܻ݆݅ െ ͳ    א ݅ ׊ ǡܯܸ א ݆ ܰܵ 
(64) 

Constraint (53) calculates the total processing utilization of 
each processor in each server and ensures that it is less than 
the maximum allowed utilization. Constraint (54) calculates 
the utilization of each processor per allocated VM, and 
constraints (55) and (56) allocate each VM to a certain 
processor in a certain server. Constraints (57)-(60) and (61)-
(64) repeat the same steps of constraints (53)-(56) but for the 
memory and IO modules respectively. 

Slicing Constraint: 
  

෍ ܵܰא ݆݆ܻ݅  ൌ  ͳ 
א ݅ ׊  (65) ܯܸ

Constraint (65) ensures that each VM will be served by one 
server. This constraint will force service quality equal to 100% 
SLA. 

Active Resources Constraint: 
  ݆ܺ ൑ ܹ ή א ݆ ׊ ݆ܲߜ ܰܵ (66) 
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ܹ ή  ݆ܺ ൒ א ݆ ׊ ݆ܲߜ ܰܵ (67) ܱܰܵ ൌ ෍ ௝ܺ௝אேௌ  

 

(68) 

Constraints (66) and (67) find the working servers and 
constraint (68) uses their results to calculate the total number 
of working servers. 

 

C.  Energy Efficient Resource Provisioning in 
Disaggregated Servers with Communication Fabric 
(EERP-DSCF) Heuristic 

The EERP-DSCF heuristic provides real-time 
implementation of the MILP model in Section IV-A. The flow 
chart of the heuristic is shown in Fig. 4. In this study, we use 
homogenous resources, and thus sorting resources according 
to their PF is not necessary. Therefore, the heuristic picks the 
first CPU from the first CPU rack in the cluster and uses it for 
serving the first VM request. Then, the heuristic decides the 
VM’s memory and IO racks allocation based on joint criteria 
involving the resource availability and rack distance from the 
chosen CPU rack. Thus, both packing and open shortest path 
first (OSPF) algorithms are applied together.  

 

Fig. 4. EERP-DSCF heuristic flow chart.   

As shown in the flow chart, Fig. 4, the heuristic follows a 
greedy approach to pack as many VMs as possible in the 
minimum number of resources and such resources may be 
physically far apart. Therefore, SLA violations might occur in 
the form of increased delay. However, delay constraints can be 
included by forming clusters of DS racks within a maximum 
distance limit between the selected racks in each cluster which 
should be set in consistency with the OSA metrics for server 
disaggregation. 

The EERP-DSCF picks the first VM and allocates the first 
CPU in the first CPU rack in the cluster. The heuristic then 
organizes the memory and IO racks in a list according to their 
distances from the chosen CPU rack in ascending order. 
Subsequently, the heuristic checks the resources availability in 
the newly organized lists. If the first memory rack has enough 
capacity to accommodate the VM under consideration, the 
heuristic uses it; otherwise, the next rack is tested. In the same 
fashion, the heuristic checks the first IO rack in the list and 
allocates the chosen resources for the VM under 
consideration; otherwise, the next nearest IO rack is tested, 
and so on, until an available IO module is found. The heuristic 
tries to fill partially used resources and racks as much as 
possible before moving onto next racks. After allocating 
resources to the first VM request, the heuristic loops for the 
rest of the VM requests until all VMs allocations are done. 
Finally, EERP-DSCF grooms the traffic from each rack 
according to the traffic destination, routes them among racks, 
and calculates the total consumed power. 

D. Evaluation Scenarios for the MILP Model and Heuristic 

To evaluate the performance of the proposed MILP model 
and heuristic, we consider the example data center shown in 
Fig. 5. It consists of 72 racks (24 racks of each resource type), 
organized in an 89 matrix and 127 links, as shown in Fig. 5, 
which represents the top view of the DS data center 
considered. 

 
Fig. 5. DS based data center structure under consideration. 

For the MILP model, a smaller version of the data center 
cluster, shown in Fig. 5, is used due to MILP computational 
complexity. It comprises 9 racks (3 racks of each resource 
type) organized in a 33 matrix and 12 links, as shown in Fig. 
6. It follows the same structure and racks sequencing of the 
data center cluster in Fig. 5. The first column consists of three  
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IO racks, the second consists of three CPU racks, and the last 
column consists of three memory racks. We consider a 
scenario in which each rack contains 8 resources of its own 
type, each CPU rack contains 8 processors, each IO rack 
contains 8 IO modules, and each memory rack contains 8 
memory modules. Thus every three racks, (one of each type, 
i.e. one processing, one memory and one IO racks) will 
contribute to make 8 servers. Therefore, in 3×3 racks there are 
24 servers in total (8 × 3). Thus with a load of 25 VMs, 
assuming 1 VM per server, the maximum load of the DC is 
100%. 

For the heuristic, and due to its lower computational 
complexity, we evaluated the full 89 data center shown in 
Fig. 5. Each column is one type of resource racks, and each 
rack of each type contains 42 resources of its type. Starting 
from the far left, the first column contains the IO racks, 
followed by the CPU racks, then the Memory racks, and this 
sequence is repeated for the next 6 columns. Note that each 
rack is only connected to the nearest neighboring racks using 
optical fibers. As for the heuristic, the distance between 
adjacent racks is set to 1m [54].  

For both the MILP model and the heuristic, each rack has 
its own intra-rack communication fabric and electrical and 
optical switches to facilitate the communication among racks 
and inter-rack communication, as shown in Fig. 1 and in Fig. 
3. Table II shows the parameters used for both the MILP 
model and heuristic. The power consumption of the resources 
we used is consistent with our previous work in [33, 34], and, 
for the network devices, we use the values in Table II. 
 Regarding some of the power values given in Table II, it is 
worth noting that for the electrical switch port power and the 
packetizer power, we have linearly scaled up the values given 
in [55] for the switch port and [50] for the channel adapter to 
account for 100 Gbps port power. For the switch port power, 
and according to [55], a 10 Gbps port consumes 4 W; 
therefore, the switch port power consumption is calculated as 
410W (equivalent to 100 Gbps port). For the 100 Gbps 
packetizer, in [50], the 40 Gbps packetizer power consumption 
is 7 W, and thus to scale up for 100 Gbps, the total power 
consumption is calculated as 72.5=17.5 W, and, to be more 
conservative, an extra 2.5 W was added, i.e. 20 Watts in total 
in order to account for other possible functionalities, such as 
buffering and arbitration.  

TABLE II 
 INPUT PARAMETERS FOR THE MILP MODEL AND SIMULATION HEURISTIC 
Power consumption of electrical switch port for 
source nodes ܴܲ ܵ 

70.5 W  

Power consumption of electrical switch port for 
intermediate nodes ܴܲ43.5 ܫ W  

Power consumption of electrical 100 Gbps switch 
port (Pr ሻ 

40 W [55] 

Power consumption of an optical switch  85 W [56] 
Bit rate of each wavelength  100 Gbps 
CPU capacity  3.6 GHz [57] 
CPU maximum power consumption  130 W [57] 
RAM capacity  8 GB [57] 
Memory maximum power draw  10.24 W [58] 
IO module rate 10 Gbps [57] 
IO module maximum power draw  21.4 W [59] 
100 Gbps Optical transceiver power  3.5 W [49] 
100 Gbps Multiplexer power (W) 4 W [51] 
100 Gbps Packet engine (packetizer or packet engine) 
power  

20 W [50] 

 We evaluate ܴܲܵ by considering the scenario explained in 
Section IV-A, where a transceiver power is added to each end 
of each link and a packetizer power is considered for each 
source-destination pair. ܴܲܵ ൌ ͶͲ ܹሺelectrical switch portሻ൅ ͵͵Ǥͷ ܹ ሺtransceivers powerሻ൅ ʹͲ ܹ ሺpacketizer powerሻ 

Here, we consider 3 transceivers: the first is attached to the 
source resource, the second is for the destination resource, and 
the third is for the source electrical switch port. 

For each intermediate node, we consider a switch port 
power plus a transceiver power, which yields: ܴܲܫ ൌ ͶͲ ܹሺelectrical switch portሻ൅ ͵Ǥͷ ܹ ሺtransceiver powerሻ 

 
Fig. 6. Substrate data center for the MILP model. 

E. VM Modeling 

For the VM resources requirements and traffic demands, 
we use the requirements in Table III, which are assumed with 
respect to the three different VM types: processing intensive 
(PI), memory intensive (MI), and IO intensive (IOI). These 
three VM types are different in terms of their resources 
requirements, as shown in Table III. VMs are assumed to 
arrive at the same time, but we have not considered blocking 
because blocking can reduce power consumption, and we 
consider a situation where both CS and DS can accommodate 
all VM requests without blocking or migration to establish a 
comparison that is based solely on the difference in 
architecture and resource management between the two 
approaches. However, we note that VM blocking and different 
VM arrival patterns are interesting topics, and we leave their 
investigation for future research. Comparing the IO resources 
requirements to the actual traffic reveals that delay or maybe 
blocking situations can occur on the egress ports. However, 
we have not considered their effects in the analysis presented 
in this work.  

A VM requires three resources: processing, memory and 
networking resources, and there is traffic between these 
resources. As mentioned above, we assume that all the VM 
requests arrive at once and they all have infinite service 
durations. Thus, it is a one shot (non-sequential) evaluation, 
such that a VM will use the same allocated resources at all 
times and will not be migrated to different resources. We 
assume all VMs are served as we set the SLA to 100% and as 
such no VM blocking is considered. We did not consider 
blocking VM requests since such blocking can lead to lower 
power consumption in one of the designs. Therefore we 
require both the CS and DS to serve all the requests. 

 



14 
 

 Using a computer with a 3.3 GHz CPU and 8 GB memory, 
our heuristic produced the results in less than one minute, 
considering 1000 IOI VMs. This is a remarkable improvement 
over the MILP model, which requires about 2 days to produce 
the results for only 20 IOI VMs using the same computer. 
While our heuristic results show the power consumption of a 
range of data center loads ranging from 100 to 1000 VMs, the 
MILP model shows results for data center loads ranging from 
5 to 20 VMs, limited by the computational complexity of the 
MILP and the processing platform available. 

TABLE III  
INPUT PARAMETERS FOR THE VMS REQUIREMENTS 

                     VM Type 
Demands 

PI MI IOI 

CPU (GHz) 2-3.6 0.1-0.3 0.1-0.3 
Mem (GB) 0.1-0.3 6-8 1-4 
IO (Gbps) 0.5-1 0.5-1 6-10 
CPU-MEM Traffic (Gbps) 10-100 10-50 5-20 
CPU-IO Traffic (Gbps) 1-3 1-3 1-3 
MEM-IO Traffic (Gbps) 1-3 1-5 6-10 

F. MILP Model and Heuristic Results 

Fig.7 compares the average power consumption results of 
the MILP model for the DS and CS designs and the DS 
heuristic considering the three VM types PI, MI and IOI. The 
results were obtained by running the MILP models and the 
heuristic for the cases of 5, 10, 15, 20 and 25 VM requests, 
then the average power consumption is calculated. The results 
show clearly that the DS heuristic and the DS MILP are 
comparable and the heuristic follows the MILP closely 

 
Fig. 7. Average power consumption comparison of the DS MILP model, DS 
heuristic, and CS MILP model with communication fabric. 

Examining the results in Fig. 7 and comparing the DS 
MILP to the CS MILP shows that the PI VMs are the highest 
power consuming demands which leads to minimum average 
power saving, of about 3% while MI and IOI have comparable 
power consumptions and they have comparable average power 
savings, of about 42%. 

Fig. 7 shows that the heuristic and MILP are close and the 
heuristic execution time is short. Therefore, we have obtained 
new results where for each VM the CPU load was random and 
uniform between 0.1 and 3.6 GHz, the other VM attributes 
were also random and uniform and were: Mem (1-8) GB, IO 
(0.5-10) Gbps, CPU-Mem traffic (10-100) Gbps, CPU-IO 
traffic (1-3) Gbps, Mem-IO traffic (1-10) Gbps. 

The power savings are averaged over 100 experiments (each 
experiment obtained power saving using 100 runs of the CS 
and DS heuristics for 5, 10, 15, 20, and 25 VMs) and the 
power profiles are shown in Fig. 8. With the considered high 
demand values, the DS power consumption is more than the 
CS for very small numbers of VMs, but moving to large 
numbers of VMs, the DS shows better performance compared 
to CS due to good resource packing.  

The placement of VMs is optimized by the CS and the DS 
heuristics so as to minimize the power consumption through 
packing and proximity placement as shown in Fig. 4.

 
Fig. 8. Average power consumption for different numbers of VMs 

considering 100 runs for each case. 
Fig. 9 shows the DS heuristic results for the power 

consumption of the networking resources (NetP), the resource 
power consumption (RESP), and the total power consumption 
(Total). The results can be explained by considering the 
cluster topology and size under consideration plus the number 
of served VMs, as well as the inputs, in particular, the 
resource specifications, and VM requirements. 

Fig. 9.a shows the PI VM requests results. Note that the 
resource power is higher than the networking power, and it has 
higher impact on the total power consumption. Given the 
parameters in Tables II and III for the resources, power 
consumption, and VM demand values, the average CPU 
demand per VM is 3 GHz for the PI VMs type, and thus a 
huge number of CPUs will be used for VM allocation. A lot of 
VMs will occupy a whole CPU on their own and not share the 
CPU with other VMs. Given that the CPU has high power 
consumption values, the resource power consumption is the 
highest and exceeds the network power consumption. 

In relation to the networking power, Fig. 10 shows the 
active racks of each type when serving 1000 VM requests for 
the three VM types, PI, MI, and IOI. Examining Fig. 10 
reveals that considering 1000 PI VM requests results in a case 
where all the racks in the cluster are activated, regardless of 
their utilization, where an active rack means there is an 
outgoing/incoming traffic. Each CPU rack has an active 
memory and IO racks among its neighbors, enforced by the 
heuristic, and thus all traffic, in this case, will be a single hop 
traffic resulting in about 80 kW networking power 
consumption, which is less than the power consumed by the 
resources. 

Fig. 9.b shows the evaluation for the MI VM requests and 
compares the two power components: the network and 
resource powers. As in PI, both the network power and 
resource power consumption increase with increasing number 
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of VMs. The increase in resource power is far less, however, 
than the increase in network power consumption, as memories 
consume few watts, and only two CPU racks are enough to 
accommodate the processing requirements of all the VMs 
under consideration. Inspecting Fig. 10, and the MI results in 
particular, all the memory racks are used, but only two CPU 
racks and two IO racks are used. This is due to the approach 
followed by our heuristic when performing the resource 
allocation and packing. The heuristic first allocates the best 
available CPU to reduce the number of working CPUs, 
resulting in only two working CPU racks, whereas the 
memory and IO allocations follow the CPU allocation by 
choosing the closest memory and IO racks to the used CPU 
rack that have enough capacity to accommodate the VM under 
consideration.  

Thus, the traffic due to these CPU racks destined to the 
memory racks, which typically has moderate values, has to 
travel through long pathways, passing a significant number of 
multi-hop links and further increasing the network power 
consumption. In the same manner, the traffic from the memory 
racks to the IO racks traverses almost the whole cluster, in 
some cases, to reach its destination. This leads to about 138 
kW networking power consumption, following resource 
packing, which reduces the number of active resources 
(processing resources especially), resulting in the minimum 
resources power consumption.  

Fig. 9.c shows the power consumption of the DS heuristic 
for IOI VMs. As the IOI VM type has the lowest CPU-MEM 
traffic values, and due to both good resource packing for this 
energy efficient module and traffic routing by the heuristic, 
this scenario resulted in the minimum network power 
consumption and minimum resources power consumption 
which yielded minimum total power consumption. Fig. 10 
reveals that all IO racks are working in addition to only two 
power consuming CPU racks and seven memory racks. Again, 
this can be explained by observing the way the heuristic 
works. The heuristic’s first priority is to allocate the VMs in 
the smallest number of CPUs. After that, the memory and IO 
modules allocation follows the CPU allocation by choosing 
the closest available resources to the used CPUs. 

It can clearly be seen in Fig. 10 that the heuristic preferred 
memory racks # 9 and #10 instead of #6, #7 and #8. 
Examining Fig. 5 shows that CPU racks 1 and 2 are closer to 
memory racks 9 and 10 compared to racks 6, 7 and 8.  

To show the effect of the power consumption attributed to 
communications on the overall power saving, Fig. 11 
compares the average power consumption of the CS based 
data center design to the power consumption of the DS based 
data center design for a large number of VMs ranging from 
100 to 1000 VMs and considering the PI, MI, and IOI VM 
types. The CS approach is implemented as a heuristic, where 
the total number of coupled resources required to form server 
units to serve incoming VMs are determined, and then 150 W 
is added to the power consumption of the resources of each 
active server to account for the internal communication 
overhead. Fig. 11 shows that the average power saving for the 
processing intensive DS with communication fabric (PI 
DSCF) is about 10% when compared with the processing 
intensive CS with communication fabric (PI CSCF). This is 
due to the use of the power-hungry processing resources in 

both DS and CS designs to a high extent when compared to 
the number of used memory and IO resources in the DS. 

However, due to the DS ability to pack a higher number of 
VMs in fewer resources (i.e. memory and IO in this case), DS 
managed to save a considerable fraction of the power 
compared to CS. Regarding the networking power 
consumption, as discussed earlier in this section, the allocation 
of VMs in the DS racks led to a communication pattern such 
that all traffic passes single hop paths, leading to moderate 
network power consumption in spite of having high traffic 
values associated with the PI VM demands, and leading to 
overall total power saving compared to CS.  

 
(a) PI 

 
(b) MI 

 
(c) IOI 

Fig. 9. The power consumption of the EERP-DSCF with a large number of 
VMs. 

Fig. 11 shows the average power saving for the memory 
intensive DS with communication fabric (MI DSCF) design. 
The saving is about 53% compared to the memory intensive 
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CS with communication fabric (MI CSCF). The higher saving 
percentage for the MI results when compared with the 
previous PI results is due to the efficient utilization of the 
power intensive CPU resources in the DS compared to the CS. 
In the CS a large number of servers has to be powered-on due 
to the congestion on the memory modules. 

In relation to the networking power consumption, serving 
MI requests increases the network power consumption in DS 
when compared with PI and IOI demands as shown in Fig. 9. 
Having a large number of working memory racks and a lower 
number of working CPU and IO racks increases the traffic 
among these racks and many traffic flows take multi-hop 
paths. However, the DS total power consumption (resources 
plus networking) is still lower than the CS total power 
consumption, as CS operates a large number of servers, 
roughly the same as the number of powered-on memory 
modules in the DS, which maintain the higher CS power 
consumption when compared to DS. 

 
Fig. 10. Active racks considering 1000 VM requests. 

 
Fig. 11. Average power consumption of EERP-DSCF compared to CS with 
communication fabric. 

Similarly, the IOI VMs scenario resulted in the highest 
power saving, with an average power saving of about 63% 
compared to CS.  

For the resource power, the IOI VMs consume less power 
than the PI VMs but more than the MI VMs scenarios. 
According to Fig. 10, the communication power in IOI VMs, 
as explained earlier, is much lower than the MI VMs scenario, 
thus, the IOI VM scenario total power is the smallest among 
other VM types, resulting in the highest power saving. 

Finally, we investigate the other extreme scenarios 
represented by mixed VM demands, such as PI+MI VMs or 
PI+MI+IOI VMs. Table IV captures the requirements of these 
mixed VM types. Note that we selected the maximum demand 
values in each set of VM combinations to establish the power 
savings limits. 

TABLE IV   
INPUT MIXED VMS RESOURCES AND TRAFFIC REQUIREMENTS 

                     VM Type 
Demands 

PI+MI PI+IOI MI+IOI PI+MI+IOI 

CPU (GHz) 2-3.6 2-3.6 0.1-0.3 2-3.6 
Mem (GB) 6-8 1-4 6-8 6-8 
IO (Gbps) 0.5-1 6-10 6-10 6-10 
CPU-MEM Traffic 
(Gbps) 

10-100 10-100 10-50 10-100 

CPU-IO Traffic (Gbps) 1-3 1-3 1-3 1-3 
MEM-IO Traffic (Gbps) 1-5 6-10 6-10 6-10 

 
The VMs requirements, resources, and traffic values have 

been chosen to cover the extreme values for the considered 
types to cover a variety of VMs categories. Fig. 12 shows the 
total power consumption of the four different scenarios 
mentioned in Table IV, for both DS and CS servers.  

The MI+IOI and PI+MI scenarios have the highest power 
savings, about 28% and 27% respectively. For the first 
scenario (MI+IOI), due to the low CPU demands and 
relatively low CPU-MEM traffic values compared to the other 
VM types, this scenario resulted in the best power profile 
followed by the PI+MI scenario. 

 

 
Fig.12. The power consumption of DS and CS heuristics considering a variety 

of 1000 VM requests. 

The mixed PI+MI scenario has a higher CPU demand 
compared to the MI+IOI VMs scenario, but lower IO demand 
and MEM-IO traffic compared to the other scenarios (PI+IOI 
and PI+IOI+MI). Thus, it has higher power savings than both, 
but lower than MI+IOI due to its high CPU demand and CPU-
MEM traffic. The last two scenarios, PI+IOI and PI+MI+IOI, 
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resulted in the minimum power savings: 17%, and 15%, 
respectively. This is consistent with the resources demands 
and traffic values required by these VM types. The worst 
scenario PI+MI+IOI has all the highest values thus it has the 
worst saving while the PI+IOI has also all the highest values 
except for the least power consumers, the memory demands, 
which resulted in low power saving but slightly more than the 
PI+MI+IOI. 

Regarding the traffic values, Fig. 13 is a case study which 
shows the effect of having high CPU-MEM traffic on the total 
power saving considering 1000 IOI VMs. This case study 
investigates the highest power saving scenario, IOI VMs (note 
that IOI VMs represent video streaming which currently 
accounts for about 90% of the traffic in the Internet, ie outside 
the data center [60]. The case study clearly shows that 
increasing the high CPU-MEM traffic increases the DS power 
consumption until it reaches the point where both designs have 
the same power profiles at around 225 Gbps traffic rate.  

With the increase in the traffic, the CS design gives a 
better power profile than the DS design. However, the 
evaluations conducted in this paper are based on current 
technologies with very conservative assumptions. With future 
improved communications technologies, the DS architecture is 
expected to be a promising choice over several dimensions, 
especially the energy-saving dimension. 

 
Fig. 13. Heuristic results showing the effects of increasing the CPU-MEM 

traffic on the total power consumption considering 1000 IOI VMs. 

The results in this section so far computed the DS power as 
the sum of the power consumption of CPU, IO and memory. 
Therefore the results were based on a 150W idle power 
consumption that is all attributed effectively to 
communications in the CS. A fairer comparison is presented in 
Fig. 14 (which can be compared to the 1000 VMs case in Fig. 
8) where the proportion of idle power attributed to 
communications in the CS is varied from zero up to the 
maximum idle power of 150W. Note that any power attributed 
to communications in the CS is not moved to the DS. The 
remaining part of the idle power (not attributed to 
communications) is moved to the DS and may account for 
hard disks, fans etc. Furthermore, we report sensitivity 
analysis where the non-IT power consumption (cooling, power 
supply, etc.) in the DS design was changed by ± 20%. The 
increase in non-IT power consumption indicates a less 
efficient cooling and power supply system for the rack scale 
DS design. The decrease can mean that sharing cooling and 
using large centralized power supplies may result in non-IT 

power savings in the DS design. Therefore, our results explore 
a range of possible future evolution scenarios in areas (cooling 
and power supply) that are beyond the scope of 
communication, networking and lightwave design, the focus 
of this paper. 

 
(a) IOI 

 
(b) MI 

 
(c) PI 

Fig. 14. Heuristic results showing the impact of considering different non-
communication power consumption values in DS, under 1000 IOI, MI and PI 
VMs. 

As can be seen in Fig.14, serving IOI VMs, can still 
produce considerable power savings with an average of 36% 
power saving . Serving MI VMs has an average power saving 
of 13% while the least power saving scenario (serving PI 
VMs) has savings only when the CS communication power is 
remarkably high (125 W or more), or when the DS fabric 
power consumption decreases with progress in 
communications and switching power consumption reduction.  
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V. DISAGGREGATED SERVER IMPLEMENTATION 

TECHNOLOGIES AND LIMITATIONS  

In our new design, packets have special packet formats. 
The CPUMC encapsulates the memory address and control 
information, such as read, write, number of successive bytes, 
and any other information, as an Ethernet packet, for 
communication between the processor and memory modules 
located in different racks. The IO packet engine encapsulates 
the IO address and control information for the CPU IO 
communication, as an Ethernet packet. For example, a packet 
sent from a CPU contains an address part (header) and data 
(payload). The address contains the IP of the destination rack 
and the ID of the specific module memory or IO which the 
CPU wants to access. These are provided by the data center 
global operating system. The rack IP address is used by the 
CPU rack MEXC or IOEXC switch to forward the packet to 
the destination rack. On receiving the packet at the destination 
rack, the top of rack switch, MMC or IOEXC, reads the 
specific module ID and forwards the packet to its right 
destination module. Thus, all the communication passes 
through the electronic (Ethernet) ToR switches. For high 
performance computing, such as the DS data center, low 
latency switching is a key element to enable upper layer 
latency sensitive applications; thus, switch latency is 
becoming a very critical factor [27].   

Here, we describe some proposals that can further reduce 
the total latency in our design: (i) we suggest the use of a 
reduced switching protocol overhead and simple packet format 
due to the topology and data nature, which will jointly help in 
reducing the total system latency; (ii) our switches could be 
designed specifically for certain packets formats, like the 
CPU-MEM, CPU-IO, and MEM-IO, instead of generic IP 
switches; (iii) we propose the use of flexible protocol formats 
to handle different applications that have different latency 
restrictions. Thus, for latency tolerant applications, we allow 
the use of implicit circuit switching by establishing dedicated 
channels for a given time for this specific application; (iv) the 
use of MPLS as a simple switching technique or implicit 
circuit switching with time division multiplexing (TDM); (v) 
implementing optical switching (circuit [61], packet [62], [63], 
[64], label [63], and burst switching [65]) as a fast and reliable 
switching technique, which will also eliminate the need for 
some of the optical transceivers which perform optical to 
electrical to optical conversion when electronic switches are 
used. For example, optical burst switching can be useful for 
memory communications which are typically bursty in nature 
(e.g. file downloading). The elimination of the 
packetizer/depacketizer is also attractive; (vi) finally, by 
looking at the latency reduction trends in recent years in 
Ethernet switches [66], [67], [68]; attributed to new advanced 
switching architecture design and improved silicon 
technology, the Ethernet switch latency is decreasing from 
double-digit milliseconds to sub-microsecond [69]. With this 
trend, it is highly expected that the Ethernet switch latency 
will arrive at a point that fits the DS requirements.  

For the memory modules, we propose the use of high 
performance components to overcome latency and 
communication delay bottlenecks. DDR4 [70] is the latest 
version of RAM technology, offering a range of improvements 

over its predecessor, DDR3 [71], such as greater range of 
available clock speeds and timings and lower power 
consumption.  

Compared to OSA recommendation for a 50ns round trip 
delay between the CPU and the memory [27], the current 
switching technology needs to further improve to comply with 
such requirements in the introduced DS design.  Considering 
some of the previously mentioned implementation ideas and 
future technology development, this design can be a promising 
implementation for the DS. We believe that the switching 
times of optical and electrical switches will continue to 
improve with time. 

VI.  CONCLUSIONS AND FUTURE WORK 

This paper has investigated the advantages of 
disaggregated server (DS) design over traditional monolithic 
conventional server (CS) design. First, we presented our new 
design for the photonic-based DS data center architecture, 
supplemented with a complete description of the architecture 
components and communication patterns. Second, we 
analyzed the energy efficient resource provisioning and VM 
allocation in DS server design with communication fabric. A 
MILP optimization was developed for the purpose of 
optimizing VM allocation for DS-based data centers, 
considering the communication fabric power consumption. 
The results show that considering pooled resources yields 
considerable power savings when compared with the CS 
approach, and up to 42% average power savings were 
achieved based on the MILP optimized system. Third, for real-
time implementation, we developed an energy efficient 
resource provisioning heuristic for DS (EERP-DSCF), based 
on the MILP model insights, with comparable power 
efficiency to the MILP model. The effect of CPU-MEM traffic 
values has been investigated by increasing the CPU to 
memory traffic and comparing the DS and CS power 
consumption. In addition, the impact of the inclusion of non 
communication power has been considered by adding an extra 
150 W non communication power (per CS equivalent server) 
to the DS design.  Finally, some recommendations for design 
and implementation focus on the requirements, the capabilities 
of different switching and implantation technologies, and the 
challenges that this architecture can face. Planned future work 
includes consideration of virtualization in DS-based data 
centers, geo- distributed DS-based data centers, VM 
scheduling, real-time VM migration, and VM blocking with 
appropriate MILP models and heuristics together with 
consideration of other performance metrics (beyond power 
consumption) such as scalability, resilience, latency and 
security. 
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